

Supplement of

On the assimilation of environmental tracer observations for model-based decision support

Matthew J. Knowling et al.

Correspondence to: Matthew J. Knowling (mjknowling@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Heretaunga Plains model parameterization summary table

type	transform	count	initial value	upper bound	lower bound	standard deviation
coastal boundary conductance	log	14	0.576089 to 5	5	-3	1.33333
river-bed conductance	\log	67	-0.767135 to 5.69897	5.69897	-3	1.44983
river-bed conductance	mixed	271	-3 to 3.28756	5.69897 to 500000	-3 to 0.001	1.44983 to 83333.3
drain conductance	\log	1	-2.28602	2	-3	0.833333
horizontal hydraulic conductivity	\log	235	-1.43573 to 4	2 to 4	-4 to 0.69897	0.333333 to 1.1165
horizontal-vertical anisotropy factor	\log	187	0.897056 to 3	3	0	0.5
porosity	\log	235	-1	-0.823909	-3	0.362682
(irrigation well) abstraction rate multiplier	none	1	98.9137	120	80	6.66667
recharge multiplier	none	1	99.4197	120	80	6.66667
seasonal river-bed conductance multiplier	none	7	100 to 547.22	2000	100	316.667
specific storage	\log	185	-6.1167 to -5.90237	-3	-7	0.666667
specific yield	\log	93	-3.93455 to -0.69897	-0.69897	-4	0.550172

Hauraki Plains model singular-value spectrum. Here, "EIGTHRESH" is the ratio of the lowest-to-highest eigenvalue. An EIGTHRESH value of 10^{-6} is often recommended. However, this assumes the case that a model can perfectly assimilate the information contained within the observations to the level implied by the observation weights. The total number of non-zero weighted observations used for history matching is 571. Note that this plot was generated using a Hauraki Plains model with a reduced-parameterization scheme (e.g., pilot points instead of grid-based parameters) such that a Jacobian matrix could be computed within reasonable computational resource constraints. We refer the reader to Knowling et al. (2019, Adv Water Resour, doi: 10.1016/j.advwatres.2019.04.010) for more information.

Hauraki Plains model observation locations by layer. Blue markers are groundwater levels, red triangles are surface-water fluxes, magenta triangles are surface-water nitrate concentrations, green crosses are nitrate concentrations and magenta crosses are groundwater tritium concentrations.

A)Layer 1 observations

D)Layer 4 observations

G)Layer 7 observations

B)Layer 2 observations

E)Layer 5 observations

C)Layer 3 observations

F)Layer 6 observations

