Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5191-2018
https://doi.org/10.5194/hess-22-5191-2018
Research article
 | 
05 Oct 2018
Research article |  | 05 Oct 2018

Breeze effects at a large artificial lake: summer case study

Maksim Iakunin, Rui Salgado, and Miguel Potes

Related authors

Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model
Maksim Iakunin, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues
Geosci. Model Dev., 13, 3475–3488, https://doi.org/10.5194/gmd-13-3475-2020,https://doi.org/10.5194/gmd-13-3475-2020, 2020
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
How seasonal hydroclimate variability drives the triple oxygen and hydrogen isotope composition of small lake systems in semiarid environments
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025,https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Learning from a large-scale calibration effort of multiple lake temperature models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025,https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
The influence of permafrost and other environmental factors on stream thermal sensitivity across Yukon, Canada
Andras J. Szeitz and Sean K. Carey
Hydrol. Earth Syst. Sci., 29, 1083–1101, https://doi.org/10.5194/hess-29-1083-2025,https://doi.org/10.5194/hess-29-1083-2025, 2025
Short summary
Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci., 29, 733–752, https://doi.org/10.5194/hess-29-733-2025,https://doi.org/10.5194/hess-29-733-2025, 2025
Short summary
Modeling Lake Titicaca's water balance: the dominant roles of precipitation and evaporation
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025,https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary

Cited articles

Bates, G. T., Giorgi, F., and Hostetler, S. W.: Toward the Simulation of the Effects of the Great Lakes on Regional Climate, Mon. Weather Rev., 121, 1373–1387, https://doi.org/10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2, 1993. a, b
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteorol. Soc., 127, 869–886, https://doi.org/10.1002/qj.49712757309, 2001. a
Bischoff-Gauß, I., Kalthoff, N., and Fiebig-Wittmaack, M.: The influence of a storage lake in the Arid Elqui Valley in Chile on local climate, Theor. Appl. Climatol., 85, 227–241, https://doi.org/10.1007/s00704-005-0190-8, 2006. a
Bonan, G. B.: Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces, J. Climate, 8, 2691–2704, https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2, 1995. a
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a
Download
Short summary
Lakes and reservoirs can affect local weather regimes but usually it is difficult to trace and assess it. In this work we used the Meso-NH atmospheric model to study the impact of the Alqueva reservoir, one of the largest artificial lakes in western Europe, located in the southeast of Portugal, on meteorological parameters and the formation of a lake breeze system. The magnitude of this impact as well as the intensity of the breeze are shown in the paper.
Share