Research article
13 Jul 2017
Research article | 13 Jul 2017
Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level
Abebe D. Chukalla et al.
Related authors
Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020,https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Trade-offs between crop-related (physical and virtual) water flows and the associated economic benefits and values: a case study of the Yellow River Basin
Pute Wu, La Zhuo, Guoping Zhang, Mesfin M. Mekonnen, Arjen Y. Hoekstra, Yoshihide Wada, Xuerui Gao, Xining Zhao, Yubao Wang, and Shikun Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436,https://doi.org/10.5194/hess-2018-436, 2018
Manuscript not accepted for further review
Short summary
Evolving water science in the Anthropocene
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014,https://doi.org/10.5194/hess-18-319-2014, 2014
Related subject area
Evapotranspiration partition using the multiple energy balance version of the ISBA-A-gs land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020,https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China
Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu
Hydrol. Earth Syst. Sci., 24, 2399–2418, https://doi.org/10.5194/hess-24-2399-2020,https://doi.org/10.5194/hess-24-2399-2020, 2020
Short summary
An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data
Bouchra Ait Hssaine, Olivier Merlin, Jamal Ezzahar, Nitu Ojha, Salah Er-Raki, and Said Khabba
Hydrol. Earth Syst. Sci., 24, 1781–1803, https://doi.org/10.5194/hess-24-1781-2020,https://doi.org/10.5194/hess-24-1781-2020, 2020
Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020,https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Ability of a soil–vegetation–atmosphere transfer model and a two-source energy balance model to predict evapotranspiration for several crops and climate conditions
Guillaume Bigeard, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel Jarlan
Hydrol. Earth Syst. Sci., 23, 5033–5058, https://doi.org/10.5194/hess-23-5033-2019,https://doi.org/10.5194/hess-23-5033-2019, 2019
Short summary
Representation and improved parameterization of reservoir operation in hydrological and land-surface models
Fuad Yassin, Saman Razavi, Mohamed Elshamy, Bruce Davison, Gonzalo Sapriza-Azuri, and Howard Wheater
Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019,https://doi.org/10.5194/hess-23-3735-2019, 2019
Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture?
Alexander Kaune, Micha Werner, Patricia López López, Erasmo Rodríguez, Poolad Karimi, and Charlotte de Fraiture
Hydrol. Earth Syst. Sci., 23, 2351–2368, https://doi.org/10.5194/hess-23-2351-2019,https://doi.org/10.5194/hess-23-2351-2019, 2019
Short summary
Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?
Tobias Pilz, José Miguel Delgado, Sebastian Voss, Klaus Vormoor, Till Francke, Alexandre Cunha Costa, Eduardo Martins, and Axel Bronstert
Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019,https://doi.org/10.5194/hess-23-1951-2019, 2019
Short summary
Implications of water management representations for watershed hydrologic modeling in the Yakima River basin
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019,https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary
Climate change vs. socio-economic development: understanding the future South Asian water gap
René Reijer Wijngaard, Hester Biemans, Arthur Friedrich Lutz, Arun Bhakta Shrestha, Philippus Wester, and Walter Willem Immerzeel
Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018,https://doi.org/10.5194/hess-22-6297-2018, 2018
Short summary
Global phosphorus recovery from wastewater for agricultural reuse
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018,https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods
Stephen P. Charles, Quan J. Wang, Mobin-ud-Din Ahmad, Danial Hashmi, Andrew Schepen, Geoff Podger, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018,https://doi.org/10.5194/hess-22-3533-2018, 2018
Short summary
Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems
Jason M. Hunter, Holger R. Maier, Matthew S. Gibbs, Eloise R. Foale, Naomi A. Grosvenor, Nathan P. Harders, and Tahali C. Kikuchi-Miller
Hydrol. Earth Syst. Sci., 22, 2987–3006, https://doi.org/10.5194/hess-22-2987-2018,https://doi.org/10.5194/hess-22-2987-2018, 2018
Short summary
Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia
Héctor Angarita, Albertus J. Wickel, Jack Sieber, John Chavarro, Javier A. Maldonado-Ocampo, Guido A. Herrera-R., Juliana Delgado, and David Purkey
Hydrol. Earth Syst. Sci., 22, 2839–2865, https://doi.org/10.5194/hess-22-2839-2018,https://doi.org/10.5194/hess-22-2839-2018, 2018
Short summary
Assessment of actual evapotranspiration over a semiarid heterogeneous land surface by means of coupled low-resolution remote sensing data with an energy balance model: comparison to extra-large aperture scintillometer measurements
Sameh Saadi, Gilles Boulet, Malik Bahir, Aurore Brut, Émilie Delogu, Pascal Fanise, Bernard Mougenot, Vincent Simonneaux, and Zohra Lili Chabaane
Hydrol. Earth Syst. Sci., 22, 2187–2209, https://doi.org/10.5194/hess-22-2187-2018,https://doi.org/10.5194/hess-22-2187-2018, 2018
Short summary
Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns
Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018,https://doi.org/10.5194/hess-22-2117-2018, 2018
Short summary
Assessing impacts of dike construction on the flood dynamics of the Mekong Delta
Dung Duc Tran, Gerardo van Halsema, Petra J. G. J. Hellegers, Long Phi Hoang, Tho Quang Tran, Matti Kummu, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 22, 1875–1896, https://doi.org/10.5194/hess-22-1875-2018,https://doi.org/10.5194/hess-22-1875-2018, 2018
Short summary
Regional soil erosion assessment based on a sample survey and geostatistics
Shuiqing Yin, Zhengyuan Zhu, Li Wang, Baoyuan Liu, Yun Xie, Guannan Wang, and Yishan Li
Hydrol. Earth Syst. Sci., 22, 1695–1712, https://doi.org/10.5194/hess-22-1695-2018,https://doi.org/10.5194/hess-22-1695-2018, 2018
Norms and values in sociohydrological models
Mahendran Roobavannan, Tim H. M. van Emmerik, Yasmina Elshafei, Jaya Kandasamy, Matthew R. Sanderson, Saravanamuthu Vigneswaran, Saket Pande, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1337–1349, https://doi.org/10.5194/hess-22-1337-2018,https://doi.org/10.5194/hess-22-1337-2018, 2018
Short summary
Rain concentration and sheltering effect of solar panels on cultivated plots
Yassin Elamri, Bruno Cheviron, Annabelle Mange, Cyril Dejean, François Liron, and Gilles Belaud
Hydrol. Earth Syst. Sci., 22, 1285–1298, https://doi.org/10.5194/hess-22-1285-2018,https://doi.org/10.5194/hess-22-1285-2018, 2018
Short summary
Conserving the Ogallala Aquifer in southwestern Kansas: from the wells to people, a holistic coupled natural–human model
Joseph A. Aistrup, Tom Bulatewicz, Laszlo J. Kulcsar, Jeffrey M. Peterson, Stephen M. Welch, and David R. Steward
Hydrol. Earth Syst. Sci., 21, 6167–6183, https://doi.org/10.5194/hess-21-6167-2017,https://doi.org/10.5194/hess-21-6167-2017, 2017
Short summary
Cited articles
Addams, L., Boccaletti, G., Kerlin, M., and Stuchtey, M.: Charting our water future: economic frameworks to inform decision-making, McKinsey & Company, New York, 2009.
Afshar, A. and Neshat, A.: Evaluation of Aqua Crop computer model in the potato under irrigation management of continuity plan of Jiroft region, Kerman, Iran, International journal of Advanced Biological and Biomedical Research, 1, 1669–1678, 2013.
Agri-Info.Eu: On-line database, Wages and Labour Costs in European Agriculture, available at: http://www.agri-info.eu/english/tt_wages.php, last access: June 2016.
Ali, M. H.: Water Application Methods, in: Practices of Irrigation & On-farm Water Management, Springer, New York, USA, 35–63, 2011.
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration. FAO irrigation and drainage paper 56, FAO, Rome, Italy, 10, 1998.
Baldock, D., Dwyer, J., Sumpsi, J., Varela-Ortega, C., Caraveli, H., Einschütz, S., and Petersen, J.: The environmental impacts of irrigation in the European Union, Institute for European Environmental Policy, London, 2000.
Bockel, L., Sutter, P., Touchemoulin, O., and Jönsson, M.: Using marginal abatement cost curves to realize the economic appraisal of climate smart agriculture policy options, Methodology, Food and Agriculture Organization (FAO), Rome, Italy, 3, 2012.
Brouwer, C., Prins, K., and Heibloem, M.: Irrigation water management: irrigation scheduling, Training manual, Food and Agriculture Organization (FAO), Rome, Italy, 4, 1989.
Chukalla, A. D., Krol, M. S., and Hoekstra, A. Y.: Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching, Hydrol. Earth Syst. Sci., 19, 4877–4891, https://doi.org/10.5194/hess-19-4877-2015, 2015.
English, M.: Deficit irrigation. I: Analytical framework, J. Irrig. Drain. E.-ASCE, 116, 399–412, 1990.
Enkvist, P., Nauclér, T., and Rosander, J.: A cost curve for greenhouse gas reduction, McKinsey Quarterly, New York, USA, 1, 34, 2007.
Eurostat: Half-yearly electricity and gas prices, second half of year, 2012–14 (EUR per kWh) YB15, available at: http://ec.europa.eu/eurostat/statistics-explained, last access: June 2016.
FAO: Annex I Crop parameters, AquaCrop reference manual, Food and Agriculture Organization of the United Nations, Rome, Italy, 2012.
FAO: AQUASTAT on-line database, Food and Agricultural Organization, Rome, Italy, available at: http://www.fao.org, last access: November 2016.
FAOSTAT: On-line database, Food and Agricultrural Organisation price statistics, 2015, available at: https://knoema.com/FAOPS2015July/fao-price-statistics-2015, last access: April 2017.
Fischer, G., Tubiello, F. N., Van Velthuizen, H., and Wiberg, D. A.: Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080, Technol. Forecast. Soc., 74, 1083–1107, 2007.
Hannam, J. A., Hollis, J. M., Jones, R. J. A., Bellamy, P. H., Hayes, S. E., Holden, A., Liedekerke, M. H., and Montanarella, L.: SPE-2: The soil profile analytical database for Europe, Beta Version 2.0, http://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data (last access: 16 June 2014), 2009.
Hoekstra, A. Y.: Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation, Wiley Interdisciplinary Reviews: Water, 1, 31–40, 2014.
Hoekstra, A. Y.: Water Footprint Assessment: Evolvement of a New Research Field, Water Resour. Manage., 31, 3061–3081, 2017.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., and Mekonnen, M. M.: The Water Footprint Assessment Manual: Setting the Global Standard, Earthscan, London, UK, 2011.
Kay, M. and Hatcho, N.: Small-scale Pumped Irrigation: Energy and Cost: irrigation Water Management Training Manual, Food and Agriculture Organization (FAO), Rome, Italy, 1992.
Kesicki, F.: Marginal abatement cost curves for policy making–expert-based vs. model-derived curves, Energy Institute, University College London, 2010.
Kesicki, F. and Ekins, P.: Marginal abatement cost curves: a call for caution, Clim. Policy, 12, 219–236, https://doi.org/10.1080/14693062.2011.582347, 2012.
Kesicki, F. and Strachan, N.: Marginal abatement cost (MAC) curves: confronting theory and practice, Environ. Sci. Policy, 14, 1195–1204, https://doi.org/10.1016/j.envsci.2011.08.004, 2011.
Khan, S., Khan, M., Hanjra, M., and Mu, J.: Pathways to reduce the environmental footprints of water and energy inputs in food production, Food Policy, 34, 141–149, 2009.
Klein Tank, A., Wijngaard, J., Können, G., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., and Kern-Hansen, C.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, 2002.
Klonsky, K.: Comparison of production costs and resource use for organic and conventional production systems, Am. J. Agr. Econ., 94, 314–321, 2012.
Lallana, C. and Marcuello, C.: Indicator fact sheet (WQ2): Water use by sectors. European Environment Agency, Copenhagen, available at: http://www.eea.europa.eu, last acess: June 2016.
Lamont, W. J.: Plastics: Modifying the microclimate for the production of vegetable crops, HortTechnology, 15, 477–481, 2005.
Lamont, W. J., Hensley, D. L., Wiest, S., and Gaussoin, R. E.: Relay-intercropping muskmelons with Scotch pine Christmas trees using plastic mulch and drip irrigation, Hortscience, 28, 177–178, 1993.
Lewis, A. and Gomer, S.: An Australian cost curve for greenhouse gas reduction, Report, McKinsey and Company, Australia, 2008.
MacLeod, M., Moran, D., Eory, V., Rees, R., Barnes, A., Topp, C. F., Ball, B., Hoad, S., Wall, E., and McVittie, A.: Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK, Agr. Syst., 103, 198–209, 2010.
Mateo-Sagasta, J., Ongley, E., Hao, W., and Mei, X.: Guidelines to Control Water Pollution from Agriculture in China: Decoupling water pollution from agricultural production, Food and Agricultural Organization, Rome, Italy, 2013.
McCraw, D. and Motes, J. E.: Use of plastic mulch and row covers in vegetable production, Cooperative Extension Service. Oklahoma State University, USA, OSU Extension Facts F-6034, 1991.
Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., and Kijne, J.: Improving agricultural water productivity: between optimism and caution, Agr. Water Manage., 97, 528–535, 2010.
Oosthuizen, L. K., Botha, P. W., Grove, B., and Meiring, J. A.: Cost-estimating procedures for drip-, micro- and furrow-irrigation systems, Water SA, 31, 403–406, 2005.
Phocaides, A.: Technical handbook on pressurized irrigation techniques, Food and Agric. Organ., Rome, 2000.
Raes, D.: The ETo Calculator. Reference Manual Version 3.2, Food and Agriculture Organization of the United Nations, Rome, Italy, 2012.
Raes, D., Steduto, P., C. Hsiao, T., and Fereres, E.: Reference Manual AquaCrop plug-in program, Food and Agriculture Organization of the United Nations, Land and Water Division, Rome, Italy, 2011.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E.: Chapter 3 – AquaCrop, Version 4.0, Food and Agriculture Organization of the United Nations, Land and Water Division, Rome, Italy, 2012.
Raes, D., Steduto, P., and Hsiao, C. T.: Reference manual, Chapter 2, AquaCrop model, Version 4.0, Food and Agriculture Organization of the United Nations, Rome, Italy, 2013.
Reich, D. A., Broner, I., Chavez, J., and Godin, R. E.: Subsurface Drip Irrigation, Colorado State University Extension, Denver, USA, 2009.
Ritchie, J.: Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res., 8, 1204–1213, 1972.
Saad, A. M., Mohamed, M. G., and El-Sanat, G. A.: Evaluating AquaCrop model to improve crop water productivity at North Delta soils, Egypt, Adv. Appl. Sci. Res., 5, 293–304, 2014.
Saxton, K., Rawls, W. J., Romberger, J., and Papendick, R.: Estimating generalized soil-water characteristics from texture, Soil Sci. Soc. Am. J., 50, 1031–1036, 1986.
Shaxson, F. and Barber, R.: Optimizing soil moisture for plant production. The significance of soil porosity, Food and Agriculture Organization of the United Nations, Rome, Italy, 2003.
Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E.: AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles, Agron. J., 101, 426–437, 2009a.
Steduto, P., Raes, D., Hsiao, T., Fereres, E., Heng, L., Howell, T., Evett, S., Rojas-Lara, B., Farahani, H., Izzi, G., Oweis, T., Wani, S., Hoogeveen, J., and Geerts, S.: Concepts and Applications of AquaCrop: The FAO Crop Water Productivity Model, in: Crop Modeling and Decision Support, edited by: Cao, W., White, J., and Wang, E., Springer, Berlin, Germany, 175–191, 2009b.
Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E.: Crop yield response to water, Food and Agriculture Organization of the United Nations Italy, Rome, 2012.
Tata-Group: Tata Industrial Water Footprint Assessment: Results and Learning, http://waterfootprint.org/media/downloads/WFN_2013.Tata_Industrial_Water_Footprint_Assessment.pdf (last access: 10 June 2016), 2013.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: vulnerability from climate change and population growth, Science, 289, 284–288, 2000.
Zhuo, L., Mekonnen, M. M., and Hoekstra, A. Y.: Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China, Hydrol. Earth Syst. Sci., 20, 4547–4559, https://doi.org/10.5194/hess-20-4547-2016, 2016.
Zou, X., Li, Y. E., Cremades, R., Gao, Q., Wan, Y., and Qin, X.: Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China, Agr. Water Manage., 129, 9–20, 2013.
Zwart, S. J., Bastiaanssen, W. G., de Fraiture, C., and Molden, D. J.: A global benchmark map of water productivity for rainfed and irrigated wheat, Agr. Water Manage., 97, 1617–1627, 2010.