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Abstract. Surface saturation can have a critical impact on
runoff generation and water quality. Saturation patterns are
dynamic, thus their potential control on discharge and wa-
ter quality is also variable in time. In this study, we assess
the practicability of applying thermal infrared (TIR) imagery
for mapping surface-saturation dynamics. The advantages
of TIR imagery compared to other surface-saturation map-
ping methods are its large spatial and temporal flexibility,
its non-invasive character, and the fact that it allows for a
rapid and intuitive visualization of surface-saturated areas.
Based on an 18-month field campaign, we review and discuss
the methodological principles, the conditions in which the
method works best, and the problems that may occur. These
considerations enable potential users to plan efficient TIR
imagery-mapping campaigns and benefit from the full po-
tential offered by TIR imagery, which we demonstrate with
several application examples. In addition, we elaborate on
image post-processing and test different methods for the gen-
eration of binary saturation maps from the TIR images. We
test the methods on various images with different image char-
acteristics. Results show that the best method, in addition to
a manual image classification, is a statistical approach that
combines the fitting of two pixel class distributions, adaptive
thresholding, and region growing.

1 Introduction

The patterns and dynamics of surface-saturation areas have
been on hydrological research agendas ever since the formu-
lation of the variable source area (VSA) concept by Hewlett
and Hibbert (1967). Surface saturation is relevant for runoff
generation and for water quality, due to variable active and
contributing areas (Ambroise, 2004) as well as critical source
areas (e.g. Doppler et al., 2014; Frey et al., 2009; Heath-
waite et al., 2005). Likewise, surface-saturation patterns and
their dynamics are closely linked to groundwater–surface-
water interactions (e.g. Frei et al., 2010; Latron and Gallart,
2007) and catchment storage characteristics and dynamics
(e.g. Soulsby et al., 2016; Whiting and Godsey, 2016).

Despite the prominent role of saturated areas in hydrolog-
ical processes research, mapping them remains a challenging
exercise. The most straightforward mapping method consists
of locating saturated areas by walking through the catch-
ment. However, this simple but labour-intensive “squishy-
boot” method (e.g. Blazkova et al., 2002; Creed et al., 2003;
Latron and Gallart, 2007; Rinderer et al., 2012) is neither
suitable for large areas nor for fine-scale spatial resolutions.
Dunne et al. (1975) introduced topography, soil morphology,
hydrometric measurements (soil moisture, water table level,
base flow), and vegetation as useful indicators for delineat-
ing saturated areas. Today, it is still a valid research question
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of how to best make use of these catchment characteristics to
delineate saturated areas (e.g. Ali et al., 2014; Doppler et al.,
2014; Grabs et al., 2009; Kulasova et al., 2014a, b). Hydro-
metric measurements offer the potential for monitoring the
local temporal evolution (in increments ranging from min-
utes to months) of dynamic surface saturation. The analysis
of topography, soil morphology, or vegetation allows lasting
saturation patterns to be identified for large contiguous areas.

Remote sensing has proven to be well-suited for mapping
temporal dynamic patterns of surface saturation over large
areas. It is possible to extract flooded areas in the order of
metres to kilometres from data acquired with satellite and
airborne platforms, such as synthetic aperture radar (SAR)
images (e.g. Matgen et al., 2006; Verhoest et al., 1998), or
the normalized difference water index (NDWI) and the nor-
malized difference vegetation index (NDVI; de Alwis et al.,
2007; Mengistu and Spence, 2016). Observations at higher
spatial resolutions (order of centimetres) require unmanned
aerial vehicles (UAVs) or ground-based instruments. Due
to various technical constraints, to date, SAR image acqui-
sitions are rarely used for UAV-based applications or for
ground-based applications that are not restricted to a fixed lo-
cation (e.g. Li and Ling, 2015; Luzi, 2010). NDWI and NDVI
are applicable at these scales (e.g. Orillo et al., 2017; Wahab
et al., 2018), however, to the best of our knowledge, the nec-
essary simultaneous acquisition of short-wave infrared and
visible light (VIS) images has not yet been performed by
UAVs or on the ground for mapping surface saturation.

Ishaq and Huff (1974) and Dunne et al. (1975) suggested
the use of VIS or infrared photographs for mapping sur-
face saturation. However, this suggestion has rarely been
followed in the last 40 years (with Portmann, 1997, be-
ing a notable exception), despite VIS cameras having been
deployed on the ground and mounted on UAVs, airborne
platforms, or satellite platforms for a long time. Recently,
Chabot and Bird (2013) and Spence and Mengistu (2016)
successfully used VIS cameras mounted on UAVs for map-
ping surface water (a wetland of 128 ha and an intermittent
stream surveyed via three transects of 2 km each). Silasari
et al. (2017) mapped surface-saturated areas on an agricul-
tural field (100 m× 15 m) using a VIS camera mounted on a
weather station for high-frequency image acquisition.

Since the advent of affordable, handheld thermal infrared
(TIR) cameras, TIR imagery features the same temporal
and spatial flexibility as VIS imagery. In the context of
this technical advancement, TIR imagery started to be used
for analysing hydrological processes such as groundwater–
surface-water interactions (e.g. Ala-aho et al., 2015; Briggs
et al., 2016; Pfister et al., 2010; Schuetz and Weiler, 2011)
or water flow paths, velocities, and mixing (e.g. Antonelli
et al., 2017; Deitchman and Loheide, 2009; Schuetz et al.,
2012). However, applications of TIR imagery for mapping
surface saturation are rare. Two examples are from Pfister et
al. (2010) and Glaser et al. (2016), who demonstrated the po-
tential for TIR imagery to map surface saturation by carrying

out repeated TIR image acquisitions at small spatial scales
(centimetres to metres) with handheld cameras.

One reason for the scarce number of studies that use
TIR imagery for mapping surface saturation is certainly that
few descriptions of the methodological advantages and chal-
lenges exist. However, there are several general guidelines
and methodological descriptions for TIR imagery applica-
tions. These studies focus on one specific aspect of TIR im-
agery, such as co-registration (Turner et al., 2014; Weber et
al., 2015) or on how to acquire correct surface water temper-
atures, which is the most common application of TIR im-
agery in hydrology (e.g. Dugdale, 2016; Handcock et al.,
2006, 2012; Torgersen et al., 2001). Many of these recom-
mendations can be directly applied for mapping surface satu-
ration via TIR imagery (e.g. choice of sensor type). However,
some recommendations are redundant (e.g. temperature cor-
rections) or different (e.g. optimal time scheduling) for the
application of TIR imagery for surface-saturation mapping.

Here, we go beyond the mere demonstration of the poten-
tial for TIR imagery to map saturated surface areas and ad-
dress the related application-specific technical and method-
ological challenges. The novelty of this work is that we as-
similate, within one study, fundamental principles, techni-
cal aspects, and methodological possibilities and challenges
with an exclusive focus on the mapping of surface satura-
tion. This includes all steps, from image acquisition to the
generation of binary saturation maps. To do this, we (1) re-
view relevant technical and methodological aspects from ex-
isting TIR imagery literature and (2) complement them with
our expertise and results from an 18-month field campaign.
The field campaign focused on the recurrent acquisition of
panoramic images with a portable TIR camera in seven dis-
tinct riparian areas. The precautions and considerations that
we describe in this technical note are also valid for surface-
saturation mapping campaigns with permanently installed
ground-based TIR cameras and TIR cameras mounted on
UAVs and airborne or satellite platforms.

The paper is structured in two main parts. The first part
(Sect. 2) focusses on the mapping approach itself and com-
bines a literature review with examples of our own experi-
ence. The second part (Sect. 3) demonstrates the application
of different pixel classification techniques for generating bi-
nary saturation maps from TIR images by applying and com-
paring them for different example images. A discussion and
a conclusion section evaluate the key features of the paper
and outline perspectives for future research and applications
for TIR imagery in hydrological sciences.
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2 Mapping surface saturation with TIR imagery: state
of the art and examples

2.1 Fundamental principles

TIR cameras are used for measuring surface temperatures re-
motely (e.g. 100 µm penetration depth for water columns)
within an area of interest. The cameras sense the intensity
of thermal infrared radiation emitted by the objects the cam-
era is pointed at. The surface temperature T (K) of the ob-
jects is then calculated from the sensed radiant intensity W
(Wm−2), based on Stefan–Boltzmann’s law with the Stefan–
Boltzmann constant, σ = 5.67× 10−8 Wm−2 K−4. This law
can be formulated as

T = 4
√
(W/σ). (1)

Considering radiometric corrections for material-specific
emissivity ε, for reflections of radiation from the surround-
ings, and for atmospheric induced and attenuated radiation,
the radiant intensity W is split into the emissions from the
object (Wobj), from the ambient sources (Wrefl), and from the
atmosphere (Watm).

W = ετWobj+ (1− ε)τWrefl+ (1− τ)Watm, (2)

with τ being the transmittance of the atmosphere, which de-
pends on the distance between the object and the camera sen-
sor as well as on relative air humidity. Ultimately, values for
the temperature of the ambient sources and the atmosphere,
the targeted object’s emissivity, the distance between object
and camera, and the relative humidity are required for accu-
rately estimating an object’s surface temperature T .

Details on the principles of TIR imagery, TIR sensor types
(i.e. wave length, sensitivity), and considerations for choos-
ing the most appropriate camera and remote sensing plat-
form for the desired acquisition (i.e. accuracy, resolution) are
provided in the literature (cf. Dugdale, 2016; Handcock et
al., 2012). For this study, we relied on two different hand-
held TIR camera models: a FLIR B425 with a resolution of
320× 240 pixels and an angle of view of 25◦ and a FLIR
T640 with a resolution of 640× 480 pixels and an angle of
view of 45◦ (FLIR Systems, Wilsonville, USA). The wider
angle of view of the FLIR T640 clearly facilitated the im-
age acquisition in this study, while a pixel resolution lower
than the resolutions of the two cameras would still have been
sufficient for the identification of surface-saturation patterns.

We define surface saturation as water ponding or flow-
ing on the ground surface (even if only present as a very
thin layer). Mapping surface saturation with TIR imagery
requires (1) a sufficient temperature contrast between sur-
face water and the surrounding environment (e.g. dry soil,
rock, vegetation) and (2) at least one pixel of the TIR im-
age being known to correspond to surface water. When these

two requirements are met, it is possible to visually identify
the surface-saturation patterns in a TIR image. This is exem-
plified with a TIR image of a riparian-stream zone (Fig. 1).
The substantial temperature contrast (requirement 1) allows
us to differentiate between two TIR pixel groups, i.e. sur-
face water pixels and surrounding environment pixels. With
ground truth data at hand (here, VIS image – alternatives in-
clude stream-water temperature or knowing the location of
the creek) for point 1 of Fig. 1 (requirement 2), the group
of pixels with higher temperatures can be identified as sur-
face water. The group of pixels with lower temperatures can
be regarded as the non-saturated surrounding environment
(cf. Fig. 1; point 2). With this classification in mind, the
TIR image significantly amplifies the appearance of surface-
saturated areas relative to a VIS image. Moreover, the TIR
image reveals additional surface-saturated areas that are not
clearly identifiable (cf. point 3; Fig. 1) or not visible (cf. area
above point 6; Fig. 1) within a VIS image.

The example shows that the identification of surface satu-
ration relies on temperature contrasts between surface wa-
ter and the surrounding environment. Radiometric correc-
tions of TIR images for obtaining correct temperature val-
ues are thus not necessary. However, interferences that affect
temperature, such as shadow casts or reflections (cf. Dug-
dale, 2016; Handcock et al., 2012), cannot be disregarded, as
they can influence the temperature contrast (see Sect. 2.2).
In cases where the water temperature is too similar to the
surrounding materials, saturated areas might be falsely iden-
tified as dry, whereas surrounding materials might be falsely
identified as wet. In cases where non-uniform water tempera-
tures occur, different water sources may be distinguished (cf.
Fig. 1, where point 4 likely represents stream water, points
5 and 7 likely represent the exfiltration of warmer ground-
water). However, a bimodal distribution of water tempera-
tures (e.g. cold stream and warm exfiltrating groundwater or
warm ponding water) can also lead to a misinterpretation of
temperature contrasts to the surrounding environment (e.g. a
surrounding material with a temperature that is in between
the water temperatures might be identified as water).

For the above-mentioned reasons, it is important to eval-
uate the applicability of the TIR images for identifying the
surface-saturated areas with some ground truth and valida-
tion data. For the validation, we relied on immediate visual
verification during image acquisition as well as on VIS im-
ages. Another option is to install sensors that can verify the
presence or absence of water on the ground surface locally,
yet this is an experimental effort and only results in valida-
tion data for selective points. Validating the TIR images with
other saturation mapping techniques is difficult, since most
of these techniques implicitly include saturation in the up-
per soil layer, while the current use of TIR imagery excludes
the soil. For example, saturated areas inferred via the squishy
boot method account for areas where water is squeezed out
of the soil when stepping on it, whereas such areas are not
detected as saturated areas by the non-invasive TIR imagery.
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Figure 1. TIR image and VIS image of a riparian-stream zone. The temperature contrast between the water and the surrounding environment
allows us to clearly differentiate between surface-saturated and dry areas in the TIR image. The numbers indicate identical locations in the
TIR and VIS images and relate to dry areas (2), stream water (1, 4, 6), points of supposed groundwater exfiltration (5, 7: warmer water
temperatures), and locations in which surface saturation is clearly visible in the TIR image but not in the VIS image (3, area above 6).

2.2 Image acquisition interferences

Impact of weather conditions

Weather conditions can interfere with TIR image acquisi-
tion (e.g. Dugdale, 2016; Handcock et al., 2012). The main
problem stems from the similar temperatures of water and
the surrounding environment, compromising an identifica-
tion of surface saturation with TIR images (Fig. 2a). Wa-
ter has a higher thermal capacity than most environmental
materials, and the water surface temperature therefore gen-
erally aligns more slowly with the air temperature than the
surface temperatures of surrounding materials. During our
field campaign, it became clear that, particularly during day–
night–day or seasonal transitions, this difference in thermal
capacities induced a convergence of the surrounding envi-
ronment’s temperatures (which align to the air temperature)
to the water temperature. Furthermore, the direct exposure of
the study site to sunlight, combined with shadow casts, com-
monly distorted the temperature contrasts. Surrounding ma-
terials in the shade with temperatures different to the same
surrounding materials in sunlight led to reduced tempera-
ture contrasts between these materials and the surface water
(Fig. 2b). Once the direct sun exposure ceased, the different
thermal capacities of different materials heated by the sun
could still cause patches of warmer and colder temperatures.
Rain and fog may also influence image quality due to wa-
ter droplets falling between the TIR sensor and the ground,
eventually blurring the images and causing uniform temper-
ature signatures (Fig. 2c).

To avoid the acquisition of unusable TIR images, we ad-
vise to adapt the planning of field campaigns to the weather
forecasts. The ideal situation is to work during dry weather
with warm or cold air temperatures in order to ensure a clear
difference between the temperature of the surrounding ma-
terials and the more temperate surface water temperatures.

Dugdale (2016) reported the time period from mid-afternoon
to night-time as an optimal TIR image acquisition period
for monitoring water surface temperatures. Based on our 18-
month field campaign, we suggest that the optimal TIR im-
age acquisition time for identifying surface-saturation pat-
terns is early morning. At this time, there are no undesir-
able effects due to sunlight (shadows, warming-up), and there
are generally high temperature contrasts between water sur-
faces and the surrounding environment. Cloudy conditions
can also help to avoid the effect of direct sunlight. A site-
specific analysis of the sun exposure throughout the day can
help pinpoint the other times at which images can be taken
in favourable conditions for a specific study site.

Camera position

Obstructions in the TIR camera’s field of view are obviously
problematic. Yet permanent view obstructions on the ground
(e.g. tree trunks; Fig. 2d, point 6) proved to be useful ground
reference points during our field campaign. Temporary view
obstructions, such as growing vegetation (Fig. 2d), recent
litter, and snow cover are a problem for repeated imaging
campaigns. Cutting the vegetation during the growing sea-
son is an option for small study sites. Our experience is that
the coverage of grasses and herbaceous plants with small
leaves is normally low enough to permit the recording of the
ground surface temperature, while the coverage of ferns or
tree leaves is normally completely opaque. Snow cover usu-
ally hides surface saturation. Yet periods where the amount
of snow is low are commonly unproblematic, since the sat-
urated areas mainly stay uncovered due to a warmer water
temperature and thus the fast melting of the snow.

Ideally, images are taken from above and at nadir to the
study site. Oblique angles of view (>30◦ of nadir) reduce
the object’s emissivity and thus distort the detected tempera-
tures in the TIR images (Dugdale, 2016). The incorrect tem-
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Figure 2. Example images showing how unfavourable image acquisition circumstances influence the usability of TIR imagery for the
identification of surface saturation. The numbers indicate identical locations in the TIR and VIS images.

perature values are not critical as such for mapping surface-
saturation patterns, but we observed that wide ranges of an-
gles can result in distinct temperature distortions and thus
reduced temperature contrasts within the images. In a simi-
lar way, varying distances between camera and ground sur-
face for different positions within one image (e.g. top and
bottom, left and right) not only provoke pixels with varying
area equivalents but can also distort the temperature detec-
tion and thus temperature contrasts. Therefore, ground-based
cameras should be positioned at locations that minimize the
range of angles of view and the distances between camera
and ground surface. In the event of a repeated image acqui-
sition of a given area of interest, we took the pictures from
the same position each time in order to facilitate subsequent
image comparisons. For repeated image campaigns, it could
be useful to install a structure that allows several images to
be acquired by moving the camera to specific positions with
fixed heights above the ground and fixed angles of view. This
could simplify the post-processing and assemblage of the im-
ages into panoramic images (cf. Sect. 2.3).

Measurement artefacts during image acquisition

For determining surface saturation, the TIR images should
cover an area known to be surface saturated (e.g. stream, vi-
sually obvious wet spots) in order to have a reference for
water temperature (cf. Sect. 2.1). In addition, a VIS image
should be acquired simultaneously to the TIR image for com-
parison. The TIR imagery parameters necessary for correct-
ing and converting the radiation signal to temperature values
(e.g. air temperature, humidity) do not need to correspond
to the actual conditions, since only the temperature contrast,
and not the correct temperature value, is required for defining
saturated areas. Certainly, “wrong” temperatures influence
the temperature contrast between the surroundings and the
water, but this effect on the contrast can be negative or pos-
itive. If correct temperatures are targeted, radiometric cor-
rections need to be applied during the image post-processing
procedure. This allows, for example, for the consideration of
different emissivities for different surface materials by using
appropriate values for each individual image pixel (Aubry-
Wake et al., 2015). However, in our experience, setting re-
alistic parameter values during the image acquisition helped
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the auto-focus process of the camera and prevented the ob-
servation of unrealistic surface temperatures. Nonetheless, in
the event of clear skies or on cold winter days, we occasion-
ally observed negative temperatures for flowing water. The
explanations for these observations remain speculative. Po-
tentially, a particularly strong reflection of the radiation from
the surroundings and the sky in the water influenced the tem-
perature detection. However, for the identification of surface-
saturation patterns, such unrealistic negative temperatures do
not pose a problem, since the temperature range stays correct
(Antonelli et al., 2017).

Reflections of surrounding objects on the water surface
(Fig. 2e) and image vignetting can occur during image ac-
quisition and can compromise a further use of the TIR im-
ages. Vignetting is the falloff of radiation intensity towards
the edges of the image, which is mainly generated by the ge-
ometry of the sensor optics (especially wide angle lenses; cf.
Kelcey and Lucieer, 2012). As a consequence, the monitored
temperature can change towards the edges of the picture (cf.
aura effect in Antonelli et al., 2017). In this study, the image
vignetting was unproblematic, especially where a panorama
was built from several images (cf. Sect. 2.3). This is due to
the fact that the effect of image vignetting only occurs at the
edges of the pictures and it is of minor relevance in images
with high temperature contrasts. Reflections of surrounding
objects on the water surface limit the value of the images
for saturation identifications in a similar way to shadows (cf.
Fig. 2d and e). The difference with shadows is that reflec-
tions also occur with diffuse light, which makes it difficult to
predict their occurrence and thus to avoid them.

2.3 Generation of TIR panorama images

We acquired the images used for the assemblage of a
panoramic view in two different ways: (1) by taking single,
overlapping images and (2) by taking a video of the area of
interest. While both approaches deliver similar final results,
videos are recorded faster than sequences of individual im-
ages. Independently from the chosen data format, we ensured
that the saving format retained the temperature information
as radiometric data for further image processing (see below
and Fig. 3). Sun disappearance and appearance and auto-
matic noise corrections by the camera (non-uniformity cor-
rections; cf. Dugdale, 2016) can lead to considerable shifts
in recorded temperatures from one image or video frame to
another. Since correcting such temperature shifts is difficult
(cf. Dugdale, 2016), we opted to control them by fixing the
temperature–colour scale and restarting image acquisition if
the colour (and thus temperature) of overlapping image parts
changed.

We acquired the images and video frames in such a way
that the area of interest formed the central part of a panorama.
This allowed us to avoid image gaps and distortion effects
at the borders of the area of interest. When possible, we en-
sured that the single pictures and video frames included over-

lapping parts with identifiable structures, such as the stream
bank, tree stems, or stones, as natural reference points. For
videos, it was essential to move the camera slowly enough to
obtain sharp images and to use a low frame rate (e.g. 2 Hz) to
keep the number of video frames reasonable (enough frames
for obtaining area overlaps, but not too many frames showing
the same area).

The generation of a panorama from overlapping TIR im-
ages or video frames acquired with a ground-based camera
involves some challenges that specifically relate to TIR or
ground-based images. This needs to be addressed in TIR-
specific panorama generation and image processing steps, as
presented briefly by Cardenas et al. (2014). Our approach
consisted of transforming the acquired images and video
frames containing the radiometric information (see above)
into grey-scaled, standard-format images and videos (Fig. 3,
step 1) in order to allow for the use of ordinary panorama as-
semblage software. We relied on grey-colour-scale images,
linearly splitting the colour shades over the global temper-
ature range of the acquired images and video frames, since
this prevents the creation of artefacts by colour-mixing ef-
fects and allowed us to embed the temperature information
in the generated panoramas. When the extreme temperature
values of an image were not relevant for the identification
of saturated areas, we truncated the global temperature range
in favour of a better colour contrast and a finer temperature
class width retained in the grey values (e.g. the retained tem-
perature class width is 0.1 ◦C in case of a temperature range
of 25.5 ◦C and an image with 255 grey values).

We employed Microsoft’s Image Composite Editor (ICE)
and the PTGui panorama software (New House Internet Ser-
vices) to create panorama images (Fig. 3, step 2). ICE and
PTGui allow for the creation of panoramas from single im-
ages (and from video frames for ICE) with an automatic mo-
saicking function (i.e. a function that geometrically trans-
forms, aligns, and overlaps the single images). TIR images
generally show less identifiable features and lower contrasts
than VIS images (cf. Weber et al., 2015). Therefore, a (par-
tial) failure of automatic mosaicking is not uncommon, and
manual interactions with image alignment (i.e. defining con-
trol points for matching distinct points in overlapping im-
ages in PTGui) were frequently necessary for the TIR images
taken during our 18-month field campaign.

In order to compare several panorama images of the same
area, one needs to co-register the panoramas (Fig. 3; step 3).
In principle, it is possible to geo-rectify the TIR images by
allocating geographical coordinates to the images, which are
derived from ground control points (cf. Keys et al., 2016;
Silasari et al., 2017) or from a virtually projected elevation
model (cf. Cardenas et al., 2014; Corripio, 2004; Härer et
al., 2013). However, this can result in large gaps or strong
interpolations and distortions in the images, due to view ob-
structions in the picture. Instead of this, therefore, we co-
registered TIR panoramas of the same area against each other
(cf. Cardenas et al., 2014; Glaser et al., 2016). More specif-

Hydrol. Earth Syst. Sci., 22, 5987–6003, 2018 www.hydrol-earth-syst-sci.net/22/5987/2018/



B. Glaser et al.: Technical note: Mapping surface-saturation dynamics with thermal infrared imagery 5993

• Transform the images or video frames to a 
file format that is compatible with panorama 
software (e.g. TIFF with a linear, grey temperature 
scale identical for all single images and video frames)

Note: save images and videos without embedded colour bar 
or any other disturbing element 

reference panorama RPI

Turning, 

bending, 

cutting .... 

11.0 19.7 28.0 36.0
°C

1

2

Image conversion 

11.9 35.719.4 25.7
°C

Generation of panorama images (PI)
• Mosaic single images or video frames with 

existing open-source or fee-based 
panorama software (e.g. PTGui, ICE)

• Manually adjust image alignment and 
overlaps if needed 

Note: save PI in a format that allows for the denotation of blank 
values originating from the non-rectangular shape of the 
created panorama (e.g. TIFF including transparency 
values)

3 Co-registration of panoramas

  to the same perspective and size as

• Select a reference panorama (RPI) with 
identifiable, permanent existing features 
(e.g. stones, course of stream bed) and 
without extreme wet or dry conditions  

• Identify corresponding locations between PI 
and RPI, spread over the entire image area  

• Apply a co-registration algorithm (e.g. 
implemented in ArcGIS, Matlab, PTGui) that 
adapts the projection and field of view of the 
PI to the RPI without modifying the RPI  

• Cut PI to the same section with the same 
pixel extent as the RPI

Note: co-registration is eased and distortion reduced if 
the projection and field of view of PI and RPI are similar 
before applying a co-registration algorithm (→ adjust 
projection to RPI before saving created PI, step 2)

Stream 
section
of 5.5m

Figure 3. Workflow for processing single TIR images and video frames to co-registered panoramic images.

ically, we registered and cropped them to the dimensions of
a reference TIR panorama of the area of interest (Fig. 3; step
3).

2.4 Application examples

In this section, we present three examples from our 18-month
field campaign that demonstrate the potential for TIR im-
agery to analyse surface-saturation patterns and their dy-
namics. All images were taken in the Weierbach catchment
– a forested, 42 ha headwater research catchment in west-
ern Luxembourg (Glaser et al., 2016; Klaus et al., 2015;
Martínez-Carreras et al., 2016; Schwab et al., 2018). We
avoided unfavourable environmental conditions for the im-
age acquisitions (cf. 2.2, Fig. 2) by allowing a few days

of tolerance around the targeted biweekly or weekly recur-
rence frequency. Additionally, we cut ferns that obstructed
the camera view during the summer months. The 364 ac-
quired panorama images were divided into three groups clas-
sified as usable without restrictions (32.4 %), usable with
some restrictions (small negative effects of low temperature
contrasts or covering vegetation visible, 31.1 %), and unus-
able (36.5 %).

The usable panoramas captured the temporal evolution of
surface saturation over the 18-month field campaign. This
demonstrates the robustness of TIR imagery through the
complete range of seasonal conditions (Fig. 4), including
snow and growing vegetation as well as warm and cold water.
The full extent of the added value provided by TIR imagery
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Figure 4. Time-lapse TIR and VIS panoramas, showing the variation of surface-saturation patterns with varying discharge levels under
diverse seasonal conditions.

compared to VIS imagery was documented for cases with
different seasonal conditions (Fig. 4), particularly for situ-
ations with less-pronounced differences in discharge levels
(e.g. Fig. 4a–c). For example, the comparison of the VIS im-
ages of December 2015 and June 2016 (Fig. 4a vs. Fig. 4c)
suggests wetter conditions for December 2015, while the
two TIR images show similar saturation patterns for the two
dates.

In addition to surface-saturation dynamics, the TIR im-
ages can also reveal distinct types of saturation patterns.
For example, the orientation of saturated areas may change
over a few metres from perpendicular (Fig. 5a, b) to parallel
(Fig. 5c, d) to the adjacent stream. The extension of saturated
areas along the left bank (Fig. 5c, d) appears to be created by

a parallel extension of the stream in a flat riparian zone that
becomes an extended stream bed. The surface saturation ori-
ented perpendicularly to the stream at the right bank (Fig. 5)
appears to be generated from exfiltrating groundwater that
flows downhill to the stream at the soil surface. Thus, the dif-
ferent directional extents of the saturated areas can indicate
different processes underlying the surface-saturation forma-
tion.

Finally, the images allow us to identify the spatial het-
erogeneity of temporal saturation dynamics across different
study sites. Figure 6 shows TIR images of the riparian zone
of two different source areas with different degrees and dy-
namics of surface saturation. In area 1 (Fig. 6, panels a,c, and
e), the pattern of saturation areas barely changed from Febru-
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Stream section 
of 6 m

Stream section 
of 6 m

(a)

(b)

(c)

(d)

Figure 5. Comparison of different types of surface-saturation patterns. The yellow arrows indicate the orientation of the saturated areas
towards the stream (blue arrows represent flow direction). The perpendicular direction (a, b) is likely caused by exfiltrating groundwater
connecting to the stream, and the parallel direction (c, d) is likely caused by a parallel flow of the stream expanding into the riparian zone.
The red ovals indicate where the two panorama images connect.

ary to April, while in area 2 (Fig. 6, panels b, d, and f) some
locations had dried out (red circles). In December 2016, the
riparian zones of both source areas were completely dry,
and the stream started further downstream in comparison to
the other observation dates (red arrows). This suggests that
both source areas evolve from very wet to very dry condi-
tions (during which surface saturation is mainly represented
by spots with stable groundwater exfiltration) with distinctly
different transition dynamics.

3 Quantification of saturation through pixel
classification

3.1 Methods for generating binary saturation maps

The application examples described in Sect. 2.4 demonstrate
the potential for TIR images to rapidly and intuitively visu-
alize surface-saturated areas. However, the “raw data” im-
ages need to be transformed into binary saturation maps for
further analyses based on quantitative values (e.g. saturation
percentages). A common approach to making an image bi-
nary is histogram thresholding (e.g. Rosin, 2002). This al-
lows a TIR image to be transformed into a binary satura-
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February 2016

April 2016

December 2016

Source area 1 Source area 2

Stream section 
of 5.0 m

Stream section
of 5.5 m

(a)

(c)

(e)

(b)

(d)

(f)

Figure 6. Transition of two source areas (a, c, e vs. b, d, f) from very wet (a, b) to very dry conditions (e, f). Surface saturation in source
area 1 (a, c, e) barely changed between February and April 2016, whereas source area 2 is clearly drier at some locations (red ovals) in
April 2016. In December 2016, both source areas were completely dry on each side of the stream (blue arrows represent flow direction), and
the stream started further downstream (red arrows).

tion map by taking the temperature range of pixels that are
known to be saturated (i.e. stream pixels) and defining all
pixels in that image that fall into that temperature range as
saturated (cf. Glaser et al., 2016; Pfister et al., 2010). Several
thresholding algorithms can be found in the literature, each
of which has its characteristic assumptions with respect to
image content (Patra et al., 2011). Unsupervised approaches
other than thresholding are also used for making an image bi-
nary, e.g. clustering (Li et al., 2015). Yet thresholding is the
most rapid technique for achieving a binary classification of
an image, even though the selection of an adequate threshold
value represents a critical step and its choice strongly influ-
ences the classification outcome.

One possibility for selecting a threshold value for classi-
fying surface saturation is to manually adapt the temperature
range until the resulting saturation map matches best the vi-
sual assessment of the original TIR and – if possible – VIS
image. A more objective and, for time-lapsed images, faster
method consists of relying on the temperature of preselected
pixels or a predefined mask for saturated and unsaturated
parts in all images. Such pixels and masks can be selected
based on a visual interpretation of the images or on informa-
tion obtained from reference sensors in the field, indicating
whether a location was wet or dry at the surface at the time
of image acquisition.

Silasari et al. (2017) applied an automatic image classifi-
cation for unimodal distributions based on a threshold pa-

rameter that needs to be calibrated to specific image con-
ditions (in this case, the brightness of VIS images).This is
only straightforward in cases where the temperature distri-
bution between water and the surrounding environment is
clearly bimodal. Chini et al. (2017) presented a parametric
adaptive thresholding algorithm especially suited for images
that do not show a clear bimodal distribution. The algorithm
makes use of an automatic selection of image subsections
with clear bimodal distributions, a hierarchical split-based
approach (HSBA), and a subsequent parameterization of the
distributions of the two pixel classes. Since the two decom-
posed distributions might still overlap to a certain extent,
Chini et al. (2017) advise complementing the decomposed
distribution information with contextual information of the
image for the final generation of a binary image, instead of
selecting a single threshold value between the two decom-
posed distributions. Several approaches are available in the
literature for including contextual information in the classifi-
cation of a single spectral image, such as mathematical mor-
phology (Chini et al., 2009) or second-order textural param-
eters (Pacifici et al., 2009). Chini et al. (2017) suggested a
region-growing algorithm where the seeds and the stopping
criteria are constrained by the identified distribution of the
class of interest (here, saturation).
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16

(d) 
30/
08/
16
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Figure 7. Example TIR images, with their cumulative saturation curves showing the percentage of pixels that have a higher (a, b) or lower (c,
d) temperature than the temperature range threshold Tth and are thus defined as saturated (marked as yellow pixels in the inset TIR images).
The green asterisks mark the temperature ranges that were manually chosen as optimum following a visual assessment of the images. Green
dashed lines define the uncertainty of the optimum temperature ranges. The red rectangles in the TIR images depict the masks used for
the identification of temperature ranges from a constantly wet (a, c) and constantly dry (b, d) area. The respective temperature ranges and
saturation percentages are marked in blue. As a reference for the spatial dimension of the images, we refer the reader to the indicated stream
section in Figs. 3 or 4.

3.2 Comparison of methods for generating binary
saturation maps for TIR images

We applied three of the approaches described above to gen-
erate the binary saturation maps of our TIR image data set.
Here, we present the results for four example images with
differing conditions during image acquisition (e.g. very wet
or dry conditions, water being the warmest or coldest mate-
rial; Fig. 7). We evaluated the results of the three different
approaches based on our observations from the field and the
corresponding VIS image as ground truth.

First, we manually chose a temperature range of satura-
tion for each image. By nature, this pixel classification ap-
proach creates results that are very close to ground truth.
However, finding an unequivocal temperature range was not
feasible, and the selection of the most plausible temperature

range (Fig. 7; dark-green asterisk) remained somewhat sub-
jective. Furthermore, artefacts (such as pixels corresponding
to vegetation covering the stream) induced some uncertainty
in the pixel classification, eventually leading to discrepan-
cies compared to visually identified saturation patterns. Con-
sequently, a pixel classification based on this manual pro-
cedure remained tarnished by some uncertainties. The def-
inition of an uncertainty range within which the tempera-
ture range can be considered plausible (Fig. 7; dark-green,
dashed lines) was also subjective. Generally, the uncertainty
range was small for images with low saturation and gradu-
ally increased with higher saturation (compare Fig. 7d–b).
Accordingly, images with a large difference in percentages
of saturated pixels (e.g. Fig. 7b vs. Fig. 7d) did not encounter
an overlap of the uncertainty ranges. For some images, the
uncertainty range was rather high (Fig. 7a), and a compar-
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ison with other images with percentages of saturated pixels
in the same range was thus problematic. In such cases, it is
preferable that only one person defines the optimal temper-
ature ranges and thus saturation patterns for all images that
are intended to be compared in order to ensure consistency
in the image interpretation.

Secondly, we performed an objective selection of the tem-
perature range of saturation based on masks with known
pixel classes. For this, we used two masks, one with
2000 pixels falling into an area that always stayed dry and
one with 2000 pixels falling into an area where the stream
was flowing all year (red rectangles; Fig. 7). Based on the
mask, we selected the threshold for the temperature range
as the 90th percentile and 10th percentile of the temperature
of the stream mask pixels and dry mask pixels, respectively
(i.e. 90 % of the pixels falling below the mask were defined
as saturated and dry, respectively). By using the two different
masks, we obtained two temperature ranges, resulting in two
different saturation percentages for each image (Fig. 7; blue
points). The identification of saturated areas based on the dry
mask was clearly not constrained enough. The identification
of saturated areas based on the stream mask sometimes ap-
proached the manual identification of saturation (Fig. 7a, c)
but, in other cases, even exceeded it (Fig. 7d). The uncer-
tainty range of saturation obtained with the two masks could
be reduced by selecting a more extreme percentile for the
temperature threshold definition. However, this increased the
risk of obtaining a clearly incorrect value (cf. Fig. 7d), since
the stream and dry mask can cover pixels of the wrong cate-
gory (due to artefacts like vegetation covering the stream or
due to distorted co-registered images, resulting in a shifted
mask). A reduced mask size prevents such wrong pixels but
also reduces the captured variability in temperature (in an
extreme case, down to one temperature value), which in turn
increases the risk of missing the warmest or coldest temper-
ature of the wet or dry areas.

Finally, we tested the usability of the approach proposed
by Chini et al. (2017), constraining a region-growing algo-
rithm to (a) a bimodal distribution derived from the HSBA
applied to the entire image, (b) a bimodal distribution derived
from the HSBA where the selection of bimodal image sub-
sections was constrained to image-specific manual predefini-
tions of temperature ranges of saturation, and (c) a bimodal
distribution derived from preselected parts of the image that
include clearly wet and dry areas. While in some cases the
fully automatic image classification (point a) worked very
well in comparison to the manual selection of a temperature
range (cf. Fig. 8; 4 December 2015, 30 August 2016), for the
other cases, saturation was mostly underestimated (cf. Fig. 8;
25 February 2016, 3 June 2016). The additional constraint
with image-specific temperature ranges (point b) improved
the matches overall with the manually defined saturation pat-
terns, but the result was strongly influenced by the match of
the given constraint range to the range that was defined as
the optimum for the image. A constraint with a roughly esti-

mated temperature for saturation worked less well than a con-
straint with the temperature range as selected in the detailed
manual assessment described earlier in the section (cf. Fig. 7;
green asterisks and lines). The classification based on pres-
elected parts of the image (c) tended to result in higher sat-
uration amounts. This improved the match for the cases that
were underestimated with the fully automatic classification
(point a – cf. Fig. 8; 25 February 2016, 3 June 2016), but this
overestimated saturation for the cases where the fully auto-
matic classification (point a) showed good results (cf. Fig. 8;
4 December 2015, 30 August 2016).

4 Discussion

4.1 Mapping surface saturation with TIR imagery

The main advantages of TIR imagery in comparison to other
surface-saturation mapping methods are its non-invasive
character and its large temporal and spatial flexibility (cen-
timetres to kilometres, minutes to months). Another advan-
tage is that TIR images allow a rapid and intuitive identi-
fication and analysis of the dynamics of surface-saturation
patterns. The raw data images can be used without any addi-
tional processing to study surface-saturated areas, their evo-
lution over time, and how and where they occur – ultimately
contributing to a better mechanistic understanding of the hy-
drological processes prevailing in the studied area. The pure
visual information provided by the images per se is also us-
able as soft data, e.g. for model validation (e.g. different
types of extent compared to stream, Fig. 5; more and less
stable saturation patterns, Fig. 6). VIS imagery offers simi-
lar advantages (Silasari et al., 2017), but commonly the satu-
rated areas are not as clearly visible as with TIR imagery (cf.
Figs. 1, 4). Moreover, VIS imagery is not usable during the
night and cannot provide additional information about water
sources and processes underlying the surface-saturation for-
mation (cf. Figs. 1 and 5, groundwater inflow vs. stream wa-
ter). Nevertheless, VIS imagery provides good complemen-
tary information to the TIR imagery and should always be
considered as a ground truth information source.

In our study, unfavourable image acquisition conditions
(cf. Sect. 2.2) caused 36.5 % of the acquired images to be un-
usable for further processing. High amounts of unusable im-
ages are a common problem in environmental imagery (e.g.
cloud cover for satellite images, night-time for VIS images;
de Alwis et al., 2007; Silasari et al., 2017). Flexibility in the
scheduling of a field campaign is thus necessary for reducing
the number of acquisitions during unfavourable conditions.
A concern for the use of TIR imagery for mapping satura-
tion patterns is that some saturated areas (e.g. warmed-up
ponding water) might not be identified as saturated due to
a temperature that is very different from the stream temper-
ature. This relates to the fact that temperature is only used
as an indicator for saturation. Compared to other saturation
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Figure 8. Comparison of saturation maps (yellow represents saturation), generated with a region-growing process whose seeds and stopping
criteria were automatically constrained to (a) bimodal distributions derived from the HBSA applied to the entire image, (b) bimodal distri-
butions derived from the HBSA where the selection of bimodal image subsections was constrained to image-specific manual predefinitions
of temperature ranges of saturation, and (c) bimodal distributions derived from preselected parts of the image (which include clearly wet
and dry areas and are shown in d). The saturation maps generated with manually selected temperature ranges based on visual assessment
(cf. Fig. 7; green asterisk) are shown for comparison (e). As a reference for the spatial dimension of the images, we refer the reader to the
indicated stream section in Fig. 3 or 4.

indicators, such as vegetation mapping or hydrometric mea-
surements (cf. Dunne et al., 1975), we consider TIR imagery
with the above-mentioned advantages as the better indirect
mapping method. However, the only way to directly map sur-
face saturation consists of walking through the area of inter-
est (e.g. squishy boot method), which remains restricted to
small areas or low mapping frequencies.

The amount of fieldwork for imagery mapping is gener-
ally reduced compared to other methods for mapping sur-
face saturation (e.g. vegetation or soil mapping), allowing
more frequent campaigns with higher spatial precision. Yet
consistent with other imagery-mapping studies (e.g. Spence
and Mengistu, 2016), the image post-processing in this study
was time-consuming. Mosaicking and the co-registering of
images is often considered particularly difficult for TIR im-
ages, since ground control points with a thermal signature
are needed (Dugdale, 2016; Weber et al., 2015). Our ex-
perience showed that the images normally offered enough
natural thermal ground control points (e.g. the stream bank)
in cases where the temperature contrast between water and
ambient materials was good enough for image usability. In
combination with the post-processing workflow presented,
the post-processing effort was reasonable. More automatized
workflows like the one proposed by Turner et al. (2014) for

mosaicking UAV-acquired TIR images could also be adapted
and applied.

The image acquisition considerations, post-processing
steps, and application examples described focused on bi-
weekly or weekly panoramic images of small areas, ac-
quired with a portable TIR camera. A transfer of the TIR
imagery technique to different temporal or spatial scales
does not change the principles and possibilities of the tech-
nique, but it will require some additional scale- and platform-
dependent considerations. For example, using permanently
installed ground-based cameras for image acquisitions with
high temporal frequencies might challenge technical aspects
such as protection of the camera against environmental in-
fluences, an automatic triggering of image acquisition, and
power supply. These aspects might also be relevant for TIR
imagery acquisition at larger spatial scales, especially when
using UAVs. Besides this, image acquisitions based on UAV
or aeroplane overflights might, for example, require consid-
erations of overflight regulations. Users of UAVs or aero-
planes should also be aware that saturation patterns within a
forest might only – if at all – be mapped during the dormant
season and that ground control points and ground truth data
might be more difficult to obtain. Such challenges are partly
addressed in existing literature (e.g. Vivoni et al., 2014; We-
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ber et al., 2015), but others will need to be figured out by
applying the TIR technique at such different scales.

4.2 Pixel classification methods

More challenging than TIR image mosaicking and co-
registering was the generation of saturation maps from the
TIR images. The different pixel classification methods tested
all yielded somewhat different results compared to pixel
classification based on manual visual assessment. Neverthe-
less, realizing an objective, automatic classification of satu-
rated areas is not more challenging than for other surface-
saturation mapping methods. Saturation maps created based
on the squishy boot method or vegetation or soil mapping
are subjective due to decisions made during the fieldwork.
The supervised and unsupervised classification methods that
are commonly used for creating saturation maps from remote
sensing data (e.g. VIS images, NDVI or NDWI) also con-
tain some uncertainty (Chabot and Bird, 2013; DeAlwis et
al., 2007; Mengistu and Spence, 2016; Spence and Mengistu,
2016).

Moreover, the main problem for all of the tested satura-
tion map generation methods (cf. Sect. 4) is that they are not
applicable without being adapted to individual image condi-
tions (very wet, very dry, water being the warmest or cold-
est material, slightly different fields of view). Other image
processing methods for deriving saturation maps also do not
fulfil this requirement; it is necessary to adapt the parameters
(e.g. Silasari et al., 2017) or to perform a new supervision
(with new classification pixels or masks) for the classification
of images with different conditions (e.g. Chabot and Bird,
2013; Keys et al., 2016). At this stage, we consider a manual
choice of temperature range for saturated pixels as the best
approach for time-lapsed images with very variable condi-
tions and slight perspective shifts, even though it is labour-
intensive and somewhat subjective. For time-lapsed images
with a fixed vantage point and for time spans with simi-
lar conditions (e.g. storm events), the automatable methods
presented represent valuable options. In particular, the com-
bination of an automatic decomposition of two pixel class
distributions with a region-growing algorithm yielded objec-
tive saturation maps close to the manual saturation classi-
fication and visual assessment of the TIR images (Fig. 8).
Small adaptations of the constraint for the decomposition
of two pixel class distributions were sufficient for obtaining
good results for the different image conditions (cf. Fig. 8a–
c), and further developments of the method might even allow
such adaptations to be performed in semi-automatic and au-
tomatic ways. More work on pixel classification might also
include the application of machine-learning techniques or,
especially for time-lapsed images, the analysis of the tem-
perature signals of individual pixels over time. Another in-
teresting option may consist of combining the TIR images
with additional data (e.g. VIS images or NIR images), which
will allow multi-spectral classification methods to be applied

(Chini et al., 2008) and contextual information to be inte-
grated at the same time (Chini et al., 2014).

5 Summary and conclusions

This technical note presents recent work carried out in the
Weierbach catchment, where we tested the potential for TIR
imagery to map surface-saturation dynamics. To the best of
our knowledge, this is the first comprehensive review and
summary of the TIR imagery-related methodological prin-
ciples and the required precautions and considerations for
a successful application of TIR imagery for mapping sur-
face saturation. We give advice for all steps, from image
acquisition to processed saturation maps. The main require-
ment is a clear temperature contrast between water and the
surrounding environments. Image acquisition during an 18-
month campaign showed that the method works best dur-
ing dry nights or dry early mornings and that images should
be taken from well-chosen positions without obstructions in
view towards the ground. The workflow presented for acquir-
ing panoramic images is particularly suitable for small areas
of interest (centimetres to metres) that are monitored with
intermediate to low mapping frequencies (days to months).
Moreover, the information contained in this technical note is
also beneficial for applications at different temporal and spa-
tial scales (fixed cameras for high-frequency images, drone
and satellite images for larger spatial scales), considering that
some adaption and further developments of the methodology
might be necessary.

We demonstrated with three examples that TIR imagery is
applicable throughout the year and can reveal spatially het-
erogeneous surface-saturation dynamics and distinct types
of saturation patterns. The saturation patterns can also be
used to identify different processes underlying the surface-
saturation formation, such as groundwater exfiltration or
stream expansion. The surface-saturation information visual-
ized in the images can be used directly as soft data for char-
acterizing field conditions, for analysing ongoing hydrologic
processes, and for model validation.

The methods presented for obtaining binary, objective sat-
uration maps from TIR images contain some uncertainties
and are not automatable for data sets containing many im-
ages with varying characteristics (e.g. very wet or dry, water
warmest or coldest material, slightly different fields of view).
In such cases, a manual choice of the temperature range for
saturated pixels is the most reliable approach. Yet for im-
age subsets with similar conditions, the pixel classifications
tested work well, and we think that the combination of an au-
tomatic decomposition of the image distribution in two pixel
classes and a region-growing algorithm is a very promising
option for obtaining objective, comparable saturation maps.
In conclusion, we consider the TIR imagery a very powerful
method for mapping surface saturation in terms of practica-
bility and spatial and temporal flexibility, and we believe it
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can provide new insights into the role of saturated areas and
subsequent spatial and temporal dynamics in rainfall–runoff
transformation.
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