Articles | Volume 24, issue 4
Hydrol. Earth Syst. Sci., 24, 1763–1779, 2020
https://doi.org/10.5194/hess-24-1763-2020
Hydrol. Earth Syst. Sci., 24, 1763–1779, 2020
https://doi.org/10.5194/hess-24-1763-2020

Research article 09 Apr 2020

Research article | 09 Apr 2020

Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes

Emma L. Robinson and Douglas B. Clark

Related authors

Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021,https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020,https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015
Eleanor M. Blyth, Alberto Martinez-de la Torre, and Emma L. Robinson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-153,https://doi.org/10.5194/hess-2018-153, 2018
Manuscript not accepted for further review
Short summary
Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data
Emma L. Robinson, Eleanor M. Blyth, Douglas B. Clark, Jon Finch, and Alison C. Rudd
Hydrol. Earth Syst. Sci., 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017,https://doi.org/10.5194/hess-21-1189-2017, 2017
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021,https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Learning about precipitation lapse rates from snow course data improves water balance modeling
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021,https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021,https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020,https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Assimilation of citizen science data in snowpack modeling using a new snow dataset: Community Snow Observations
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and the Community Snow Observations Participants
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-321,https://doi.org/10.5194/hess-2020-321, 2020
Revised manuscript accepted for HESS
Short summary

Cited articles

Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res.-Atmos., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003. a, b, c, d, e, f, g
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of Global Precipitation Products for Orographic Effects, J. Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006. a, b, c
Alkama, R., Decharme, B., Douville, H., Becker, M., Cazenave, A., Sheffield, J., Voldoire, A., Tyteca, S., and Le Moigne, P.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part I: Comparison to GRACE Terrestrial Water Storage Estimates and In Situ River Discharges, J. Hydrometeorol., 11, 583–600, https://doi.org/10.1175/2010JHM1211.1, 2010. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486, https://doi.org/10.1002/2015JD024546, 2016. a, b
Download
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.