Research article
13 Nov 2018
Research article
| 13 Nov 2018
The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
Camila Alvarez-Garreton et al.
Related authors
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
René D. Garreaud, Camila Alvarez-Garreton, Jonathan Barichivich, Juan Pablo Boisier, Duncan Christie, Mauricio Galleguillos, Carlos LeQuesne, James McPhee, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, https://doi.org/10.5194/hess-21-6307-2017, 2017
Short summary
Short summary
This work synthesizes an interdisciplinary research on the megadrought (MD) that has afflicted central Chile since 2010. Although 1- or 2-year droughts are not infrequent in this Mediterranean-like region, the ongoing dry period stands out because of its longevity and large extent, leading to unseen hydrological effects and vegetation impacts. Understanding the nature and biophysical impacts of the MD contributes to confronting a dry, warm future regional climate scenario in subtropical regions.
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
Álvaro Ayala, Simone Schauwecker, and Shelley MacDonell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-23, https://doi.org/10.5194/hess-2023-23, 2023
Preprint under review for HESS
Short summary
Short summary
As the climate of the semiarid Andes is very dry, a large fraction of the seasonal snowpack is lost to the atmosphere as sublimation. We suggest that snowmelt runoff originates from specific areas that we define as snowmelt hotspots. We estimate that snowmelt hotspots produce half of the snowmelt runoff in a small study catchment, but they correspond to about a quarter of the total area. Snowmelt hotspots might be important for groundwater recharge, rock glaciers and mountain peatlands.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-338, https://doi.org/10.5194/hess-2022-338, 2022
Preprint under review for HESS
Short summary
Short summary
This paper shows how important river models can be for water resources applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin, using a combination of hydrologic model simulations obtained from a large sample of parameter sets, and different routing methods. We obtain that routing can affect streamflow simulations even at monthly time steps, the choice of parameters, and relevant streamflow metrics.
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022, https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-94, https://doi.org/10.5194/hess-2022-94, 2022
Revised manuscript under review for HESS
Short summary
Short summary
How will climate change impact droughts? This question is important, but also very complicated, in part because droughts are notoriously less straightforward to define than other extreme events such as floods or heatwaves. We show that two popular measures of drought give very different outlooks for how often, how widely, when and for how long droughts may occur in a warmed future. Nevertheless, both agree on increasing droughts in Great Britain, highlighting the need for rapid mitigation.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Gerardo Zegers, Pablo A. Mendoza, Alex Garces, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 20, 1919–1930, https://doi.org/10.5194/nhess-20-1919-2020, https://doi.org/10.5194/nhess-20-1919-2020, 2020
Short summary
Short summary
We perform a sensitivity analysis on the parameters of a numerical debris flow model and examine the effects of using post-event measurements on two creeks in Chile. Our results demonstrate the utility of sensitivity analysis in debris flow modeling and the benefits of post-event observations on parameter identifiability. This study provides guidance on the choice of uncertain parameters, contributing to more reliable simulations for debris flow risk assessments and land use planning.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Sara Lynn Fults, Adam K. Massmann, Aldo Montecinos, Elisabeth Andrews, David E. Kingsmill, Justin R. Minder, René D. Garreaud, and Jefferson R. Snider
Atmos. Chem. Phys., 19, 12377–12396, https://doi.org/10.5194/acp-19-12377-2019, https://doi.org/10.5194/acp-19-12377-2019, 2019
Short summary
Short summary
We analyze wintertime aerosol measurements from the central Chilean Pacific coast. The averaged aerosol particle concentration at our site (D > 0.01 μm) is larger than at a site on the Californian Pacific coast. Additionally, size distributions sampled during intervals of onshore flow are used to parameterize aerosol properties relevant to cloud and precipitation processes. We anticipate that modeling of wintertime Chilean coastal rain events will benefit from the parameterizations we present.
Álvaro González-Reyes, Claudio Bravo, Mathias Vuille, Martin Jacques-Coper, Maisa Rojas, Esteban Sagredo, and James McPhee
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-37, https://doi.org/10.5194/cp-2019-37, 2019
Publication in CP not foreseen
Short summary
Short summary
The "Little Ice Age" (LIA), has long been recognized as the last period when mountain glaciers recorded extensive growth intervals. In the Mediterranean Andes (MA; 30º–37º S), the LIA has been poorly documented. Here, we performed an experiment using three GCMs to force a novel glaciological model. We simulated temporal variations of the ELA to evaluate the glacier response. We propose that Pacific SST variability was the main modulator of temporal changes of the ELA in the MA region during LIA.
Ramadan Abdelaziz, Broder J. Merkel, Mauricio Zambrano-Bigiarini, and Sreejesh Nair
Geosci. Model Dev., 12, 167–177, https://doi.org/10.5194/gmd-12-167-2019, https://doi.org/10.5194/gmd-12-167-2019, 2019
Short summary
Short summary
The paper presents a robust tool to estimate the thermodynamic surface complexation parameter for the sorption of uranium(VI) onto quartz surfaces. The optimization package hydroPSO R is coupled with the geochemical speciation code PHREEQC. hydroPSO used the m parameter estimation tool for geochemical modeling with PHREEQC. Coupled hydroPSO with PHREEQC proved to be a robust tool to estimate surface complexation constants for uranium(VI) species on quartz.
Mónica Bello, Marcel Ramos, René Garreaud, Luis Bravo, and Martin Thiel
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-32, https://doi.org/10.5194/os-2018-32, 2018
Preprint withdrawn
Short summary
Short summary
Here we present results of an intensive physical oceanography study near 30° S focused on the description of the seasonal and the synoptic variability of diurnal currents. The study, highlights the greatest variability of the diurnal currents which are highly influenced by the diurnal wind forcing, also modulated by a synoptic-scale circulation pattern. Our results show that the highest diurnal current variability suggesting a strong coupling between diurnal wind forcing and inertial oscillations.
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia
Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, https://doi.org/10.5194/hess-22-1831-2018, 2018
Short summary
Short summary
We investigate the relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1–7). For this purpose, we develop and implement a regional hydrologic ensemble prediction system (RHEPS). Overall analysis shows that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
René D. Garreaud, Camila Alvarez-Garreton, Jonathan Barichivich, Juan Pablo Boisier, Duncan Christie, Mauricio Galleguillos, Carlos LeQuesne, James McPhee, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, https://doi.org/10.5194/hess-21-6307-2017, 2017
Short summary
Short summary
This work synthesizes an interdisciplinary research on the megadrought (MD) that has afflicted central Chile since 2010. Although 1- or 2-year droughts are not infrequent in this Mediterranean-like region, the ongoing dry period stands out because of its longevity and large extent, leading to unseen hydrological effects and vegetation impacts. Understanding the nature and biophysical impacts of the MD contributes to confronting a dry, warm future regional climate scenario in subtropical regions.
Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, https://doi.org/10.5194/hess-21-5293-2017, 2017
Short summary
Short summary
We introduce a data set describing the landscape of 671 catchments in the contiguous USA: we synthesized various data sources to characterize the topography, climate, streamflow, land cover, soil, and geology of each catchment. This extends the daily time series of meteorological forcing and discharge provided by an earlier study. The diversity of these catchments will help to improve our understanding and modeling of how the interplay between catchment attributes shapes hydrological processes.
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold
Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, https://doi.org/10.5194/hess-21-3915-2017, 2017
Short summary
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Mauricio Zambrano-Bigiarini, Alexandra Nauditt, Christian Birkel, Koen Verbist, and Lars Ribbe
Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, https://doi.org/10.5194/hess-21-1295-2017, 2017
Short summary
Short summary
This work exhaustively evaluates – for the first time – the suitability of seven state-of-the-art satellite-based rainfall estimates (SREs) over the complex topography and diverse climatic gradients of Chile.
Several indices of performance are used for different timescales and elevation zones. Our analysis reveals what SREs are in closer agreement to ground-based observations and what indices allow for understanding mismatches in shape, magnitude, variability and intensity of precipitation.
Deniz Bozkurt, Maisa Rojas, Juan Pablo Boisier, and Jonás Valdivieso
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-690, https://doi.org/10.5194/hess-2016-690, 2017
Manuscript not accepted for further review
Short summary
Short summary
In this study, historical (1960–2005) and projected, following the RCP8.5 scenario (2006–2099), daily precipitation and temperatures from 26 CMIP5 climate models are bias corrected and used to drive the VIC model in order to obtain regional hydroclimate projections. Our study highlights that the robust drying and warming conditions are expected to increase the severity and frequency of extreme events such as recently experienced mega-drought (2010–2015) in this densely populated region in Chile.
Jorge F. Perez-Quezada, Carla E. Brito, Julián Cabezas, Mauricio Galleguillos, Juan P. Fuentes, Horacio E. Bown, and Nicolás Franck
Biogeosciences, 13, 6599–6609, https://doi.org/10.5194/bg-13-6599-2016, https://doi.org/10.5194/bg-13-6599-2016, 2016
Short summary
Short summary
We studied how many measurements are needed to correctly represent the soil respiration flux, mostly to help researchers who do not have automatic chambers to perform these measurements, so they can sample as seldom as possible. Our results show that for our site conditions, at least two measurements should be made in one day, one of which should be made at night-time. We also found that it is more important to make more field campaigns than measuring more times in one day.
Mariano H. Masiokas, Duncan A. Christie, Carlos Le Quesne, Pierre Pitte, Lucas Ruiz, Ricardo Villalba, Brian H. Luckman, Etienne Berthier, Samuel U. Nussbaumer, Álvaro González-Reyes, James McPhee, and Gonzalo Barcaza
The Cryosphere, 10, 927–940, https://doi.org/10.5194/tc-10-927-2016, https://doi.org/10.5194/tc-10-927-2016, 2016
Short summary
Short summary
Glacier Echaurren Norte (ECH, 34° S) has the longest (> 35 yrs) mass-balance record in South America. A minimal model that explains 78 % of the variance in the ECH annual record identifies precipitation as the most important forcing. A regional streamflow series allows for extending the ECH annual record back to 1909 and shows a clear cumulative ice-mass loss. Similarities with documented glacier advances and other shorter mass-balance series suggest the ECH reconstruction is regionally representative.
E. Cornwell, N. P. Molotch, and J. McPhee
Hydrol. Earth Syst. Sci., 20, 411–430, https://doi.org/10.5194/hess-20-411-2016, https://doi.org/10.5194/hess-20-411-2016, 2016
Short summary
Short summary
We present a high-resolution snow water equivalent estimation for the 2001–2014 period over the extratropical Andes Cordillera of Argentina and Chile, the first of its type. The effect of elevation on accumulation is confirmed, although this is less marked in the northern portion of the domain. The 3000–4000 m a.s.l. elevation band contributes the bulk of snowmelt, but the 4000–5000 m a.s.l. band is a significant source and deserves further monitoring and research.
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
M. Rodriguez, N. Ohlanders, and J. McPhee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-8949-2014, https://doi.org/10.5194/hessd-11-8949-2014, 2014
Revised manuscript not accepted
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, https://doi.org/10.5194/bg-10-1501-2013, 2013
N. Ohlanders, M. Rodriguez, and J. McPhee
Hydrol. Earth Syst. Sci., 17, 1035–1050, https://doi.org/10.5194/hess-17-1035-2013, https://doi.org/10.5194/hess-17-1035-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Assessing KDP-based QPE for the record-breaking rainfall over Zhengzhou city on 20 July 2021
Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert
Coastal and orographic effects on extreme precipitation revealed by weather radar observations
Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland
Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe
Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model
Effect of disdrometer type on rain drop size distribution characterisation: a new dataset for south-eastern Australia
Quantitative precipitation estimation with weather radar using a data- and information-based approach
Continuous, near-real-time observations of water stable isotope ratios during rainfall and throughfall events
Rain erosivity map for Germany derived from contiguous radar rain data
Citizen science flow – an assessment of simple streamflow measurement methods
Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall
Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015
Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction
Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers
Obtaining sub-daily new snow density from automated measurements in high mountain regions
Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements
Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria
The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation
Measuring precipitation with a geolysimeter
Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region
Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop
Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa
Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds
Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis
Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa
Rainfall and streamflow sensor network design: a review of applications, classification, and a proposed framework
The quantification and correction of wind-induced precipitation measurement errors
Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment
Areal rainfall estimation using moving cars – computer experiments including hydrological modeling
Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands
A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland
Making rainfall features fun: scientific activities for teaching children aged 5–12 years
Estimating evaporation with thermal UAV data and two-source energy balance models
Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru)
Historical changes in frequency of extreme floods in Prague
Soil moisture–precipitation coupling: observations from the Oklahoma Mesonet and underlying physical mechanisms
A comprehensive filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters
Investigating temporal field sampling strategies for site-specific calibration of three soil moisture–neutron intensity parameterisation methods
Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest
Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-361, https://doi.org/10.5194/hess-2022-361, 2022
Revised manuscript under review for HESS
Short summary
Short summary
This extreme rainfall event occurred at Zhengzhou on 20 July 2021 is widely concerned, as it caused tremendous losses of both lives and properties. However, the evolution of areal rainfall is still not clear. In this study, Kdp observations were used for quantitatively estimating areal rainfall accumulation. Different estimation methods as well as QPE results were compared. We found that the selection of kdp estimation method has minimal impact on hourly rainfall accumulation.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021, https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021, https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Short summary
Typhoon (TY) and non-typhoon (NTY) rainy days in northern Taiwan summer seasons showed more large drops on NTY than TY rainy days. Relatively higher convective activity and drier conditions in NTY than TY lead to variations in microphysical characteristics between TY and NTY rainy days. The raindrop size distribution and kinetic energy relations assessed for TY and NTY rainfall can be useful for evaluating the radar rainfall estimation algorithms, cloud modeling, and rainfall erosivity studies.
Peter Widmoser and Dominik Michel
Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021, https://doi.org/10.5194/hess-25-1151-2021, 2021
Short summary
Short summary
With respect to ongoing discussions about the causes of energy imbalance, a method for closing the latent heat flux gap based on lysimeter measurements is assessed at four measurement stations over grassland in humid and semiarid climates. The applied partial closure yields excellent adjustments of eddy covariance data as compared to results found in the literature. The method also allows a distinction between systematic and random deviation of eddy covariance and lysimeter measurements.
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020, https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary
Short summary
Analysis of the largest 10 floods in the lower Rhine, between 1817 and 2015, shows that all these extreme flood peaks have been preceded, up to 7 d in advance, by intense moisture transport from the tropical North Atlantic basin in the form of narrow bands also known as atmospheric rivers. The results presented in this study offer new insights regarding the importance of moisture transport as the driver of extreme flooding in the lower part of the Rhine catchment area.
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020, https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
Short summary
Commercial microwave links (CMLs), which form large parts of the backhaul from the ubiquitous cellular communication networks, can be used to estimate path-integrated rainfall rates. This study presents the processing and evaluation of the largest CML data set to date, covering the whole of Germany with almost 4000 CMLs. The CML-derived rainfall information compares well to a standard precipitation data set from the German Meteorological Service, which combines radar and rain gauge data.
Moshe Armon, Francesco Marra, Yehouda Enzel, Dorita Rostkier-Edelstein, and Efrat Morin
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, https://doi.org/10.5194/hess-24-1227-2020, 2020
Short summary
Short summary
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well as to water resource recharge. Rainfall patterns during HPEs vary from one case to another and govern their effect. Thus, correct prediction of these patterns is crucial for coping with HPEs. However, the ability of weather models to generate such patterns is unclear. Here, we characterise rainfall patterns during HPEs based on weather radar data and evaluate weather model simulations of these events.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Malte Neuper and Uwe Ehret
Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, https://doi.org/10.5194/hess-23-3711-2019, 2019
Short summary
Short summary
In this study, we apply a data-driven approach to quantitatively estimate precipitation using weather radar data. The method is based on information theory concepts. It uses predictive relations expressed by empirical discrete probability distributions, which are directly derived from data rather than the standard deterministic functions.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Karl Auerswald, Franziska K. Fischer, Tanja Winterrath, and Robert Brandhuber
Hydrol. Earth Syst. Sci., 23, 1819–1832, https://doi.org/10.5194/hess-23-1819-2019, https://doi.org/10.5194/hess-23-1819-2019, 2019
Short summary
Short summary
Radar rain data enable for the first time portraying the erosivity pattern with high spatial and temporal resolution. This allowed quantification of erosivity in Germany with unprecedented detail. Compared to previous estimates, erosivity has strongly increased and its seasonal distribution has changed, presumably due to climate change. As a consequence, erosion for some crops is 4 times higher than previously estimated.
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019, https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Short summary
Wise management of water resources requires data. Nevertheless, the amount of water data being collected continues to decline. We evaluated potential citizen science approaches for measuring flows of headwater streams and springs. After selecting salt dilution as the preferred approach, we partnered with Nepali students to cost-effectively measure flows and water quality with smartphones at 264 springs and streams which provide crucial water supplies to the rapidly expanding Kathmandu Valley.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Laurent Delobbe, Arnaud Watlet, Svenja Wilfert, and Michel Van Camp
Hydrol. Earth Syst. Sci., 23, 93–105, https://doi.org/10.5194/hess-23-93-2019, https://doi.org/10.5194/hess-23-93-2019, 2019
Short summary
Short summary
In this study, we explore the use of an underground superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The comparison of radar and gravity time series over 15 years shows that short-duration intense rainfall events cause a rapid decrease in the measured gravity. Rainfall amounts can be derived from this decrease. The gravimeter allows capture of rainfall at a much larger spatial scale than a traditional rain gauge.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Alfonso Fernández, Ariel Muñoz, Álvaro González-Reyes, Isabella Aguilera-Betti, Isadora Toledo, Paulina Puchi, David Sauchyn, Sebastián Crespo, Cristian Frene, Ignacio Mundo, Mauro González, and Raffaele Vignola
Hydrol. Earth Syst. Sci., 22, 2921–2935, https://doi.org/10.5194/hess-22-2921-2018, https://doi.org/10.5194/hess-22-2921-2018, 2018
Short summary
Short summary
Short-term river discharge records hamper assessment of the severity of modern droughts in south-central Chile, making effective water management difficult. To support decision-making, we present a ~300-year tree-ring reconstruction of summer discharge for this region. Results show that since 1980, droughts have become more frequent and are related to a shift in large-scale climate. We argue that water managers should use this long-term view to better allocate water rights.
Marta Angulo-Martínez, Santiago Beguería, Borja Latorre, and María Fernández-Raga
Hydrol. Earth Syst. Sci., 22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, https://doi.org/10.5194/hess-22-2811-2018, 2018
Short summary
Short summary
Two optical disdrometers, OTT Parsivel2 disdrometer and Thies Clima laser precipitation monitor (LPM), are compared. Analysis of 2 years of one-minute replicated data showed significant differences. Thies LPM recorded a larger number of particles than Parsivel2 and a higher proportion of small particles, resulting in higher rain rates and amounts and differences in radar reflectivity and kinetic energy. Possible causes for these differences, and their practical consequences, are discussed.
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018, https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary
Short summary
We calculated hourly new snow densities from automated measurements. This time interval reduces the influence of settling of the freshly deposited snow. We found an average new snow density of 68 kg m−3. The observed variability could not be described using different parameterizations, but a relationship to temperature is partly visible at hourly intervals. Wind speed is a crucial parameter for the inter-station variability. Our findings are relevant for snow models working on hourly timescales.
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
René D. Garreaud, Camila Alvarez-Garreton, Jonathan Barichivich, Juan Pablo Boisier, Duncan Christie, Mauricio Galleguillos, Carlos LeQuesne, James McPhee, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, https://doi.org/10.5194/hess-21-6307-2017, 2017
Short summary
Short summary
This work synthesizes an interdisciplinary research on the megadrought (MD) that has afflicted central Chile since 2010. Although 1- or 2-year droughts are not infrequent in this Mediterranean-like region, the ongoing dry period stands out because of its longevity and large extent, leading to unseen hydrological effects and vegetation impacts. Understanding the nature and biophysical impacts of the MD contributes to confronting a dry, warm future regional climate scenario in subtropical regions.
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017, https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary
Short summary
This research provides an example of how groundwater pressures measured in deep observation wells can be used as a reliable estimate, and perhaps as a reference, for event-based precipitation. Changes in loading at the surface due to the weight of precipitation are transferred to the groundwater formation and can be measured in the observation well. Correlations in precipitation measurements made with the
geolysimeterand the co-located sheltered precipitation gauge are high.
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Sibo Zhang, Nicolas Roussel, Karen Boniface, Minh Cuong Ha, Frédéric Frappart, José Darrozes, Frédéric Baup, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, https://doi.org/10.5194/hess-21-4767-2017, 2017
Short summary
Short summary
GNSS SNR data were obtained from an intensively cultivated wheat field in southwestern France. The data were used to retrieve soil moisture and vegetation characteristics during the growing period of wheat. Vegetation growth broke up the constant height assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new algorithm based on a wavelet analysis was implemented and used to retrieve vegetation height.
Bruce C. Scott-Shaw, Colin S. Everson, and Alistair D. Clulow
Hydrol. Earth Syst. Sci., 21, 4551–4562, https://doi.org/10.5194/hess-21-4551-2017, https://doi.org/10.5194/hess-21-4551-2017, 2017
Short summary
Short summary
In South Africa, the invasion of riparian forests by alien trees has the potential to affect the limited water resources. To justify alien clearing programs, hydrological benefits are required. Spatial upscaling of measured sapflows showed that an alien stand used 6 times more water per unit area than the indigenous stand. A gain in groundwater recharge and/or streamflow would be achieved if the alien species were removed from riparian forests and rehabilitated back to their natural state.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Feinan Xu, Weizhen Wang, Jiemin Wang, Ziwei Xu, Yuan Qi, and Yueru Wu
Hydrol. Earth Syst. Sci., 21, 4037–4051, https://doi.org/10.5194/hess-21-4037-2017, https://doi.org/10.5194/hess-21-4037-2017, 2017
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Nobuhle P. Majozi, Chris M. Mannaerts, Abel Ramoelo, Renaud Mathieu, Alecia Nickless, and Wouter Verhoef
Hydrol. Earth Syst. Sci., 21, 3401–3415, https://doi.org/10.5194/hess-21-3401-2017, https://doi.org/10.5194/hess-21-3401-2017, 2017
Short summary
Short summary
The study analysed the quality and partitioning of a 15-year surface energy dataset from Skukuza flux tower. The yearly mean energy balance ratio (EBR) was 0.93, with the dry season having the lowest ratio. Night ratio was lower than daytime, with analysis showing an increase in EBR with increase in friction velocity, which is also linked to time of day. The energy partitioning showed that sensible heat flux is the dominant portion in the dry season, and latent heat flux during the wet season.
Juan C. Chacon-Hurtado, Leonardo Alfonso, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 3071–3091, https://doi.org/10.5194/hess-21-3071-2017, https://doi.org/10.5194/hess-21-3071-2017, 2017
Short summary
Short summary
This paper compiles most of the studies (as far as the authors are aware) on the design of sensor networks for measurement of precipitation and streamflow. The literature shows that there is no overall consensus on the methods for the evaluation of sensor networks, as different design criteria often lead to different solutions. This paper proposes a methodology for the classification of methods, and a general framework for the design of sensor networks.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Stephen D. Parkes, Matthew F. McCabe, Alan D. Griffiths, Lixin Wang, Scott Chambers, Ali Ershadi, Alastair G. Williams, Josiah Strauss, and Adrian Element
Hydrol. Earth Syst. Sci., 21, 533–548, https://doi.org/10.5194/hess-21-533-2017, https://doi.org/10.5194/hess-21-533-2017, 2017
Short summary
Short summary
Determining atmospheric moisture sources is required for understanding the water cycle. The role of land surface fluxes is a particular source of uncertainty for moisture budgets. Water vapour isotopes have the potential to improve constraints on moisture sources. In this work relationships between water vapour isotopes and land–atmosphere exchange are studied. Results show that land surface evaporative fluxes play a minor role in the daytime water and isotope budgets in semi-arid environments.
Ehsan Rabiei, Uwe Haberlandt, Monika Sester, Daniel Fitzner, and Markus Wallner
Hydrol. Earth Syst. Sci., 20, 3907–3922, https://doi.org/10.5194/hess-20-3907-2016, https://doi.org/10.5194/hess-20-3907-2016, 2016
Short summary
Short summary
The value of using moving cars for rainfall measurement purposes (RCs) was investigated with laboratory experiments by Rabiei et al. (2013). They analyzed the Hydreon and Xanonex optical sensors against different rainfall intensities. A continuous investigation of using RCs with the derived uncertainties from laboratory experiments for areal rainfall estimation as well as implementing the data in a hydrological model are addressed in this study.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Ahmed El Kenawy, Natalia Martín-Hernández, Marina Peña-Gallardo, Santiago Beguería, and Miquel Tomas-Burguera
Hydrol. Earth Syst. Sci., 20, 3393–3410, https://doi.org/10.5194/hess-20-3393-2016, https://doi.org/10.5194/hess-20-3393-2016, 2016
Short summary
Short summary
In this work we analyse the recent evolution and meteorological drivers of the atmospheric evaporative demand in the Canary Islands. We found that the reference evapotranspiration increased by 18.2 mm decade−1 – on average – between 1961 and 2013, with the highest increase recorded during summer. This increase was mainly driven by changes in the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
Auguste Gires, Catherine L. Muller, Marie-Agathe le Gueut, and Daniel Schertzer
Hydrol. Earth Syst. Sci., 20, 1751–1763, https://doi.org/10.5194/hess-20-1751-2016, https://doi.org/10.5194/hess-20-1751-2016, 2016
Short summary
Short summary
Educational activities are now a common channel to increase impact of research projects. Here, we present innovative activities for young children that aim to help them (and their teachers) grasp some of the complex underlying scientific issues in environmental fields. The activities developed are focused on rainfall: observation and modeling of rain drop size and the succession of dry and rainy days, and writing of a scientific book. All activities were implemented in classrooms.
H. Hoffmann, H. Nieto, R. Jensen, R. Guzinski, P. Zarco-Tejada, and T. Friborg
Hydrol. Earth Syst. Sci., 20, 697–713, https://doi.org/10.5194/hess-20-697-2016, https://doi.org/10.5194/hess-20-697-2016, 2016
Short summary
Short summary
Thermal images collected with an unmanned aerial vehicle (UAV) are applied to algorithms originally developed to be operational with satellite images, in order to estimate evapotranspiration in very high resolution.
It is concluded that the thermal UAV data can be used for model input and for other potential applications requiring good quality, consistent, and high resolution land surface temperature.
L. Mourre, T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin
Hydrol. Earth Syst. Sci., 20, 125–141, https://doi.org/10.5194/hess-20-125-2016, https://doi.org/10.5194/hess-20-125-2016, 2016
Short summary
Short summary
Three different types of gridded precipitation products are compared in a high glaciated tropical mountain environment (Cordillera Blanca, Peru): ground-based interpolation, a satellite-derived product (TRMM3B42), and outputs from the WRF regional climate model. While none of the products meets the challenge of representing both accumulated quantities and frequency of occurrence at the short timescale, we concluded that new methods should be used to merge those various precipitation products.
L. Elleder
Hydrol. Earth Syst. Sci., 19, 4307–4315, https://doi.org/10.5194/hess-19-4307-2015, https://doi.org/10.5194/hess-19-4307-2015, 2015
Short summary
Short summary
A flood frequency analysis for the Vltava River catchment based on an interpretation of documentary sources was carried out for a major profile in Prague. Six flood-rich periods in total were identified for 1118–2013. The most important were in the 16th and 19th centuries. The territory of the present Czech Republic might have experienced in the past, extreme floods comparable, with regard to peak discharge (higher than or equal to Q10) and frequency, to the flood events recorded recently.
T. W. Ford, A. D. Rapp, S. M. Quiring, and J. Blake
Hydrol. Earth Syst. Sci., 19, 3617–3631, https://doi.org/10.5194/hess-19-3617-2015, https://doi.org/10.5194/hess-19-3617-2015, 2015
Short summary
Short summary
We combine in situ soil moisture observations with radar-derived precipitation to evaluate soil moisture feedback on convective rainfall in the US Southern Great Plains. We find strong connections between morning soil moisture and atmospheric conditions including boundary layer height, surface temperature, and relative humidity at the boundary layer top. The results of this study demonstrate both positive and negative soil moisture feedbacks are important in this region of the USA.
M. Hannes, U. Wollschläger, F. Schrader, W. Durner, S. Gebler, T. Pütz, J. Fank, G. von Unold, and H.-J. Vogel
Hydrol. Earth Syst. Sci., 19, 3405–3418, https://doi.org/10.5194/hess-19-3405-2015, https://doi.org/10.5194/hess-19-3405-2015, 2015
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary
Short summary
The cosmic-ray neutron sensor can provide soil moisture content averages over areas of roughly half a kilometre by half a kilometre. Although this sensor is usually calibrated using soil samples taken on a single day, we found that multiple sampling days are needed. The calibration results were also affected by the soil wetness conditions of the sampling days. The outcome of this study will help researchers to calibrate/validate new cosmic-ray neutron sensor sites more accurately.
A. D. Clulow, C. S. Everson, M. G. Mengistu, J. S. Price, A. Nickless, and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 19, 2513–2534, https://doi.org/10.5194/hess-19-2513-2015, https://doi.org/10.5194/hess-19-2513-2015, 2015
Short summary
Short summary
The 3rd paper in a series dealing with evaporation over indigenous vegetation in an area of South Africa experiencing severe water challenges. The area is a World Heritage site and an important conservation area in which our understanding of the water balance plays a crucial role in system management.
We provide the fist estimates of total evaporation from a subtropical peat swamp forest, investigate measurement techniques and provide modelling solutions to estimate long-term evaporation.
S. Gebler, H.-J. Hendricks Franssen, T. Pütz, H. Post, M. Schmidt, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, https://doi.org/10.5194/hess-19-2145-2015, 2015
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set:
Catchment attributes and meteorology for large-sample studies, Hydrol. Earth
Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M.
P.: A ranking of hydrological signatures based on their predictability in space,
Water Resour. Res., 54, https://doi.org/10.1029/2018WR022606, 2018.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J.,
Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J.,
Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology
Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol.,
4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Penman–Monteith
Equation, in: Crop Evapotranspiration: Guidelines for Computing Crop Water
Requirements, FAO – Food and Agriculture Organization of the United Nations,
Rome, 17–28, 1998.
Allmendinger, R. W., Jordan, T. E., Kay, S. M., and Isacks, B. L.: The evolution
of the Altiplano-Puna Plateau of the Central Andes, Annu. Rev. Earth Planet.
Sci., 25, 139–174, https://doi.org/10.1146/annurev.earth.25.1.139, 1997.
Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Introduction
and Synthesis: Why should hydrologists work on a large number of basin data
sets?, IAHS-AISH Publ., 307, 1–6, 2006.
Arkoprovo, B., Adarsa, J., and Prakash, S. S.: Delineation of Groundwater
Potential Zones using Satellite Remote Sensing and Geographic Information
System Techniques: A Case study from Ganjam district, Orissa, India, Res. J.
Recent Sci., 1, 59–66, 2012.
Armesto, J. J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R.,
Abarzúa, A. M., and Marquet, P. A.: From the Holocene to the Anthropocene:
A historical framework for land cover change in southwestern South America in
the past 15,000 years, Land Use Policy, 27, 148–160, https://doi.org/10.1016/j.landusepol.2009.07.006, 2010.
ASTER GDEM: https://asterweb.jpl.nasa.gov/gdem.asp, last access: December 2016.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H.,
Dee, D., Dutra, E., Munõz-Sabater, J., Pappenberger, F., De Rosnay, P.,
Stockdale, T., and Vitart, F.: ERA-Interim/Land: A global land surface
reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Beck, H. E., Van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles,
D. G., Martens, B., and De Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded
precipitation (1979–2015) by merging gauge, satellite, and reanalysis data,
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns
of similarity of seasonal water balances: A window into streamflow variability
over a range of time scales, Water Resour. Res., 50, 5638–5661, https://doi.org/10.1002/2014WR015692, 2014.
Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., and Woods, R. A.: A
Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential
Evaporation, and Other Factors, Water Resour. Res., 53, 8475–8486,
https://doi.org/10.1002/2017WR021593, 2017.
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., and de Roo, A.: Assessing the
role of uncertain precipitation estimates on the robustness of hydrological
model parameters under highly variable climate conditions, J. Hydrol. Reg. Stud.,
8, 112–129, https://doi.org/10.1016/j.ejrh.2016.09.003, 2016.
Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.:
Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and
Scales, Cambridge University Press, Cambridge, 2013.
Budyko, M. I.: Climate and Life, Academic Press, London, 1971.
Carey: General Overview of Water Rights in Chile, available at:
http://reformacodigodeaguas.carey.cl/wp-content/uploads/2014/09/general-explanation-of-the-chilean-water
(last access: May 2018), 2014.
Cortés, G. and Margulis, S.: Impacts of El Niño and La Niña on
interannual snow accumulation in the Andes: Results from a high-resolution
31 year reanalysis, Geophys. Res. Lett., 44, 6859–6867, https://doi.org/10.1002/2017GL073826, 2017.
Cortés, G., Girotto, M., and Margulis, S. A.: Analysis of sub-pixel snow
and ice extent over the extratropical Andes using spectral unmixing of
historical Landsat imagery, Remote Sens. Environ., 141, 64–78, https://doi.org/10.1016/j.rse.2013.10.023, 2014.
Cortés, G., Girotto, M., and Margulis, S.: Snow process estimation over the
extratropical Andes using a data assimilation framework integrating MERRA data
and Landsat imagery, Water Resour. Res., 52, 2582–2600, https://doi.org/10.1002/2015WR018376, 2016.
Dam location: http://www.ide.cl/descarga/capas/item/embalses-2016.html,
last access: September 2017.
DGA: Mapa Hidrogeológico de Chile, Santiago, Chile, 1986.
DGA: Glaciares de chile, Santiago, Chile, 2014.
DGA: Atlas del Agua – Chile 2016, in: Capítulo 1: Chile en el mundo, Atlas
del Agua Chile 2016, Santiago, Chile, 24 pp., 2016a.
DGA: Atlas del Agua – Chile 2016, in Capítulo 4: Gestion del agua, Atlas
del Agua Chile 2016, Santiago, Chile, 30 pp., 2016b.
DGA: Actualización del Balance Hídrico Nacional, SIT No. 417, Ministerio
de Obras Públicas, Dirección General de Aguas, División de Estudios
y Planificación, Santiago, Chile, Realizado por: Universidad de Chile & Pontificia
Universidad Católica de Chile, 2017.
DGA and CIREN: Redefinición de la clasificación red hidrográfica a nivel Nacional,
Santiago, Chile, 2014.
Di Gregorio, A. and Jansen, L. J.: Land Cover Classification System,
Classification concepts and user manual, FAO – Food and Agriculture Organization
of the United Nations, Rome, 2005.
Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J.,
Blöschl, G., Gelfan, A. N., Harman, C., Kleidon, A., Bogaard, T. A., Wang,
D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Di Baldassarre, G.,
Parajka, J., Van Beek, L. P. H., Van Griensven, A., Westhoff, M. C., and
Winsemius, H. C.: Advancing catchment hydrology to deal with predictions under
change, Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, 2014.
Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., and
Clark, M. P.: How Does the Choice of Distributed Meteorological Data Affect
Hydrologic Model Calibration and Streamflow Simulations?, J. Hydrometeorol.,
15, 1384–1403, https://doi.org/10.1175/JHM-D-13-083.1, 2014.
Figueroa, D. and Moffat, C.: On the influence of topography in the induction of
coastal upwelling along the Chilean coast, Geophys. Res. Lett., 27, 3905–3908,
https://doi.org/10.1029/1999GL011302, 2000.
Friedl, M., McIver, D., Hodges, J. C., Zhang, X., Muchoney, D., Strahler, A.,
Woodcock, C., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and
Schaaf, C.: Global land cover mapping from MODIS: algorithms and early results,
Remote Sens. Environ., 83, 287–302, https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate
hazards infrared precipitation with stations – A new environmental record for
monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11,
https://doi.org/10.5194/adgeo-22-3-2009, 2009.
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie,
D., Galleguillos, M., LeQuesne, C., McPhee, J., and Zambrano-Bigiarini, M.:
The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate
and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, 2017.
Glaciers inventory: https://www.glims.org/RGI, last access: December 2017.
GLiM: https://doi.pangaea.de/10.1594/PANGAEA.788537, last access: May 2017.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X.,
Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q.,
Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L.,
Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu,
M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z., Chen,
J., and Chen, J.: Finer resolution observation and monitoring of global land
cover: First mapping results with Landsat TM and ETM+ data, Int. J. Remote
Sens., 34, 2607–2654, https://doi.org/10.1080/01431161.2012.748992, 2013.
Google: Google Earth Pro, Google, available at: https://www.google.com/earth/
(last access: March 2018), 2016.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M.,
and Andréassian, V.: Large-sample hydrology: A need to balance depth with
breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014.
Hargreaves, G. H. and Allen, R. G.: History and evaluation of Hargreaves
evapotranspiration equation, J. Irrig. Drain. Eng., 129, 53–63, https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM:
A representation of rock properties at the Earth surface, Geochem. Geophy.
Geosy., 13, 1–37, https://doi.org/10.1029/2012GC004370, 2012.
Henn, B., Clark, M. P., Kavetski, D., and Lundquist, J. D.: Estimating mountain
basin-mean precipitation fromstreamflow using Bayesian inference, Water Resour.
Res., 51, 8012–8033, https://doi.org/0.1002/2014WR016736, 2015.
Henn, B., Clark, M. P., Kavetski, D., McGurk, B., Painter, T. H., and Lundquist,
J. D.: Combining snow, streamflow, and precipitation gauge observations to infer
basin-mean precipitation, Water Resour. Res., 52, 8700–8723, https://doi.org/10.1002/2015WR018564, 2016.
Hijmans, R. J.: Raster: Geographic Data Analysis and modeling, R Packag.
version 2.5-8. https//CRAN.R-project.org/package=raster, 1, r948, 2016.
Hobouchian, M. P., Salio, P., García Skabar, Y., Vila, D., and Garreaud, R.:
Assessment of satellite precipitation estimates over the slopes of the
subtropical Andes, Atmos. Res., 190, 43–54, https://doi.org/10.1016/j.atmosres.2017.02.006, 2017.
Howell, T. and Evett, S. R.: The Penman–Monteith Method, Bushland, Texas, USDA
Agric. Res. Serv., Texas, 1–13, 2001.
Huang, C., Newman, A. J., Clark, M. P., Wood, A. W., and Zheng, X.: Evaluation
of snow data assimilation using the ensemble Kalman filter for seasonal streamflow
prediction in the western United States, Hydrol. Earth Syst. Sci., 21, 635–650,
https://doi.org/10.5194/hess-21-635-2017, 2017.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM
Multi-satellite Precipitation Analysis (TMPA), in: Satellite Rainfall Applications
for Surface Hydrology, Springer, Dordrecht, 3–22, 2010.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level rise,
Front. Earth Sci., 3, 54, https://doi.org/10.3389/feart.2015.00054, 2015.
IGM: Hidrografía, in: Geografía de Chile, Santiago, Chile, p. 19, 1984.
INIA: AGROMET, Instituto Nacional de Investigacion Agriola. Ministerio de
Agricultura, available at: https://agromet.cl, last access: May 2017.
Ivkovic, K. M., Letcher, R. A., and Croke, B. F. W.: Use of a simple
surface-groundwater interaction model to inform water management, Aust. J.
Earth Sci., 56, 71–80, 2009.
Jin, Y., Schaaf, C. B., Woodcock, C., Gao, F., Li, X., and Strahler, A. H.:
Consistency of MODIS surface bidirectional reflectance distribution function
and albedo retrievals: 2. Validation, J. Geophys. Res., 108, 4159,
https://doi.org/10.1029/2002JD002804, 2003.
Jones, J., Almeida, A., Cisneros, F., Iroumé, A., Jobbágy, E., Lara,
A., de Lima, W. P., Little, C., Llerena, C., Silveira, L., and Villegas, J. C.:
Forests and water in South America, Hydrol. Process., 31, 972–980, https://doi.org/10.1002/hyp.11035, 2017.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the
Köppen–Geiger climate classification updated, Meteorol. Z., 15, 259–263,
https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Ladson, A., Bronw, R., Neal, B., and Nathan, R.: A standard approach to baseflow
separation using the Lyne and Hollick filter, Tech. Pap., Aust. J. Water Resour.,
17, 25–34, https://doi.org/10.7158/W12-028.2013.17.1, 2013.
La Moreaux, P. E., Wilson, B. M., and Memon, B. A.: Guide to the hydrology of
carbonate rocks, Unesco – United Nations Educational, Scientific and Cultural
Organization, Paris, 1984.
Land cover map: http://www.gep.uchile.cl/Landcover_CHILE.html, last access: May 2017.
Lara, A., Little, C., Urrutia, R., McPhee, J., Álvarez-Garretón, C.,
Oyarzún, C., Soto, D., Donoso, P., Nahuelhual, L., Pino, M., and Arismendi,
I.: Assessment of ecosystem services as an opportunity for the conservation and
management of native forests in Chile, Forest Ecol. Manage., 258, 415–424,
https://doi.org/10.1016/j.foreco.2009.01.004, 2009.
Larraín, S.: El agua en Chile: entre los derechos humanos y las reglas del
mercado, http://Polis.Revues.Org (last access: May 2018), 2006.
Le Quesne, C., Acuña, C., Boninsegna, J. A., Rivera, A., and Barichivich,
J.: Long-term glacier variations in the Central Andes of Argentina and Chile,
inferred from historical records and tree-ring reconstructed precipitation,
Palaeogeogr. Palaeocl. Palaeoecol., 281, 334–344, https://doi.org/10.1016/j.palaeo.2008.01.039, 2009.
Liston, G. E.: Representing subgrid snow cover heterogeneities in regional and
global models, J. Climate, 17, 1381–1397, https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2, 2004.
Lucht, W., Schaaf, C. B., and Strahler, A. H.: An algorithm for the retrieval
of albedo from space using semiempirical BRDF models, IEEE T. Geosci. Remote,
38, 977–998, https://doi.org/10.1109/36.841980, 2000.
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for
Climate Research, Cambridge University Press, Cambridge, 170–200, 2018.
Margulis, S. A., Cortés, G., Girotto, M., and Durand, M.: A Landsat-Era
Sierra Nevada Snow Reanalysis (1985–2015), J. Hydrometeorol., 17, 1203–1221,
https://doi.org/10.1175/JHM-D-15-0177.1, 2016.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change
from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322,
https://doi.org/10.5194/tc-6-1295-2012, 2012.
McDonnell, J. J. and Woods, R.: On the need for catchment classification, J.
Hydrol., 299, 2–3, https://doi.org/10.1016/j.jhydrol.2004.09.003, 2004.
Melsen, L. A., Addor, N., Mizukami, N., Newman, A. J., Torfs, P. J. J. F.,
Clark, M. P., Uijlenhoet, R., and Teuling, A. J.: Mapping (dis)agreement in
hydrologic projections, Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, 2018.
Mernild, S. H., Liston, G. E., Hiemstra, C., and Wilson, R.: The Andes Cordillera.
Part III: glacier surface mass balance and contribution to sea level rise (1979–2014),
Int. J. Climatol., 37, 3154–3174, https://doi.org/10.1002/joc.4907, 2017.
Miller, A.: The climate of Chile, in: World survey of climatology, Elsevier,
Amsterdam, 113–145, 1976.
Miranda, A., Altamirano, A., Cayuela, L., Pincheira, F., and Lara, A.: Different
times, same story: Native forest loss and landscape homogenization in three
physiographical areas of south-central of Chile, Appl. Geogr., 60, 20–28,
https://doi.org/10.1016/j.apgeog.2015.02.016, 2015.
Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann, E. D., Nijssen,
B., Rakovec, O., and Samaniego, L.: Towards seamless large-domain parameter
estimation for hydrologic models, Water Resour. Res., 53, 8020–8040,
https://doi.org/10.1002/2017WR020401, 2017.
MODIS: https://e4ftl01.cr.usgs.gov/MOLT, last access: May 2017.
Mu, Q., Zhao, M., and Running, S.: Brief Introduction to MODIS Evapotranspiration
Data Set (MOD16), Water Resour. Res., 45, 0–4, 2005.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M.,
Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global products
of vegetation leaf area and fraction absorbed PAR from year one of MODIS data,
Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose
open source GIS, Environ. Model. Softw., 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014, 2012.
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger,
R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.:
Development of a large-sample watershed-scale hydrometeorological data set for
the contiguous USA: Data set characteristics and assessment of regional
variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19,
209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.
Ochoa-Tocachi, B. F., Buytaert, W., De Bièvre, B., Célleri, R., Crespo,
P., Villacís, M., Llerena, C. A., Acosta, L., Villazón, M., Guallpa, M.,
Gil-Ríos, J., Fuentes, P., Olaya, D., Viñas, P., Rojas, G., and Arias,
S.: Impacts of land use on the hydrological response of tropical Andean
catchments, Hydrol. Process., 30, 4074–4089, https://doi.org/10.1002/hyp.10980, 2016.
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments, Water
Resour. Res., 44, 1–15, https://doi.org/10.1029/2007WR006240, 2008.
Pellicciotti, F., Ragettli, S., Carenzo, M., and McPhee, J.: Changes of glaciers
in the Andes of Chile and priorities for future work, Sci. Total Environ., 493,
1197–1210, https://doi.org/10.1016/j.scitotenv.2013.10.055, 2014.
Poff, N. L. R., Bledsoe, B. P., and Cuhaciyan, C. O.: Hydrologic variation with
land use across the contiguous United States: Geomorphic and ecological
consequences for stream ecosystems, Geomorphology, 79, 264–285, https://doi.org/10.1016/j.geomorph.2006.06.032, 2006.
Precipitation product CR2MET: http://www.cr2.cl/datos-productos-grillados,
last access: March 2018.
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial
Found. Proj., http://www.qgis.org/ (last access: May 2018), 2015.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0, available at: https://www.glims.org/RGI, last
access: December 2017.
Ropelewski, C. F., Janowiak, J. E., and Halpert, M. S.: The Climate Anomaly
Monitoring System (CAMS), in Climate Analysis Center, NSW, NOAA, Washigton,
D.C., available from the Climate Prediction Center, Camp Springs, MD, p. 39, 1984.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity
of streamflow in the United States, Water Resour. Res., 37, 1771–1781,
https://doi.org/10.1029/2000WR900330, 2001.
Sar, N., Khan, A., Chatterjee, S., and Das, A.: Hydrologic delineation of ground
water potential zones using geospatial technique for Keleghai river basin, India,
Model, Earth Syst. Environ., 1, 25, https://doi.org/10.1007/s40808-015-0024-3, 2015.
Sarricolea, P., Herrera-Ossandon, M., and Meseguer-Ruiz, Ó.: Climatic
regionalisation of continental Chile, J. Maps, 13, 66–73, https://doi.org/10.1080/17445647.2016.1259592, 2017.
Satellite precipitation products CHIRPS, MSWEP, TMPA: http://www.cr2.cl/datos-precipitacion-satelital,
last access: March 2018.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment
classification: Empirical analysis of hydrologic similarity based on catchment
function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911,
https://doi.org/10.5194/hess-15-2895-2011, 2011.
Sernageomin: Mapa geologico de chile: version digital, Publ. Geol. Digit.,
4, 25, 2004.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi,
V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Conell, P. E., Oki, T.,
Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS Decade on
Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future
for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880, https://doi.org/10.1623/hysj.48.6.857.51421, 2003.
Sposito, G.: Understanding the budyko equation, Water (Switzerland), 9, 1–14,
https://doi.org/10.3390/w9040236, 2017.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Eos Trans.
Am. Geophys. Un., 38, 913–920, https://doi.org/10.1029/TR038i006p00913, 1957.
Streamflow: http://www.cr2.cl/datos-de-caudales, last access: March 2018.
Su, F., Hong, Y., and Lettenmaier, D. P.: Evaluation of TRMM Multisatellite
Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the
La Plata Basin, J. Hydrometeorol., 9, 622–640, https://doi.org/10.1175/2007JHM944.1, 2008.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER
GDEM version 2, in: International Geoscience and Remote Sensing Symposium (IGARSS),
24–29 July 2011, Vancouver, BC, Canada, 3657–3660, 2011.
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., and De Roo, A.: Hydrological
evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo
Basin, J. Hydrol., 499, 324–338, https://doi.org/10.1016/j.jhydrol.2013.07.012, 2013.
Tian, Y. and Peters-Lidard, C. D.: A global map of uncertainties in
satellite-based precipitation measurements, Geophys. Res. Lett., 37, L24407,
https://doi.org/10.1029/2010GL046008, 2010.
Tijdeman, E., Hannaford, J., and Stahl, K.: Human influences on streamflow
drought characteristics in England and Wales, Hydrol. Earth Syst. Sci., 22,
1051–1064, https://doi.org/10.5194/hess-22-1051-2018, 2018.
Viale, M. and Garreaud, R.: Summer Precipitation Events over the Western Slope
of the Subtropical Andes, Mon. Weather Rev., 142, 1074–1092, https://doi.org/10.1175/MWR-D-13-00259.1, 2014.
Vörösmarty, C. J., Vo, C. J., and Green, P.: Global Water Resources:
Vulnerability from Climate Change and Population Growth, Science, 80, 284–288,
https://doi.org/10.1126/science.289.5477.284, 2007.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geogr. Compass, 1, 1–31, https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Water rights: http://www.dga.cl/productosyservicios/derechos_historicos,
last access: May 2018.
Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydrological signatures,
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015, 2015.
Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A.,
Montanari, A., and Freer, J.: Uncertainty in hydrological signatures for gauged
and ungauged catchments, Water Resour. Res., 52, 1847–1865, https://doi.org/10.1002/2015WR017635, 2016.
Westerhoff, R. S.: Using uncertainty of Penman and Penman-Monteith methods in
combined satellite and ground-based evapotranspiration estimates, Remote Sens.
Environ., 169, 102–112, https://doi.org/10.1016/j.rse.2015.07.021, 2015.
Woldemeskel, F. M., Sivakumar, B., and Sharma, A.: Merging gauge and satellite
rainfall with specification of associated uncertainty across Australia, J.
Hydrol., 499, 167–176, https://doi.org/10.1016/j.jhydrol.2013.06.039, 2013.
Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., and Clark, M.:
Quantifying Streamflow Forecast Skill Elasticity to Initial Condition and
Climate Prediction Skill, J. Hydrometeorol., 17, 651–668, https://doi.org/10.1175/JHM-D-14-0213.1, 2016.
Yang, Z. L., Dickinson, R. E., Robock, A., and Vinnikov, K. Y.: Validation of
the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow
cover and meteorological observational data, J. Climate, 10, 353–373,
https://doi.org/10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2, 1997.
Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., and Ribbe, L.:
Temporal and spatial evaluation of satellite-based rainfall estimates across
the complex topographical and climatic gradients of Chile, Hydrol. Earth Syst.
Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, 2017.
Zhao, Y., Feng, D., Yu, L., Wang, X., Chen, Y., Bai, Y., Hernández, H. J.,
Galleguillos, M., Estades, C., Biging, G. S., Radke, J. D., and Gong, P.:
Detailed dynamic land cover mapping of Chile: Accuracy improvement by
integrating multi-temporal data, Remote Sens. Environ., 183, 170–185,
https://doi.org/10.1016/j.rse.2016.05.016, 2016.
Short summary
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries, hydro-meteorological time series, and 70 catchment attributes quantifying catchments' climatic, hydrological, topographic, geological, land cover and anthropic intervention features. By using CAMELS-CL, we characterise hydro-climatic regional variations, assess precipitation and potential evapotranspiration uncertainties, and analyse human intervention impacts on catchment response.
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries,...