Articles | Volume 22, issue 11
Hydrol. Earth Syst. Sci., 22, 5987–6003, 2018
https://doi.org/10.5194/hess-22-5987-2018
Hydrol. Earth Syst. Sci., 22, 5987–6003, 2018
https://doi.org/10.5194/hess-22-5987-2018

Technical note 22 Nov 2018

Technical note | 22 Nov 2018

Technical note: Mapping surface-saturation dynamics with thermal infrared imagery

Barbara Glaser et al.

Related authors

Intra-catchment variability of surface saturation – insights from physically based simulations in comparison with biweekly thermal infrared image observations
Barbara Glaser, Marta Antonelli, Luisa Hopp, and Julian Klaus
Hydrol. Earth Syst. Sci., 24, 1393–1413, https://doi.org/10.5194/hess-24-1393-2020,https://doi.org/10.5194/hess-24-1393-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021,https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
CABra: a novel large-sample dataset for Brazilian catchments
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021,https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021,https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021,https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021,https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary

Cited articles

Ala-aho, P., Rossi, P. M., Isokangas, E., and Kløve, B.: Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging, J. Hydrol., 522, 391–406, https://doi.org/10.1016/j.jhydrol.2014.12.054, 2015. 
Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., Mcdonnell, J. J., and Tarolli, P.: A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions, Earth Surf. Proc. Land., 39, 399–413, https://doi.org/10.1002/esp.3506, 2014. 
de Alwis, D. A., Easton, Z. M., Dahlke, H. E., Philpot, W. D., and Steenhuis, T. S.: Unsupervised classification of saturated areas using a time series of remotely sensed images, Hydrol. Earth Syst. Sci., 11, 1609–1620, https://doi.org/10.5194/hess-11-1609-2007, 2007. 
Ambroise, B.: Variable “active” versus “contributing” areas or periods: a necessary distinction, Hydrol. Process., 18, 1149–1155, https://doi.org/10.1002/hyp.5536, 2004. 
Antonelli, M., Klaus, J., Smettem, K., Teuling, A. J., and Pfister, L.: Exploring streamwater mixing dynamics via handheld thermal infrared imagery, Water, 9, 358, https://doi.org/10.3390/w9050358, 2017. 
Download
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.