Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1677-2020
https://doi.org/10.5194/hess-24-1677-2020
Research article
 | 
08 Apr 2020
Research article |  | 08 Apr 2020

On the assimilation of environmental tracer observations for model-based decision support

Matthew J. Knowling, Jeremy T. White, Catherine R. Moore, Pawel Rakowski, and Kevin Hayley

Related authors

Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023,https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
The importance of parameterization when simulating the hydrologic response of vegetative land-cover change
Jeremy White, Victoria Stengel, Samuel Rendon, and John Banta
Hydrol. Earth Syst. Sci., 21, 3975–3989, https://doi.org/10.5194/hess-21-3975-2017,https://doi.org/10.5194/hess-21-3975-2017, 2017

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023,https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023,https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023,https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023,https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary

Cited articles

André, L., Franceschi, M., Pouchan, P., and Atteia, O.: Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France, J. Hydrol., 305, 40–62, https://doi.org/10.1016/j.jhydrol.2004.08.027, 2005. a
Bedekar, V., Morway, E., Langevin, C., and Tonkin, M.: MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW, U.S. Geological Survey Techniques and Methods 6-A53, Reston, VA, USA, p. 69, 2016. a
Beyer, M., Morgenstern, U., and Jackson, B.: Review of techniques for dating young groundwater (<100 years) in New Zealand, J. Hydrol., 53, 93–111, 2014. a
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: The importance of model discrepancy, Inverse Probl., 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014. a, b
Cartwright, I. and Morgenstern, U.: Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens catchment, southeast Australia, J. Hydrol., 475, 137–149, https://doi.org/10.1016/j.jhydrol.2012.09.037, 2012. a
Download
Short summary
The incorporation of novel and diverse data sources into predictive models is expected to improve the reliability of model forecasts. This study critically and rigorously explores the extent to which this expectation holds given the imperfect nature of numerical models (and therefore their compromised ability to appropriately assimilate information-rich data). We show that environmental tracer observations may be of variable benefit in reducing forecast uncertainty and may induce forecast bias.