Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-179-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-179-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale
Felix N. Matt
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
John F. Burkhart
Department of Geosciences, University of Oslo, Oslo, Norway
Statkraft AS, Oslo, Norway
Joni-Pekka Pietikäinen
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Short summary
The present study provided information on specific glaciers over the Hindu Kush Himalayan region identified as being vulnerable to BC-induced impacts (affected by high BC-induced snow albedo reduction in addition to being sensitive to BC-induced impacts), thus impacting the downstream hydrology. The source-specific contribution to atmospheric BC aerosols by emission sources led to identifying the potential emission source, which was distinctive over south and north to 30° N.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
Geosci. Model Dev., 16, 7311–7337, https://doi.org/10.5194/gmd-16-7311-2023, https://doi.org/10.5194/gmd-16-7311-2023, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which simulates the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in terms of their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Joni-Pekka Pietikaeinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
EGUsphere, https://doi.org/10.5194/egusphere-2023-1463, https://doi.org/10.5194/egusphere-2023-1463, 2023
Short summary
Short summary
With a team of 20 authors from different countries, we tried to compile the impacts of drought and heat on European forests in the period 2018–2022. This is a research approach that transcends subject and country borders.
John F. Burkhart, Felix N. Matt, Sigbjørn Helset, Yisak Sultan Abdella, Ola Skavhaug, and Olga Silantyeva
Geosci. Model Dev., 14, 821–842, https://doi.org/10.5194/gmd-14-821-2021, https://doi.org/10.5194/gmd-14-821-2021, 2021
Short summary
Short summary
We present a new hydrologic modeling framework for interactive development of inflow forecasts for hydropower production planning and other operational environments (e.g., flood forecasting). The software provides a Python user interface with an application programming interface (API) for a computationally optimized C++ model engine, giving end users extensive control over the model configuration in real time during a simulation. This provides for extensive experimentation with configuration.
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, https://doi.org/10.5194/hess-24-4641-2020, 2020
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Erika Toivonen, Marjo Hippi, Hannele Korhonen, Ari Laaksonen, Markku Kangas, and Joni-Pekka Pietikäinen
Geosci. Model Dev., 12, 3481–3501, https://doi.org/10.5194/gmd-12-3481-2019, https://doi.org/10.5194/gmd-12-3481-2019, 2019
Short summary
Short summary
We evaluated the skill of the road weather model RoadSurf to reproduce present-day road weather conditions in Finland when driven by a high-resolution regional climate model. Simulated road surface temperatures and conditions were compared to observations between 2002 and 2014 at 25 Finnish road weather stations. RoadSurf accurately captured the main characteristics of road weather conditions. Thus, this model can be used to study the future scenarios of road weather in the study area.
Laura Rontu, Joni-Pekka Pietikäinen, and Daniel Martin Perez
Adv. Sci. Res., 16, 129–136, https://doi.org/10.5194/asr-16-129-2019, https://doi.org/10.5194/asr-16-129-2019, 2019
Short summary
Short summary
Radiative transfer calculations in numerical weather prediction (NWP)
and climate models require reliable information about aerosol
concentration in the atmosphere, combined with data on aerosol optical
properties. Data from the Copernicus atmosphere monitoring service
(CAMS) and European Centre for Medium-Range Weather Forecasts (ECMWF)
were implemented to the limited area, short-range HARMONIE-AROME NWP
model.
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019, https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Short summary
The present study provided information on specific glaciers over the Hindu Kush Himalayan region identified as being vulnerable to BC-induced impacts (affected by high BC-induced snow albedo reduction in addition to being sensitive to BC-induced impacts), thus impacting the downstream hydrology. The source-specific contribution to atmospheric BC aerosols by emission sources led to identifying the potential emission source, which was distinctive over south and north to 30° N.
Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci., 22, 5021–5039, https://doi.org/10.5194/hess-22-5021-2018, https://doi.org/10.5194/hess-22-5021-2018, 2018
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, https://doi.org/10.5194/gmd-11-1321-2018, 2018
Short summary
Short summary
The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation and that the model can reproduce surface water temperature, ice depth and ice season length with reasonably high accuracy.
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017, https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary
Short summary
We present the first use of spectrometer measurements from a drone to assess reflectance and albedo over the Greenland Ice Sheet. In order to measure albedo – a critical parameter in the earth's energy balance – a drone was flown along 200 km transects coincident with Terra and Aqua satellites flying MODIS. We present a direct comparison of UAV-measured reflectance with satellite data over Greenland and provide a new method to study cryospheric surfaces using UAV with spectral instruments.
Umed Paliwal, Mukesh Sharma, and John F. Burkhart
Atmos. Chem. Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, https://doi.org/10.5194/acp-16-12457-2016, 2016
Short summary
Short summary
The article presents a comprehensive and unique emissions inventory for black carbon in India for the year 2011. It is a unique assessment of emissions in that it i) provides a temporally varying emissions estimate for all of India, ii) provides the inventory on a 40 × 40 km2 grid, and iii) includes sources previously not considered (cell tower and small commercial generators and kerosene lamps).
Wiley Steven Bogren, John Faulkner Burkhart, and Arve Kylling
The Cryosphere, 10, 613–622, https://doi.org/10.5194/tc-10-613-2016, https://doi.org/10.5194/tc-10-613-2016, 2016
Short summary
Short summary
The magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance is evaluated. It is shown that relatively minor sensor misalignments give significant errors in irradiance and hence albedo measurements. The total measurement error introduced by sensor tilt is dominated by the direct component. Significant measurement error can also persist in integrated daily irradiance and albedo.
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, https://doi.org/10.5194/acp-15-6827-2015, 2015
J.-P. Pietikäinen, K. Kupiainen, Z. Klimont, R. Makkonen, H. Korhonen, R. Karinkanta, A.-P. Hyvärinen, N. Karvosenoja, A. Laaksonen, H. Lihavainen, and V.-M. Kerminen
Atmos. Chem. Phys., 15, 5501–5519, https://doi.org/10.5194/acp-15-5501-2015, https://doi.org/10.5194/acp-15-5501-2015, 2015
Short summary
Short summary
The global aerosol--climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. We show that aerosol burdens overall can have a decreasing trend leading to reductions in the direct aerosol effect being globally 0.06--0.4W/m2 by 2030, whereas the aerosol indirect radiative effect could decline 0.25--0.82W/m2. We also show that the targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally.
Y. Gao, T. Markkanen, L. Backman, H. M. Henttonen, J.-P. Pietikäinen, H. M. Mäkelä, and A. Laaksonen
Biogeosciences, 11, 7251–7267, https://doi.org/10.5194/bg-11-7251-2014, https://doi.org/10.5194/bg-11-7251-2014, 2014
Short summary
Short summary
This work studies the biogeophysical impacts of peatland forestation on regional climate conditions in Finland by a regional climate model with two land cover maps produced from Finnish national forest inventories. A warming in spring and a slight cooling in the growing season are found in peatland forestation area, which are mainly induced by the decreased surface albedo and increased ET, respectively. The snow clearance days are advanced. The results are also compared with observational data.
J.-P. Pietikäinen, S. Mikkonen, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 14, 11711–11729, https://doi.org/10.5194/acp-14-11711-2014, https://doi.org/10.5194/acp-14-11711-2014, 2014
S. V. Henriksson, J.-P. Pietikäinen, A.-P. Hyvärinen, P. Räisänen, K. Kupiainen, J. Tonttila, R. Hooda, H. Lihavainen, D. O'Donnell, L. Backman, Z. Klimont, and A. Laaksonen
Atmos. Chem. Phys., 14, 10177–10192, https://doi.org/10.5194/acp-14-10177-2014, https://doi.org/10.5194/acp-14-10177-2014, 2014
A. I. Partanen, A. Laakso, A. Schmidt, H. Kokkola, T. Kuokkanen, J.-P. Pietikäinen, V.-M. Kerminen, K. E. J. Lehtinen, L. Laakso, and H. Korhonen
Atmos. Chem. Phys., 13, 12059–12071, https://doi.org/10.5194/acp-13-12059-2013, https://doi.org/10.5194/acp-13-12059-2013, 2013
J. Brioude, D. Arnold, A. Stohl, M. Cassiani, D. Morton, P. Seibert, W. Angevine, S. Evan, A. Dingwell, J. D. Fast, R. C. Easter, I. Pisso, J. Burkhart, and G. Wotawa
Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, https://doi.org/10.5194/gmd-6-1889-2013, 2013
A. I. Hienola, J.-P. Pietikäinen, D. Jacob, R. Pozdun, T. Petäjä, A.-P. Hyvärinen, L. Sogacheva, V.-M. Kerminen, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013, https://doi.org/10.5194/acp-13-4033-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Debris cover effects on energy and mass balance of Batura Glacier in the Karakoram over the past 20 years
The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Inferring sediment-discharge event types in an alpine catchment from sub-daily time series
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance
Spatial distribution and controls of snowmelt runoff in a sublimation-dominated environment in the semiarid Andes of Chile
Snow data assimilation for seasonal streamflow supply prediction in mountainous basins
Canopy structure, topography, and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests
Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate
A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia
Precipitation biases and snow physics limitations drive the uncertainties in macroscale modeled snow water equivalent
Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS
Recent hydrological response of glaciers in the Canadian Rockies to changing climate and glacier configuration
Future projections of High Atlas snowpack and runoff under climate change
Trends and variability in snowmelt in China under climate change
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Learning about precipitation lapse rates from snow course data improves water balance modeling
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments
Snow processes in mountain forests: interception modeling for coarse-scale applications
Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain
Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes
The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mount Lebanon)
Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering
The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment
Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai–Tibet Plateau: a case study
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada
A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model
Technical note: Representing glacier geometry changes in a semi-distributed hydrological model
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments
Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments
Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile
Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow
Developing a representative snow-monitoring network in a forested mountain watershed
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland
Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover
A conceptual, distributed snow redistribution model
Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning
Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013
Modeling the snow surface temperature with a one-layer energy balance snowmelt model
Estimating degree-day factors from MODIS for snowmelt runoff modeling
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024, https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Short summary
We applied a glacier and hydrology model in the McMurdo Dry Valleys (MDV) to model the start and duration of melt over a summer in this extreme polar desert. To do so, we found it necessary to prevent the drainage of melt into ice and optimize the albedo scheme. We show that simulating albedo (for the first time in the MDV) is critical to modelling the feedbacks of albedo, snowfall and melt in the region. This paper is a first step towards more complex spatial modelling of melt and streamflow.
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-300, https://doi.org/10.5194/hess-2023-300, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall-melt extremes, high snow- and glacier melt, freezethaw modulated snow-melt and precipitation, and late season glacier melt.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Álvaro Ayala, Simone Schauwecker, and Shelley MacDonell
Hydrol. Earth Syst. Sci., 27, 3463–3484, https://doi.org/10.5194/hess-27-3463-2023, https://doi.org/10.5194/hess-27-3463-2023, 2023
Short summary
Short summary
As the climate of the semiarid Andes is very dry, much of the seasonal snowpack is lost to the atmosphere through sublimation. We propose that snowmelt runoff originates from specific areas that we define as snowmelt hotspots. We estimate that snowmelt hotspots produce half of the snowmelt runoff in a small study catchment but represent about a quarter of the total area. Snowmelt hotspots may be important for groundwater recharge, rock glaciers, and mountain peatlands.
Sammy Metref, Emmanuel Cosme, Matthieu Le Lay, and Joël Gailhard
Hydrol. Earth Syst. Sci., 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023, https://doi.org/10.5194/hess-27-2283-2023, 2023
Short summary
Short summary
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to anticipating the operation of hydroelectric dams and avoiding hydrology-related hazard. This quantity partly depends on the snowpack accumulated during winter. The study addresses this prediction problem using information from streamflow data and both direct and indirect snow measurements. In this study, the prediction is improved by integrating the data information into a basin-scale hydrological model.
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci., 27, 2099–2121, https://doi.org/10.5194/hess-27-2099-2023, https://doi.org/10.5194/hess-27-2099-2023, 2023
Short summary
Short summary
This study analyses snow cover evolution in mountainous forested terrain based on 2 m resolution simulations from a process-based model. We show that snow accumulation patterns are controlled by canopy structure, but topographic shading modulates the timing of melt onset, and variability in weather can cause snow accumulation and melt patterns to vary between years. These findings advance our ability to predict how snow regimes will react to rising temperatures and forest disturbances.
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci., 27, 627–645, https://doi.org/10.5194/hess-27-627-2023, https://doi.org/10.5194/hess-27-627-2023, 2023
Short summary
Short summary
A model study of two Himalayan catchments reveals that the summer runoff from the glacierized parts of the catchments responds strongly to temperature forcing and is insensitive to precipitation forcing. The runoff from the non-glacierized parts has the exact opposite behaviour. The interannual variability and decadal changes of runoff under a warming climate is determined by the response of glaciers to temperature forcing and that of off-glacier areas to precipitation perturbations.
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Short summary
Climate change poses a potential threat to water supply in glaciated river catchments. In this study, we added a snowmelt and glacier melt model to the Dynamic fluxEs and ConnectIvity for Predictions of HydRology model (DECIPHeR). The model is applied to the Naryn River catchment in central Asia and is found to reproduce past change discharge and the spatial extent of seasonal snow cover well.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022, https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Short summary
While land surface models are a common approach for estimating macroscale snow water equivalent (SWE), the SWE accuracy is often limited by uncertainties in model physics and forcing inputs. In this study, we found large underestimations of modeled SWE compared to observations. Precipitation forcings and melting physics limitations dominantly contribute to the SWE underestimations. Results provide insights into prioritizing strategies to improve the SWE simulations for hydrologic applications.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022, https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary
Short summary
This study considers the combined impacts of climate and glacier changes due to recession on the hydrology and water balance of two high-elevation glaciers. Peyto and Athabasca glacier basins in the Canadian Rockies have undergone continuous glacier loss over the last 3 to 5 decades, leading to an increase in ice exposure and changes to the elevation and slope of the glacier surfaces. Streamflow from these glaciers continues to increase more due to climate warming than glacier recession.
Alexandre Tuel, Nabil El Moçayd, Moulay Driss Hasnaoui, and Elfatih A. B. Eltahir
Hydrol. Earth Syst. Sci., 26, 571–588, https://doi.org/10.5194/hess-26-571-2022, https://doi.org/10.5194/hess-26-571-2022, 2022
Short summary
Short summary
Snowmelt in the High Atlas is critical for irrigation in Morocco but is threatened by climate change. We assess future trends in High Atlas snowpack by modelling it under historical and future climate scenarios and estimate their impact on runoff. We find that the combined warming and drying will result in a roughly 80 % decline in snowpack, a 5 %–30 % decrease in runoff efficiency and 50 %–60 % decline in runoff under a business-as-usual scenario.
Yong Yang, Rensheng Chen, Guohua Liu, Zhangwen Liu, and Xiqiang Wang
Hydrol. Earth Syst. Sci., 26, 305–329, https://doi.org/10.5194/hess-26-305-2022, https://doi.org/10.5194/hess-26-305-2022, 2022
Short summary
Short summary
A comprehensive assessment of snowmelt is missing for China. Trends and variability in snowmelt in China under climate change are investigated using historical precipitation and temperature data (1951–2017) and projection scenarios (2006–2099). The snowmelt and snowmelt runoff ratio show significant spatial and temporal variability in China. The spatial variability in snowmelt changes may lead to regional differences in the impact of snowmelt on the water supply.
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
Short summary
In this study, we use a new snow data set collected by participants in the Community Snow Observations project in coastal Alaska to improve snow depth and snow water equivalence simulations from a snow process model. We validate our simulations with multiple datasets, taking advantage of snow telemetry (SNOTEL), snow depth and snow water equivalence, and remote sensing measurements. Our results demonstrate that assimilating citizen science snow depth measurements can improve model performance.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021, https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Short summary
We compared a suite of globally available meteorological and DEM data with in situ data for physically based snow hydrological modelling in a small high-alpine catchment. Although global meteorological data were less suited to describe the snowpack properly, transferred station data from a similar location in the vicinity and substituting single variables with global products performed well. In addition, using 30 m global DEM products as model input was useful in such complex terrain.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Short summary
A new method to calculate the mass of snow is provided. It is quite simple but gives surprisingly good results. The new approach only requires regular snow depth observations to simulate respective water mass that is stored in the snow. It is called
ΔSNOW model, its code is freely available, and it can be applied in various climates. The method is especially interesting for studies on extremes (e.g., snow loads or flooding) and climate (e.g., precipitation trends).
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Nora Helbig, David Moeser, Michaela Teich, Laure Vincent, Yves Lejeune, Jean-Emmanuel Sicart, and Jean-Matthieu Monnet
Hydrol. Earth Syst. Sci., 24, 2545–2560, https://doi.org/10.5194/hess-24-2545-2020, https://doi.org/10.5194/hess-24-2545-2020, 2020
Short summary
Short summary
Snow retained in the forest canopy (snow interception) drives spatial variability of the subcanopy snow accumulation. As such, accurately describing snow interception in models is of importance for various applications such as hydrological, weather, and climate predictions. We developed descriptions for the spatial mean and variability of snow interception. An independent evaluation demonstrated that the novel models can be applied in coarse land surface model grid cells.
Louis Quéno, Fatima Karbou, Vincent Vionnet, and Ingrid Dombrowski-Etchevers
Hydrol. Earth Syst. Sci., 24, 2083–2104, https://doi.org/10.5194/hess-24-2083-2020, https://doi.org/10.5194/hess-24-2083-2020, 2020
Short summary
Short summary
In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. Satellite-derived products of incoming radiation were assessed in the French Alps and the Pyrenees and compared to meteorological forecasts, reanalyses and in situ measurements. We showed their good quality in mountains. The different radiation datasets were used as radiative forcing for snowpack simulations with the detailed model Crocus. Their impact on the snowpack evolution was explored.
Emma L. Robinson and Douglas B. Clark
Hydrol. Earth Syst. Sci., 24, 1763–1779, https://doi.org/10.5194/hess-24-1763-2020, https://doi.org/10.5194/hess-24-1763-2020, 2020
Short summary
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.
Abbas Fayad and Simon Gascoin
Hydrol. Earth Syst. Sci., 24, 1527–1542, https://doi.org/10.5194/hess-24-1527-2020, https://doi.org/10.5194/hess-24-1527-2020, 2020
Short summary
Short summary
Seasonal snowpack is an essential water resource in Mediterranean mountains. Here, we look at the role of water percolation in simulating snow mass (SWE), for the first time, in Mount Lebanon. We use SnowModel, a distributed snow model, forced by station data. The main sources of uncertainty were attributed to rain–snow partitioning, transient winter snowmelt, and the subpixel snow cover. Yet, we show that a process-based model is suitable to simulate wet snowpack in Mediterranean mountains.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Keith S. Jennings and Noah P. Molotch
Hydrol. Earth Syst. Sci., 23, 3765–3786, https://doi.org/10.5194/hess-23-3765-2019, https://doi.org/10.5194/hess-23-3765-2019, 2019
Short summary
Short summary
There is a wide variety of modeling methods to designate precipitation as rain, snow, or a mix of the two. Here we show that method choice introduces marked uncertainty to simulated snowpack water storage (> 200 mm) and snow cover duration (> 1 month) in areas that receive significant winter and spring precipitation at air temperatures at and near freezing. This marked uncertainty has implications for water resources management as well as simulations of past and future hydroclimatic states.
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Wenfeng Huang, Bin Cheng, Jinrong Zhang, Zheng Zhang, Timo Vihma, Zhijun Li, and Fujun Niu
Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, https://doi.org/10.5194/hess-23-2173-2019, 2019
Short summary
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019, https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary
Short summary
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to cold snow-covered surfaces. This paper proposes a simple sensible and latent heat advection model for snowmelt situations that can be coupled to one-dimensional energy balance snowmelt models. The model demonstrates that sensible and latent heat advection fluxes can compensate for one another, especially in early melt periods.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Michael L. Follum, Jeffrey D. Niemann, Julie T. Parno, and Charles W. Downer
Hydrol. Earth Syst. Sci., 22, 2669–2688, https://doi.org/10.5194/hess-22-2669-2018, https://doi.org/10.5194/hess-22-2669-2018, 2018
Short summary
Short summary
Spatial patterns of snow and frozen ground within watersheds can impact the volume and timing of runoff. Commonly used snow and frozen ground simulation methods were modified to better account for the effects of topography and land cover on the spatial patterns of snow and frozen ground. When tested using a watershed in Vermont the modifications resulted in more accurate temporal and spatial simulation of both snow and frozen ground.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Short summary
Climate change effects on snow, glaciers, and hydrology are investigated for the Ötztal Alps region (Austria) using a hydroclimatological model driven by climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show declining snow amounts and strongly retreating glaciers with moderate effects on catchment runoff until the mid-21st century, whereas annual runoff volumes decrease strongly towards the end of the century.
Muhammad Fraz Ismail and Wolfgang Bogacki
Hydrol. Earth Syst. Sci., 22, 1391–1409, https://doi.org/10.5194/hess-22-1391-2018, https://doi.org/10.5194/hess-22-1391-2018, 2018
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Short summary
We reproduced the formation of capillary barriers and the development of preferential flow through snow using a multi-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Simulation results showed that the model reconstructs some relevant features of capillary barriers and the timing of liquid water arrival at the snow base.
Claudio Bravo, Thomas Loriaux, Andrés Rivera, and Ben W. Brock
Hydrol. Earth Syst. Sci., 21, 3249–3266, https://doi.org/10.5194/hess-21-3249-2017, https://doi.org/10.5194/hess-21-3249-2017, 2017
Short summary
Short summary
We present an analysis of meteorological conditions and melt for Universidad Glacier in central Chile. This glacier is characterized by high melt rates over the ablation season, representing a mean contribution of between 10 and 13 % of the total runoff observed in the upper Tinguiririca Basin during the November 2009 to March 2010 period. Few studies have quantified the glacier melt contribution to river runoff in Chile, and this work represents a new precedent for the Andes.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Kelly E. Gleason, Anne W. Nolin, and Travis R. Roth
Hydrol. Earth Syst. Sci., 21, 1137–1147, https://doi.org/10.5194/hess-21-1137-2017, https://doi.org/10.5194/hess-21-1137-2017, 2017
Short summary
Short summary
We present a coupled modeling approach used to objectively identify representative snow-monitoring locations in a forested watershed in the western Oregon Cascades mountain range. The resultant Forest Elevational Snow Transect (ForEST) represents combinations of forested and open land cover types at low, mid-, and high elevations.
Rafael Pimentel, Javier Herrero, and María José Polo
Hydrol. Earth Syst. Sci., 21, 805–820, https://doi.org/10.5194/hess-21-805-2017, https://doi.org/10.5194/hess-21-805-2017, 2017
Short summary
Short summary
This study analyses the subgrid variability of the snow distribution in a Mediterranean region and formulates a parametric approach that includes these scale effects in the physical modelling of snow by means of accumulation–depletion curves associated with snow evolution patterns, by means of terrestrial photography. The results confirm that the use of these on a cell scale provides a solid foundation for the extension of point snow models to larger areas.
Nena Griessinger, Jan Seibert, Jan Magnusson, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, https://doi.org/10.5194/hess-20-3895-2016, 2016
Short summary
Short summary
In Alpine catchments, snowmelt is a major contribution to runoff. In this study, we address the question of whether the performance of a hydrological model can be enhanced by integrating data from an external snow monitoring system. To this end, a hydrological model was driven with snowmelt input from snow models of different complexities. Best performance was obtained with a snow model, which utilized data assimilation, in particular for catchments at higher elevations and for snow-rich years.
Jacob C. Yde, Niels T. Knudsen, Jørgen P. Steffensen, Jonathan L. Carrivick, Bent Hasholt, Thomas Ingeman-Nielsen, Christian Kronborg, Nicolaj K. Larsen, Sebastian H. Mernild, Hans Oerter, David H. Roberts, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 20, 1197–1210, https://doi.org/10.5194/hess-20-1197-2016, https://doi.org/10.5194/hess-20-1197-2016, 2016
E. Cornwell, N. P. Molotch, and J. McPhee
Hydrol. Earth Syst. Sci., 20, 411–430, https://doi.org/10.5194/hess-20-411-2016, https://doi.org/10.5194/hess-20-411-2016, 2016
Short summary
Short summary
We present a high-resolution snow water equivalent estimation for the 2001–2014 period over the extratropical Andes Cordillera of Argentina and Chile, the first of its type. The effect of elevation on accumulation is confirmed, although this is less marked in the northern portion of the domain. The 3000–4000 m a.s.l. elevation band contributes the bulk of snowmelt, but the 4000–5000 m a.s.l. band is a significant source and deserves further monitoring and research.
S. Frey and H. Holzmann
Hydrol. Earth Syst. Sci., 19, 4517–4530, https://doi.org/10.5194/hess-19-4517-2015, https://doi.org/10.5194/hess-19-4517-2015, 2015
Short summary
Short summary
Temperature index melt models often lead to snow accumulation in high mountainous elevations. We developed a simple conceptual snow redistribution model working on a commonly used grid cell size of 1x1km. That model is integrated in the hydrological rainfall runoff model COSERO. Applying the model to the catchment of Oetztaler Ache, Austria, could prevent the accumulation of snow in the upper altitudes and lead to an improved model efficiency regarding discharge and snow coverage (MODIS).
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
S. J. Marshall
Hydrol. Earth Syst. Sci., 18, 5181–5200, https://doi.org/10.5194/hess-18-5181-2014, https://doi.org/10.5194/hess-18-5181-2014, 2014
Short summary
Short summary
This paper presents a new 12-year glacier meteorological, mass balance, and run-off record from the Canadian Rocky Mountains. This provides insight into the glaciohydrological regime of the Rockies. For the period 2002-2013, about 60% of glacier meltwater run-off originated from seasonal snow and 40% was derived from glacier ice and firn. Ice and firn run-off is concentrated in the months of August and September, at which time it contributes significantly to regional-scale water resources.
J. You, D. G. Tarboton, and C. H. Luce
Hydrol. Earth Syst. Sci., 18, 5061–5076, https://doi.org/10.5194/hess-18-5061-2014, https://doi.org/10.5194/hess-18-5061-2014, 2014
Short summary
Short summary
This paper evaluates three improvements to an energy balance snowmelt model aimed to represent snow surface temperature while retaining the parsimony of a single layer. Surface heat flow is modeled using a forcing term related to the vertical temperature difference and a restore term related to the temporal gradient of surface temperature. Adjustments for melt water refreezing and thermal conductivity when the snow is shallow are introduced. The model performs well at the three test sites.
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
Cited articles
Aamaas, B., Bøggild, C. E., Stordal, F., Berntsen, T., Holmen, K., and
Ström,
J.: Elemental carbon deposition to Svalbard snow from Norwegian settlements
and long-range transport, Tellus B, 63, 340–351,
https://doi.org/10.1111/j.1600-0889.2011.00531.x, 2011. a, b
Aas, K. S., Gisnås, K., Westermann, S., and Berntsen, T. K.: A Tiling
Approach
to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere
Models, J. Hydrometeorol., 18, 49–63,
https://doi.org/10.1175/JHM-D-16-0026.1, 2017. a, b
Anderson, E. A.: A Point Energy and Mass Balance Model of a Snow Cover,
NOAA
Technical Report NWS, National Weather Service, Office of Hydrology,
Silver Spring, Md, USA, available at:
https://searchworks.stanford.edu/view/2518510 (last access:
5 April 2016),
19, 1976. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature, 438,
303–309, https://doi.org/10.1038/nature04141, 2005. a
Berghuijs, W. R., Woods, R. A., Hutton, C. J., and Sivapalan, M.: Dominant
flood generating mechanisms across the United States, Geophys. Res.
Lett., 43, 4382–4390, https://doi.org/10.1002/2016GL068070, 2016. a
Beven, K. and Binley, A.: The future of distributed models: Model calibration
and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992. a, b, c
Blankinship, J. C., Meadows, M. W., Lucas, R. G., and Hart, S. C.: Snowmelt
timing alters shallow but not deep soil moisture in the Sierra Nevada, Water
Resour. Res., 50, 1448–1456, https://doi.org/10.1002/2013WR014541, 2014. a
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of
visible light absorption due to mixing state, J. Geophys.
Res., 111, D20211, https://doi.org/10.1029/2006JD007315, 2006. a, b
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013. a, b
Brun, E.: Investigation on wet-snow metamorphims in respect of liquid water
content, Ann. Glaciol., 13, 22–26, https://doi.org/10.1017/S0260305500007576, 1989. a
Bryant, A. C., Painter, T. H., Deems, J. S., and Bender, S. M.: Impact of
dust
radiative forcing in snow on accuracy of operational runoff prediction in the
Upper Colorado River Basin, Geophys. Res. Lett., 40, 3945–3949,
https://doi.org/10.1002/grl.50773, 2013. a
Burkhart, J. F., Helset, S., Abdella, Y. S., and Lappegard, G.: Operational
Research: Evaluating Multimodel Implementations for 24/7 Runtime
Environments, in: American Geophysical Union, Fall General Assembly,
12–16 December 2016, San Francisco, USA,
2016. a
Clarke, A. D. and Noone, K. J.: Soot in the arctic snowpack a cause for
perturbations in radiative transfer, Atmos. Environ., 19, 2045–2053,
1985. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hølm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Delaney, I., Kaspari, S., and Jenkins, M.: Black carbon concentrations in
snow
at Tronsen Meadow in Central Washington from 2012 to 2013: Temporal and
spatial variations and the role of local forest fire activity, J.
Geophys. Res.-Atmos., 120, 9160–9172,
https://doi.org/10.1002/2015JD023762, 2015. a, b
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S.,
Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E.,
Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.:
Emissions of primary aerosol and precursor gases in the years 2000 and 1750
prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344,
https://doi.org/10.5194/acp-6-4321-2006, 2006. a
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B.,
and Colombo, R.: Mineral dust impact on snow radiative properties in the
European Alps combining ground, UAV, and satellite observations, J.
Geophys. Res.-Atmos., 120, 6080–6097,
https://doi.org/10.1002/2015JD023287, 2015. a
Diggle, P. J. and Ribeiro, P. J.: Model-based Geostatistics, Springer Series
in
Statistics, Springer, New York, USA, 2007. a
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R.
E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10,
11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010. a, b, c
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt,
R. E.,
and Warren, S. G.: Observed vertical redistribution of black carbon and other
insoluble light-absorbing particles in melting snow, J. Geophys.
Res.-Atmos., 118, 5553–5569, https://doi.org/10.1002/jgrd.50235, 2013. a, b, c, d, e, f, g, h, i, j
Domine, F., Taillandier, A.-S., and Simpson, W. R.: A parameterization of the
specific surface area of seasonal snow for field use and for models of
snowpack evolution, J. Geophys. Res.-Earth, 112,
F02031, https://doi.org/10.1029/2006JF000512, 2007. a
Engelhardt, M., Schuler, T. V., and Andreassen, L. M.: Contribution of snow
and glacier melt to discharge for highly glacierised catchments in Norway,
Hydrol. Earth Syst. Sci., 18, 511–523,
https://doi.org/10.5194/hess-18-511-2014, 2014. a
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo
evolution, J. Geophys. Res.-Atmos., 111, D12208,
https://doi.org/10.1029/2005JD006834, 2006. a
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497,
https://doi.org/10.5194/acp-9-2481-2009, 2009. a, b
Forsström, S., Isaksson, E., Skeie, R. B., Ström, J., Pedersen,
C. A.,
Hudson, S. R., Berntsen, T. K., Lihavainen, H., Godtliebsen, F., and Gerland,
S.: Elemental carbon measurements in European Arctic snow packs, J.
Geophys. Res.-Atmos., 118, 13614–13627,
https://doi.org/10.1002/2013JD019886, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Førland, E. J.: Nedbørens høydeavhengighet (Precipitation and
topography), Klima, 1, 3–24, 1979 (in
Norwegian with English summary). a
Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the
development of a new physically based broadband albedo parameterization,
J. Geophys. Res., 115, F01009, https://doi.org/10.1029/2009JF001444,
2010. a
Gautam, R., Hsu, N. C., Lau, W. K.-M., and Yasunari, T. J.: Satellite
observations of desert dust-induced Himalayan snow darkening, Geophys.
Res. Lett., 40, 988–993, https://doi.org/10.1002/grl.50226, 2013. a
Ghimirey, S.: Runoff modelling for Bhutan using satellite data, Master's
thesis, Norwegian University of Science and Technology, available at:
http://hdl.handle.net/11250/2407599 (last access: 24 August 2017),
2016. a
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and
Etzelmüller, B.: Small-scale variation of snow in a regional permafrost
model, The Cryosphere, 10, 1201–1215,
https://doi.org/10.5194/tc-10-1201-2016, 2016. a, b, c, d
Goldenson, N., Doherty, S. J., Bitz, C. M., Holland, M. M., Light, B., and
Conley, A. J.: Arctic climate response to forcing from light-absorbing
particles in snow and sea ice in CESM, Atmos. Chem. Phys., 12, 7903–7920,
https://doi.org/10.5194/acp-12-7903-2012, 2012. a
Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., and Xu,
C.-Y.:
Discharge sensitivity to snowmelt parameterization: a case study for Upper
Beas basin in Himachal Pradesh, India, Hydrol. Res., 47, 683–700,
https://doi.org/10.2166/nh.2016.047, 2016. a, b
Hienola, A. I., Pietikäinen, J.-P., Jacob, D., Pozdun, R.,
Petäjä, T., Hyvärinen, A.-P., Sogacheva, L., Kerminen, V.-M.,
Kulmala, M., and Laaksonen, A.: Black carbon concentration and deposition
estimations in Finland by the regional aerosol–climate model REMO–HAM,
Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013,
2013. a, b
Hienola, A. I., O'Donnell, D., Pietikäinen, J.-P., Svensson, J.,
Lihavainen,
H., Virkula, A., Korhonen, H., and Laaksonen, A.: The radiative impact of
Nordic anthropogenic black carbon, Tellus B, 68, 27428,
https://doi.org/10.3402/tellusb.v68.27428, 2016. a, b, c
Jacobson, M. Z.: Climate response of fossil fuel and biofuel soot, accounting
for soot's feedback to snow and sea ice albedo and emissivity, J.
Geophys. Res.-Atmos., 109, D21201, https://doi.org/10.1029/2004JD004945,
2004. a
Jeelani, G., Feddema, J. J., van der Veen, C. J., and Stearns, L.: Role of
snow
and glacier melt in controlling river hydrology in Liddar watershed (western
Himalaya) under current and future climate, Water Resour. Res., 48, W12508, https://doi.org/10.1029/2011WR011590,
2012. a
Jiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T. K., Bian, H., Carslaw, K. S., Chin, M., De Luca, N., Diehl, T.,
Ghan, S. J., Iversen, T., Kirkevåg, A., Koch, D., Liu, X., Mann, G. W.,
Penner, J. E., Pitari, G., Schulz, M., Seland, Ø., Skeie, R. B., Steenrod,
S. D., Stier, P., Takemura, T., Tsigaridis, K., van Noije, T., Yun, Y., and
Zhang, K.: An AeroCom assessment of black carbon in Arctic snow and sea ice,
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014,
2014. a
Jonas, T., Rixen, C., Sturm, M., and Stoeckli, V.: How alpine plant growth is
linked to snow cover and climate variability, J. Geophys.
Res., 113, G03013, https://doi.org/10.1029/2007JG000680, 2008. a
Junghans, N., Cullmann, J., and Huss, M.: Evaluating the effect of snow and
ice
melt in an Alpine headwater catchment and further downstream in the River
Rhine, Hydrolog. Sci. J., 56, 981–993,
https://doi.org/10.1080/02626667.2011.595372, 2011. a, b
Kaspari, S., McKenzie Skiles, S., Delaney, I., Dixon, D., and Painter, T. H.:
Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due
to deposition of black carbon and mineral dust from wildfire, J.
Geophys. Res.-Atmos., 120, 2793–2807,
https://doi.org/10.1002/2014JD022676, 2015. a
Kawagoe, S., Kazama, S., and Ranjan Sarukkalige, P.: Assessment of snowmelt
triggered landslide hazard and risk in Japan, Cold Reg. Sci.
Technol., 58, 120–129, https://doi.org/10.1016/j.coldregions.2009.05.004, 2009. a
Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology, Water
Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006. a
Klemes, V.: Operational testing of hydrological simulation models, Hydrolog.
Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a
Klimont, Z., Höglund-Isaksson, L., Heyes, C., Rafaj, P., Schöpp, W.,
Cofala,
J., Borken-Kleefeld, J., Purohit, P., Kupiainen, K., Winiwarter, W., Amann,
M., Zhao, B., Wang, S., Bertok, I., and Sander, R.: Global scenarios of air
pollutants and methane: 1990–2050, in preparation, 2016. a
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P.,
Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of
particulate matter including black carbon, Atmos. Chem. Phys., 17,
8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017. a
Kolberg, S. and Gottschalk, L.: Interannual stability of grid cell snow
depletion curves as estimated from MODIS images, Water Resour. Res.,
46, W11555, https://doi.org/10.1029/2008WR007617, 2010. a
Krinner, G., Boucher, O., and Balkanski, Y.: Ice-free glacial northern Asia
due
to dust deposition on snow, Clim. Dynam., 27, 613–625,
https://doi.org/10.1007/s00382-006-0159-z, 2006. a, b, c
Lazarcik, J., Dibb, J. E., Adolph, A. C., Amante, J. M., Wake, C. P.,
Scheuer,
E., Mineau, M. M., and Albert, M. R.: Major fraction of black carbon is
flushed from the melting New Hampshire snowpack nearly as quickly as soluble
impurities, J. Geophys. Res.-Atmos., 122, 537–553,
https://doi.org/10.1002/2016JD025351, 2017. a, b, c, d
Lee, Y. H., Lamarque, J.-F., Flanner, M. G., Jiao, C., Shindell, D. T.,
Berntsen, T., Bisiaux, M. M., Cao, J., Collins, W. J., Curran, M., Edwards,
R., Faluvegi, G., Ghan, S., Horowitz, L. W., McConnell, J. R., Ming, J.,
Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R. B., Sudo, K.,
Takemura, T., Thevenon, F., Xu, B., and Yoon, J.-H.: Evaluation of
preindustrial to present-day black carbon and its albedo forcing from
Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
Atmos. Chem. Phys., 13, 2607–2634, https://doi.org/10.5194/acp-13-2607-2013,
2013. a
Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional
and
Global Models, J. Climate, 17, 1381–1397, 2004. a
Lutz, S., Anesio, A. M., Raiswell, R., Edwards, A., Newton, R. J., Gill, F.,
and Benning, L. G.: The biogeography of red snow microbiomes and their role
in melting arctic glaciers, Nat. Commun., 7, 11968,
https://doi.org/10.1038/ncomms11968, 2016. a, b
Matt, F. N.: Meteorological forcing data and model settings for “Modelling
hydrologic impacts of light absorbing aerosol deposition on snow at the
catchment scale” [Data set], Norstore, availabe at:
https://doi.org/10.11582/2018.00001 (last access: 23 October 2017), 2018.
Oaida, C. M., Xue, Y., Flanner, M. G., Skiles, S. M., De Sales, F., and
Painter, T. H.: Improving snow albedo processes in WRF/SSiB regional
climate model to assess impact of dust and black carbon in snow on surface
energy balance and hydrology over western U.S., J. Geophys.
Res.-Atmos., 120, 3228–3248, https://doi.org/10.1002/2014JD022444, 2015. a, b, c
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P.,
Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed
desert soils on duration of mountain snow cover, Geophys. Res.
Lett., 34, L12502, https://doi.org/10.1029/2007GL030284, 2007. a, b
Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and
Udall, B.: Response of Colorado River runoff to dust radiative forcing in
snow, P. Natl. Acad. Sci. USA, 107, 17125–17130,
https://doi.org/10.1073/pnas.0913139107, 2010. a, b, c, d
Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry,
C. C.:
Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year
record of energy balance, radiation, and dust concentrations, Water Resour.
Res., 48, W07521, https://doi.org/10.1029/2012WR011985, 2012. a, b, c
Paliwal, U., Sharma, M., and Burkhart, J. F.: Monthly and spatially resolved
black carbon emission inventory of India: uncertainty analysis, Atmos. Chem.
Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, 2016. a
Pappenberger, F. and Beven, K. J.: Ignorance is bliss: Or seven reasons not
to
use uncertainty analysis, Water Resour. Res., 42, 1944–7973,
https://doi.org/10.1029/2005WR004820, 2006. a
Pietikäinen, J.-P., O'Donnell, D., Teichmann, C., Karstens, U., Pfeifer,
S., Kazil, J., Podzun, R., Fiedler, S., Kokkola, H., Birmili, W., O'Dowd, C.,
Baltensperger, U., Weingartner, E., Gehrig, R., Spindler, G., Kulmala, M.,
Feichter, J., Jacob, D., and Laaksonen, A.: The regional aerosol-climate
model REMO-HAM, Geosci. Model Dev., 5, 1323–1339,
https://doi.org/10.5194/gmd-5-1323-2012, 2012. a, b, c
Pietikäinen, J.-P., Kupiainen, K., Klimont, Z., Makkonen, R., Korhonen,
H., Karinkanta, R., Hyvärinen, A.-P., Karvosenoja, N., Laaksonen, A.,
Lihavainen, H., and Kerminen, V.-M.: Impacts of emission reductions on
aerosol radiative effects, Atmos. Chem. Phys., 15, 5501–5519,
https://doi.org/10.5194/acp-15-5501-2015, 2015. a, b, c
Powell, M.: The BOBYQA algorithm for bound constrained optimization without
derivatives, technical report, Department of Applied Mathematics and Theoretical Physics,
Cambridge University, Cambridge,
2009. a
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux
and evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, 1972. a
Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of
soot-induced snow albedo change on snowpack and hydrological cycle in western
United States based on Weather Research and Forecasting chemistry and
regional climate simulations, J. Geophys. Res.-Atmos.,
114, D03108, https://doi.org/10.1029/2008JD011039, 2009. a, b, c
Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M.,
Ming,
J., Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing
particles in snow and ice: Measurement and modeling of climatic and
hydrological impact, Adv. Atmos. Sci., 32, 64–91,
https://doi.org/10.1007/s00376-014-0010-0, 2014. a
Rhodes, J. J., Armstrong, R. L., and Warren, S. G.: Mode of formation of
“ablation hollows” controlled by dirt content of snow, J. Glaciol.,
33, 135–139, 1987. a
Roy, A., Royer, A., Montpetit, B., Bartlett, P. A., and Langlois, A.: Snow
specific surface area simulation using the one-layer snow model in the
Canadian LAnd Surface Scheme (CLASS), The Cryosphere, 7, 961–975,
https://doi.org/10.5194/tc-7-961-2013, 2013. a
Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., and Landry,
C. C.:
Dust radiative forcing in snow of the Upper Colorado River Basin: 2.
Interannual variability in radiative forcing and snowmelt rates, Water
Resour. Res., 48, W07522, https://doi.org/10.1029/2012WR011986, 2012. a, b, c
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J.,
Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O.,
Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos.
Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005. a
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
trillion
dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017. a
Taillandier, A.-S., Domine, F., Simpson, W. R., Sturm, M., and Douglas,
T. A.:
Rate of decrease of the specific surface area of dry snow: Isothermal and
temperature gradient conditions, J. Geophys. Res., 112,
F03003, https://doi.org/10.1029/2006JF000514, 2007. a
Toon, O. B., Mckay, C. P., and Ackerman, T. P.: Rapid Calculation of
Radiative
Heating Rates and Photodissociation Rates in Inhomogeneous Multiple
Scattering Atmospheres, J. Geophys. Res., 94, 16287–16301,
1989. a
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. a
Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other
light-absorbing
impurities in snow across Northern China, J. Geophys. Res.-Atmos., 118, 1471–1492, https://doi.org/10.1029/2012JD018291, 2013. a, b, c
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo,
P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour.
Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014. a
Westergren, M.: Performance evaluation of regional calibration methods for a
distributed hydrologic modeling framework, Master's thesis, University of
Oslo, available at: https://www.duo.uio.no/handle/10852/53238, last
access: 19 October 2016. a
Winstral, A. and Marks, D.: Simulating wind fields and snow redistribution
using terrain-based parameters to model snow accumulation and melt over a
semi-arid mountain catchment, Hydrol. Process., 16, 3585–3603,
https://doi.org/10.1002/hyp.1238, 2002. a
Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U.,
Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.: The
global aerosol-climate model ECHAM-HAM, version 2: sensitivity to
improvements in process representations, Atmos. Chem. Phys., 12, 8911–8949,
https://doi.org/10.5194/acp-12-8911-2012, 2012. a
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via...