Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-3041-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-21-3041-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Water–food–energy nexus with changing agricultural scenarios in India during recent decades
Beas Barik
Department of Civil Engineering, Indian Institute of Technology
Bombay, Mumbai – 400 076, India
Department of Civil Engineering, Indian Institute of Technology
Bombay, Mumbai – 400 076, India
Interdisciplinary Program in
Climate Studies, Indian Institute of Technology Bombay,
Mumbai – 400 076, India
A. Saheer Sahana
Department of Civil Engineering, Indian Institute of Technology
Bombay, Mumbai – 400 076, India
Amey Pathak
Department of Civil Engineering, Indian Institute of Technology
Bombay, Mumbai – 400 076, India
Muddu Sekhar
Department of Civil Engineering, Indian
Institute of Science, Bangalore – 560 012, India
Related authors
No articles found.
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022, https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Short summary
In this study, we investigate the combination of surface soil moisture information with process-related features, namely, evaporation efficiency, soil water index and normalized difference vegetation index, using artificial neural networks to predict root-zone soil moisture. The joint use of process-related features yielded more accurate predictions in the case of arid and semiarid conditions. However, they have no to little added value in temperate to tropical conditions.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
Extent of gross underestimation of precipitation in India
A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins
Attribution of global evapotranspiration trends based on the Budyko framework
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Extrapolating continuous vegetation water content to understand sub-daily backscatter variations
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau
Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models
The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis
Evaluation of the dual-polarization weather radar quantitative precipitation estimation using long-term datasets
Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands
Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa
Data-driven estimates of evapotranspiration and its controls in the Congo Basin
Ability of an Australian reanalysis dataset to characterise sub-daily precipitation
A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products
Evaluation of soil moisture from CCAM-CABLE simulation, satellite-based models estimates and satellite observations: a case study of Skukuza and Malopeni flux towers
Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation
An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia
Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin
The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa
Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region
Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg
Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region
An improved perspective in the spatial representation of soil moisture: potential added value of SMOS disaggregated 1 km resolution “all weather” product
Temporal- and spatial-scale and positional effects on rain erosivity derived from point-scale and contiguous rain data
The PERSIANN family of global satellite precipitation data: a review and evaluation of products
Exploring seasonal and regional relationships between the Evaporative Stress Index and surface weather and soil moisture anomalies across the United States
Development of soil moisture profiles through coupled microwave–thermal infrared observations in the southeastern United States
Evaluation of multiple climate data sources for managing environmental resources in East Africa
Precipitation downscaling using a probability-matching approach and geostationary infrared data: an evaluation over six climate regions
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US
Regional frequency analysis of extreme rainfall in Belgium based on radar estimates
An assessment of the performance of global rainfall estimates without ground-based observations
Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean
The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France
Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil
Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels
Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau
Evaluation of soil moisture downscaling using a simple thermal-based proxy – the REMEDHUS network (Spain) example
The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat
Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012)
Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014
Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia
Downscaling of seasonal soil moisture forecasts using satellite data
Long term soil moisture mapping over the Tibetan plateau using Special Sensor Microwave/Imager
Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate
Gopi Goteti and James Famiglietti
Hydrol. Earth Syst. Sci., 28, 3435–3455, https://doi.org/10.5194/hess-28-3435-2024, https://doi.org/10.5194/hess-28-3435-2024, 2024
Short summary
Short summary
Underestimation of precipitation (UoP) in India is a substantial issue not just within gauge-based precipitation datasets but also within state-of-the-art satellite and reanalysis-based datasets. UoP is prevalent across most river basins of India, including those that have experienced catastrophic flooding in the recent past. This paper highlights not only a major limitation of existing precipitation products for India but also other data-related obstacles faced by the research community.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023, https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022, https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Short summary
This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales.
Paul C. Vermunt, Susan C. Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, https://doi.org/10.5194/hess-26-1223-2022, 2022
Short summary
Short summary
This study investigates the use of hydrometeorological sensors to reconstruct variations in internal vegetation water content of corn and relates these variations to the sub-daily behaviour of polarimetric L-band backscatter. The results show significant sensitivity of backscatter to the daily cycles of vegetation water content and dew, particularly on dry days and for vertical and cross-polarizations, which demonstrates the potential for using radar for studies on vegetation water dynamics.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Tanel Voormansik, Roberto Cremonini, Piia Post, and Dmitri Moisseev
Hydrol. Earth Syst. Sci., 25, 1245–1258, https://doi.org/10.5194/hess-25-1245-2021, https://doi.org/10.5194/hess-25-1245-2021, 2021
Short summary
Short summary
A long set of operational polarimetric weather radar rainfall accumulations from Estonia and Italy are generated and investigated. Results show that the combined product of specific differential phase and horizontal reflectivity yields the best results when compared to rain gauge measurements. The specific differential-phase-based product overestimates weak precipitation, and the horizontal-reflectivity-based product underestimates heavy rainfall in all analysed accumulation periods.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Michael W. Burnett, Gregory R. Quetin, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 24, 4189–4211, https://doi.org/10.5194/hess-24-4189-2020, https://doi.org/10.5194/hess-24-4189-2020, 2020
Short summary
Short summary
Water that evaporates from Africa's tropical forests provides rainfall throughout the continent. However, there are few sources of meteorological data in central Africa, so we use observations from satellites to estimate evaporation from the Congo Basin at different times of the year. We find that existing evaporation estimates in tropical Africa do not accurately capture seasonal variations in evaporation and that fluctuations in soil moisture and solar radiation drive evaporation rates.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Floyd Vukosi Khosa, Mohau Jacob Mateyisi, Martina Reynita van der Merwe, Gregor Timothy Feig, Francois Alwyn Engelbrecht, and Michael John Savage
Hydrol. Earth Syst. Sci., 24, 1587–1609, https://doi.org/10.5194/hess-24-1587-2020, https://doi.org/10.5194/hess-24-1587-2020, 2020
Short summary
Short summary
The paper evaluates soil moisture outputs from three structurally distinct models against in situ data. Our goal is to find how representative the model outputs are for site and region. This is a question of interest as some of the models have a specific regional focus on their inceptions. Much focus is placed on how the models capture the soil moisture signal. We find that there is agreement on seasonal patterns between the models and observations with a tolerable level of model uncertainty.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Webster Gumindoga, Tom H. M. Rientjes, Alemseged Tamiru Haile, Hodson Makurira, and Paolo Reggiani
Hydrol. Earth Syst. Sci., 23, 2915–2938, https://doi.org/10.5194/hess-23-2915-2019, https://doi.org/10.5194/hess-23-2915-2019, 2019
Short summary
Short summary
We evaluate the influence of elevation and distance from large-scale open water bodies on bias for CMORPH satellite rainfall in the Zambezi basin. Effects of distance > 10 km from water bodies are minimal, whereas the effects at shorter distances are indicated but are not conclusive for lack of rain gauges. Taylor diagrams show station elevation influencing CMORPH performance. The
spatio-temporaland newly developed
elevation zonebias schemes proved more effective in removing CMORPH bias.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Frédéric Satgé, Denis Ruelland, Marie-Paule Bonnet, Jorge Molina, and Ramiro Pillco
Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, https://doi.org/10.5194/hess-23-595-2019, 2019
Short summary
Short summary
This paper assesses the potential of satellite precipitation estimates (SPEs) for precipitation measurement and hydrological and snow modelling. A total of 12 SPEs is considered to provide a global overview of available SPE accuracy for users interested in such datasets. Results show that, over poorly monitored regions, SPEs represent a very efficient alternative to traditional precipitation gauges to follow precipitation in time and space and for hydrological and snow modelling.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Samiro Khodayar, Amparo Coll, and Ernesto Lopez-Baeza
Hydrol. Earth Syst. Sci., 23, 255–275, https://doi.org/10.5194/hess-23-255-2019, https://doi.org/10.5194/hess-23-255-2019, 2019
Franziska K. Fischer, Tanja Winterrath, and Karl Auerswald
Hydrol. Earth Syst. Sci., 22, 6505–6518, https://doi.org/10.5194/hess-22-6505-2018, https://doi.org/10.5194/hess-22-6505-2018, 2018
Short summary
Short summary
The potential of rain to cause soil erosion by runoff is called rain erosivity. Rain erosivity is highly variable in space and time even over distances of less than 1 km. Contiguously measured radar rain data depict for the first time this spatio-temporal variation, but scaling factors are required to account for differences in spatial and temporal resolution compared to rain gauge data. These scaling factors were obtained from more than 2 million erosive events.
Phu Nguyen, Mohammed Ombadi, Soroosh Sorooshian, Kuolin Hsu, Amir AghaKouchak, Dan Braithwaite, Hamed Ashouri, and Andrea Rose Thorstensen
Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018, https://doi.org/10.5194/hess-22-5801-2018, 2018
Short summary
Short summary
The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. We evaluate the products over CONUS at different spatial and temporal scales using CPC data. Daily scale is the finest temporal scale used for the evaluation over CONUS. We provide a comparison of the available products at a quasi-global scale. We highlight the strengths and limitations of the PERSIANN products.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Ruifang Guo, Yuanbo Liu, Han Zhou, and Yaqiao Zhu
Hydrol. Earth Syst. Sci., 22, 3685–3699, https://doi.org/10.5194/hess-22-3685-2018, https://doi.org/10.5194/hess-22-3685-2018, 2018
Short summary
Short summary
Existing satellite products are often insufficient for use in small-scale (< 10 km) hydrological and meteorological studies. We propose a new approach based on the cumulative distribution of frequency to downscale satellite precipitation products with geostationary (GEO) data. This paper uses CMORPH and FY2-E GEO data to examine the approach in six different climate regions. The downscaled precipitation performed better for convective systems.
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275–3294, https://doi.org/10.5194/hess-22-3275-2018, https://doi.org/10.5194/hess-22-3275-2018, 2018
Short summary
Short summary
In North Africa rain storms can be as vital as they are devastating. The present study uses multi-year satellite data to better understand how and where soil moisture conditions affect development of rainfall in the area. Our results reveal two major regions in the southwest and southeast, where drier soils show higher potential to cause rainfall development. This knowledge is essential for the hydrological sector, and can be further used by models to improve prediction of rainfall and droughts.
Nishan Bhattarai, Kaniska Mallick, Nathaniel A. Brunsell, Ge Sun, and Meha Jain
Hydrol. Earth Syst. Sci., 22, 2311–2341, https://doi.org/10.5194/hess-22-2311-2018, https://doi.org/10.5194/hess-22-2311-2018, 2018
Short summary
Short summary
We report the first ever regional-scale implementation of the Surface Temperature Initiated Closure (STIC1.2) model for mapping evapotranspiration (ET) using MODIS land surface and gridded climate datasets to overcome the existing uncertainties in aerodynamic temperature and conductance estimation in global ET models. Validation and intercomparison with SEBS and MOD16 products across an aridity gradient in the US manifested better ET mapping potential of STIC1.2 in different climates and biomes.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Davi de C. D. Melo, Bridget R. Scanlon, Zizhan Zhang, Edson Wendland, and Lei Yin
Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, https://doi.org/10.5194/hess-20-4673-2016, 2016
Short summary
Short summary
Drought propagation from rainfall deficits to reservoir depletion was studied based on remote sensing, monitoring and modelling data. Regional droughts were shown by widespread depletion in total water storage that reduced soil moisture storage and runoff, greatly reducing reservoir storage. The multidisciplinary approach to drought assessment shows the linkages between meteorological and hydrological droughts that are essential for managing water resources subjected to climate extremes.
Zhi Qing Peng, Xiaozhou Xin, Jin Jun Jiao, Ti Zhou, and Qinhuo Liu
Hydrol. Earth Syst. Sci., 20, 4409–4438, https://doi.org/10.5194/hess-20-4409-2016, https://doi.org/10.5194/hess-20-4409-2016, 2016
Short summary
Short summary
A remote sensing algorithm named temperature sharpening and flux aggregation (TSFA) was applied to HJ-1B satellite data to estimate evapotranspiration over heterogeneous surface considering landscape and statistical effects on mixed pixels. Footprint validation results showed TSFA was more accurate and less uncertain than other two upscaling methods. Additional analysis and comparison showed TSFA can capture land surface heterogeneities and integrate the effect of landscapes within mixed pixels.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
J. Peng, J. Niesel, and A. Loew
Hydrol. Earth Syst. Sci., 19, 4765–4782, https://doi.org/10.5194/hess-19-4765-2015, https://doi.org/10.5194/hess-19-4765-2015, 2015
Short summary
Short summary
This paper gives a comprehensive evaluation of a simple newly developed downscaling scheme using in situ measurements from REMEDHUS network, a first cross-comparison of the performance of the downscaled soil moisture from MODIS and MSG SEVIRI, an evaluation of the performance of the downscaled soil moisture at different spatial resolutions, and an exploration of the influence of LST, vegetation index, terrain, clouds, and land cover heterogeneity on the performance of VTCI.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
O. P. Prat and B. R. Nelson
Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, https://doi.org/10.5194/hess-19-2037-2015, 2015
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
A. W. Worqlul, B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 18, 4871–4881, https://doi.org/10.5194/hess-18-4871-2014, https://doi.org/10.5194/hess-18-4871-2014, 2014
S. Schneider, A. Jann, and T. Schellander-Gorgas
Hydrol. Earth Syst. Sci., 18, 2899–2905, https://doi.org/10.5194/hess-18-2899-2014, https://doi.org/10.5194/hess-18-2899-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
Cited articles
Agricultural statistics at a glance: Ministry of Agriculture Department of Agriculture & Cooperation, Directorate of Economics & Statistics, Government of India, available at: http://eands.dacnet.nic.in/PDF/Agricultural-Statistics-At-Glance2014.pdf (last access: 6 September 2016), 2015.
Amarasinghe, U. A., Sharma, B. R., Aloysius, N., Scott, C., Smakhtin, V., de Fraiture, C., and Sinha, A. K., and Shukla, A. K.: Spatial Variation in Water Supply and Demand across River Basins of India, IWMI Research Report 83, International Water Management Institute (IWMI), https://doi.org/10.3910/2009.084, 2004.
Andersen, O. B., Seneviratne, S. I., Hinderer, J., and Viterbo, P.: GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023574, 2005.
Asoka, A., Gleeson, T., Wada, Y., and Mishra, V.: Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India, Nat. Geosci., 10, 109–117, https://doi.org/10.1038/ngeo2869, 2017.
Badiani, R., Jessoe, K. K., and Plant, S.: Development and the Environment: The Implications of Agricultural Electricity Subsidies in India, J. Environ. Dev., 21, 244–262, https://doi.org/10.1177/1070496512442507, 2012.
Bandyopadhyay, J. and Perveen, S.: The Interlinking of Indian Rivers: Questions on the Scientific, Economic and Environmental Dimensions of the Proposal, Interlinking of Rivers in India: Issues and Concerns, 53–76, 2008.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Mueller, A., Komor, P., Tol, R. S. J., and Yumkella, K. K.: Considering the energy, water and food nexus: Towards an integrated modelling approach, Energ. Policy, 39, 7896–7906, https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Birner, R., Gupta, S., Sharma, N., and Palaniswamy, N.: The political economy of agricultural policy reform in India: The case of fertilizer supply and electricity supply for groundwater irrigation, IFPRI, New Delhi, India, 2007.
Birner, R., Gupta, S., and Sharma, N.: The political economy of agricultural policy reform in India: Fertilizers and Electricity for Irrigation, IFPRI, New Delhi, India, https://doi.org/10.2499/9780896291720, 2011.
Bollasina, M., Ramaswamy, V., and Ming, Y.: Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon, Science, 334, 502–505, https://doi.org/10.1126/science.1204994, 2011.
Census: Instruction manual for houselisting and housing census, Registrar General of India, New Delhi, available at: http://www.census2011.co.in/ (last access: 6 September 2016), 2011.
CGWB: Dynamic Ground Water Resources of India (As on 31st March 2011), Central Ground Water Board, Ministry of Water Resources, River Development & Ganga Rejuvenation,GoI, Faridabad (July), 299, available at: http://www.cgwb.gov.in/documents/Dynamic-GW-Resources-2011.pdf (last access: 6 September 2016), 2014.
CGWB: Annual Report 2013–14, Central Ground Water Board, Ministry of Water Resources, River Development & Ganga Rejuvenation, GoI, Faridabad, 74, available at: http://www.cgwb.gov.in/Annual-Reports/Annual Report-2013-14.pdf (last access: 6 September 2016), 2015.
Chen, J., Li, J., Zhang, Z., and Ni, S.: Long-term groundwater variations in Northwest India from satellite gravity measurements, Global Planet. Change, 116, 130–138, https://doi.org/10.1016/j.gloplacha.2014.02.007, 2014.
CSO (Central Statistics Office): GoI, DataBook 2014, available at: http://planningcommission.nic.in/data/datatable/data_2312/comp_data2312.pdf, (last access: 6 September 2016), 2014.
CWC (Central Water Commission): Annual Report 2013–14, Ministry of Water Resources, River Development & Ganga Rejuvenation, Gol, available at: http://wrmin.nic.in/writereaddata/AR_CWC_2013-14.pdf (last access: 6 September 2016), 2013–14.
Dacnet: Web based land use statistics information system, available at: http://eands.dacnet.nic.in/PDF/Pocket-Book2014.pdf (last access: September 2016), 2014.
Dasgupta, S., Das, I. C., Subramanian, S. K., and Dadhwal, V. K.: Space-based gravity data analysis for groundwater storage estimation in the Gangetic plain, India, Curr. Sci., 107, 832–844, 2014.
Devineni, N. and Perveen, S.: Securing the future of India's “Water,energy and food”, GWF Discussion Paper 1240, Global Water Forum, 2012.
Devineni, N., Perveen, S., and Lall, U.: Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India, Water Resour. Res., 49, 2135–2145, https://doi.org/10.1002/wrcr.20184, 2013.
Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., and Ambenje, P.: Observed Variability and Trends in Extreme Climate Events: A Brief Review, B. Am. Meteorol. Soc., 81, 417–425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2, 2000.
Eichengreen, B. and Gupta, P.: The Service Sector as India's Road to Economic Growth, National Bureau of Economic Research, 16757, https://doi.org/10.3386/w16757, 2011.
Endo, A., Tsurita, I., Burnett, K., and Orencio, P. M.: A review of the current state of research on the water, energy, and food nexus, J. l. Reg. Stud., https://doi.org/10.1016/j.ejrh.2015.11.010, 2015.
FAO: The Water-Energy-Food Nexus – A new approach in support of food security and sustainable agriculture, Food Agric. Organ. United Na, 1–11, availale at: http://www.fao.org/3/a-bl496e.pdf (last access: 16 Septmeber 2016), 2014.
Fendorf, S. and Benner, S. G.: Hydrology: Indo-Gangetic groundwater threat, Nat. Geosci., 9, 732–733, https://doi.org/10.1038/ngeo2804, 2016.
Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., and Xia, J.: Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements, Water Resour. Res., 49, 2110–2118, https://doi.org/10.1002/wrcr.20192, 2013.
Fishman, R. M., Siegfried, T., Raj, P., Modi, V., and Lall, U.: Over-extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India's groundwater irrigation, Water Resour. Res., 47, https://doi.org/10.1029/2011WR010617, 2011.
Fishman, R., Devineni, N., and Raman, S.: Can improved agricultural water use efficiency save India's groundwater?, Environ. Res. Lett., 10, 1–9, https://doi.org/10.1088/1748-9326/10/8/084022, 2015.
Gadgil, S. and Gadgil, S.: The Indian monsoon, GDP and agriculture, Econ. Polit. Weekly, 41, 4887–4895, 2006.
Ghosh, S., Vittal, H., Sharma, T., and Karmakar, S.: Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes, PLoS One, 11, e0158670, https://doi.org/10.1371/journal.pone.0158670, 2016.
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., and Wiltshire, A.: Implications of climate change for agricultural productivity in the early twenty-first century, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 365, 2973–2989, https://doi.org/10.1098/rstb.2010.0158, 2010.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K.: Increasing Trend of Extreme Rain Events Over India in a Warming Environment, Science, 314, 1442–1445, https://doi.org/10.1126/science.1132027, 2006.
Granit, J., Jägerskog, A., Lindström, A., Björklund, G., Bullock, A., Löfgren, R., de Gooijer, G. and Pettigrew, S.: Regional Options for Addressing the Water, Energy and Food Nexus in Central Asia and the Aral Sea Basin, Int. J. Water Resour. D., 28, 419–432, https://doi.org/10.1080/07900627.2012.684307, 2012.
GSDA: Report on the Dynamic Ground Water Resources of Maharashtra (2011–2012), Prepared by Groundwater Surveys and Development Agency, GoM & Central Ground Water Board, Central Region, Nagpur, GoI, available at: https://gsda.maharashtra.gov.in/GWSpdf/Talukawise_GWA2011-12.pdf (last access: 6 September 2016), 2014.
Gurdak, J. J., Geyer, G. E., Nanus, L., Taniguchi, M., and Corona, C. R.: Scale dependence of controls on groundwater vulnerability in the water-energy-food nexus, California Coastal Basin aquifer system, J. Hydrol. Reg. Stud., special issue on the Water-Energy-Food Nexus of the Asia-Pacific, https://doi.org/10.1016/j.ejrh.2016.01.002, 2016.
Hatfield-Dodds, S., Schandl, H., Adams, P. D., Baynes, T. M., Brinsmead, T. S., Bryan, B. A., Chiew, F. H., Graham, P. W., Grundy, M., Harwood, T. and McCallum, R.: Australia is 'free to choose' economic growth and falling environmental pressures, Nature, 527, 49–53 https://doi.org/10.1038/nature16065, 2015.
Hira, G. S.: Water Management in Northern States and the Food Security of India, Journal of Crop Improvement, 23, 136–157, https://doi.org/10.1080/15427520802645432, 2009.
Hoff, H.: Understanding the nexus.Background paper for the Bonn2011 Nexus Conference, The Water, Energy and Food Security Nexus, Stockholm Environment Institute, Stockholm, 2011.
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B. F.: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations, Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291, 2012.
Huh, W. and Lall, U.: Optimal crop choice, irrigation allocation, and the impact of contract farming, POMPs, 22, 1126–1143, https://doi.org/10.1111/poms.12007, 2013.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, 1–24, 2012.
Jha, G., Pal, S., and Singh, A.: Energy requirement for Indian Agriculture, ICAR, New Delhi, India, 2012.
Khandu, K., Forootan, E., Schumacher, M., Awange, J. L., and Müller Schmied, H.: Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin, Water Resour. Res., 52, 2240–2258, https://doi.org/10.1002/2015WR018113, 2016.
Krishna Kumar, K., Rupa Kumar, K., Ashrit, R. G., Deshpande, N. R., and Hansen, J. W.: Climate impacts on Indian agriculture, Int. J. Climatol., 24, 1375–1393, https://doi.org/10.1002/joc.1081, 2004.
Kumar, M., Scott, C., and Singh, O.: Can India raise agricultural productivity while reducing groundwater and energy use?, Int. J. Water Resour. D., 29, 557–573, https://doi.org/10.1080/07900627.2012.743957, 2013.
Kumar, M. D.: Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: Analysis from Western India, Energ. Policy, 33, 39–51, https://doi.org/10.1016/S0301-4215(03)00196-4, 2005.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, 1–11, https://doi.org/10.1029/2011WR011453, 2012.
Leck, H., Conway, D., Bradshaw, M., and Rees, J.: Tracing the Water–Energy–Food Nexus: Description, Theory and Practice, Geogr. Compass, 98, 445–460, https://doi.org/10.1111/gec3.12222, 2015.
MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., and Yadav, S. K.: Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations, Nat. Geosci., 9, 762–766, https://doi.org/10.1038/ngeo2791, 2016.
Mallya, G., Mishra, V., Niyogi, D., Tripathi, S., and Govindaraju, R.: Trends and variability of droughts over the Indian monsoon region, Weather and Climate Extremes, 12, 43–68, https://doi.org/10.1016/j.wace.2016.01.002, 2016.
Ministry of Statistics: Statistical year book of India, Chapter 34-Rainfall, available at: http://mospi.nic.in/sites/default/files/Statistical_year_book_india_chapters/Rainfall_0.pdf, last access: 16 September 2016.
Moiwo, J. P., Yang, Y., Li, H., Han, S., and Hu, Y.: Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River Basin, Northern China, Water SA, 35, 663–670, https://doi.org/10.4314/wsa.v35i5.49192, 2009.
Moiwo, J. P., Yang, Y., Tao, F., Lu, W., and Han, S.: Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model, Water Resour. Res., 47, 1–13, https://doi.org/10.1029/2010WR010157, 2011.
Morison, J., Baker, N., Mullineaux, P., and Davies, W.: Improving water use in crop production, Philos. T. R. Soc. B, 363, 639–658, https://doi.org/10.1098/rstb.2007.2175, 2008.
MoWR (Ministry of Water Resources): Annual Report 2013–14, Ministry of Water Resources,River Development & Ganga Rejuvenation, Gol, available at: http://wrmin.nic.in/writereaddata/AR_2013-14.pdf (last access: 6 September 2016), 2013–14.
Mukherji, A.: The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India, Energ. Policy, 35, 6413–6430, https://doi.org/10.1016/j.enpol.2007.08.019, 2007.
Mukherji, A. and Shah, T.: Groundwater socio-ecology and governance: A review of institutions and policies in selected countries, Hydrogeol. J., 13, 328–345, https://doi.org/10.1007/s10040-005-0434-9, 2005.
NRAA: Prioritization of Rainfed Areas in India, Study Report 4, NRAA, New Delhi, India, p. 100, 2012.
Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., and Mukhopadyay, B.: Development of a new high spatial resolution (0. 25° × 0. 25°) Long Period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, Mausam, 65, 1–18, 2014.
Panda, D. K. and Wahr, J.: Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records, Water Resour. Res., 52, 135–149, https://doi.org/10.1002/2015WR017797, 2016.
Pande, S. and Savenije, H. H. G.: A sociohydrological model for smallholder farmers in Maharashtra, India, Water Resour. Res., 52, 1923–1947, https://doi.org/10.1002/2015WR017841, 2016.
Patel, K., Gartaula, H., Johnson, D., and Karthikeyan, M.: The interplay between household food security and wellbeing among small-scale farmers in the context of rapid agrarian change in India, Agric. Food Secur., 4, 16, https://doi.org/10.1186/s40066-015-0036-2, 2015.
Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., and Ramsankaran, R.: Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover, Sci. Rep., 6, https://doi.org/10.1038/srep32177, 2016.
Planning Commission Annual Report: Annual Report 2013–14 on The Working of State Power Utilities and Electricity Departments (Power and Energy Division), Planning Commission,Government of India, 1–225, available at: http://planningcommission.nic.in/reports/genrep/rep_arpower0306.pdf (last access: 6 September 2016), 2014.
Prakash, S., Gairola, R. M., Papa, F., and Mitra, A. K.: An assessment of terrestrial water storage, rainfall and river discharge over Northern India from satellite data, Curr. Sci., 107, 1582–1586, 2014.
Rajeevan, M., Bhate, J., and Jaswal, A. K.: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data, Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2008GL035143, 2008.
Rama Rao, C. A., Raju, B. M. K., Subba Rao, A. V. M., Rao, K. V., Rao, V. U. M., Ramachandran, K., Venkateswarlu, B., Sikka, A. K., Srinivasa Rao, M., Maheswari, M., and Srinivasa Rao, C.: A district level assessment of vulnerability of Indian agriculture to climate change, Curr. Sci., 110, 1939–1946, https://doi.org/10.18520/cs/v110/i10/1939-1946, 2016.
Rasul, G.: Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region, Environ. Sci. Policy, 39, 35–48, https://doi.org/10.1016/j.envsci.2014.01.010, 2014.
Rasul, G. and Sharma, B.: The nexus approach to water–energy–food security: an option for adaptation to climate change, Clim. Policy, 16, 682–702, https://doi.org/10.1080/14693062.2015.1029865, 2015.
Rattan, R. K. and Biswas, D. R.: Efficient Water Management for Sustainable Agriculture, Bulletin of the Indian Society of Soil Science, 29, 1–86, 2014.
Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., and Rodell, M.: Quantifying renewable groundwater stress with GRACE, Water Resour. Res., 51, 5217–5238, https://doi.org/10.1002/2015WR017349, 2015.
Rodell, M. and Famiglietti, J. S.: An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 37, 1327–1339, https://doi.org/10.1029/2000WR900306, 2001.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., and Wilson, C. R.: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeol. J., 15, 159–166, https://doi.org/10.1007/s10040-006-0103-7, 2007.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in India, Nature, 460, 999–1002, https://doi.org/10.1038/nature08238, 2009.
Rosegrant, M. W. and Cline, S. A.: Global food security: challenges and policies, Science, 302, 1917–1919, https://doi.org/10.1126/science.1092958, 2003.
Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., and Goswami, B. N.: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient, Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423, 2015.
Saha, S. K., Halder, S., Suryachandra Rao, A., and Goswami, B. N.: Modulation of ISOs by land-atmosphere feedback and contribution to the interannual variability of Indian summer monsoon, J. Geophys. Res., 117, 1–4, https://doi.org/10.1029/2011JD017291, 2012.
Sahai, A. K., Sharmila, S., Abhilash, S., Chattopadhyay, R., Borah, N., Krishna, R. P. M., Joseph, S., Roxy, M., De, S., Pattnaik, S., and Pillai, P. A.: Simulation and extended range prediction of monsoon intraseasonal oscillations in NCEP CFS/GFS version 2 framework, Curr. Sci., 104, 1394–1408, 2013.
Salvi, K., Ghosh, S., and Ganguly, A. R.: Credibility of statistical downscaling under nonstationary climate, Clim. Dyn., 46, 1991–2023, https://doi.org/10.1007/s00382-015-2688-9, 2016.
Scott, C. and Shah, T.: Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico, Int. J. Water Resour. D., 20, 149–164, https://doi.org/10.1080/0790062042000206156, 2004.
Scott, C. A. and Sharma, B.: Energy supply and the expansion of groundwater irrigation in the Indus-Ganges Basin, International Journal of River Basin Management, 7, 119–124, https://doi.org/10.1080/15715124.2009.9635374, 2009.
Shah, R., Sahai, A. K., and Mishra, V.: Development of an Experimental Near-Real-Time Drought Monitor for India, J. Hydrometeorol., 16, 327–345, https://doi.org/10.1175/JHM-D-14-0041.1, 2015.
Shah, R., Sahai, A. K., and Mishra, V.: Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India, Hydrol. Earth Syst. Sci., 21, 707–720, https://doi.org/10.5194/hess-21-707-2017, 2017.
Shah, T., Scott, C., Kishore, A., and Sharma, A.: Energy-Irrigation Nexus in South Asia: Improving Groundwater Conservation an Power Sector Viability, Second (Revised) Edition. Research Report 70. Colombo, Sri Lanka: International Water Management Institute, 2004.
Shamsudduha, M., Taylor, R. G., and Longuevergne, L.: Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin, Water Resour. Res., 48, 1–12, https://doi.org/10.1029/2011WR010993, 2012.
Sharma, K.: Groundwater management for food security, Curr. Sci., 96, 1444–1447, 2009.
Siegfried, T., Sobolowski, S., Raj, P., Fishman, R., Vasquez, V., Narula, K., Lall, U., and Modi, V.: Modeling Irrigated Area to Increase Water, Energy, and Food Security in Semiarid India, Weather. Clim. Soc., 2, 255–270, https://doi.org/10.1175/2010WCAS1048.1, 2010.
Singh, D., Tsiang, M., Rajaratnam, B., and Di, N. S.: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season, Nat. Clim. Chang., 4, 1–6, https://doi.org/10.1038/nclimate2208, 2014.
Singh, R.: Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India, Agr. Ecosyst. Environ., 82, 97–103, https://doi.org/10.1016/S0167-8809(00)00219-X, 2000.
Sinha, S., Sharma, B. R., and Scott, C. A.: Understanding and managing the water-energy nexus: Moving beyond the energy debate, Groundw. Res. Manag. Integr. Sci. into Manag. Decis. 80 Proc. WMI-ITP-NIH Int. Work, 242–257, 2006.
Strassberg, G., Scanlon, B. R., and Rodell, M.: Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA), Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL030139, 2007.
Strassberg, G., Scanlon, B. R., and Chambers, D.: Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States, Water Resour. Res., 45, 1–10, https://doi.org/10.1029/2008WR006892, 2009.
Suhag, R.: Overview of Ground Water in India, PRS, available at: http://www.prsindia.org/administrator/uploads/general/1455682937~~Overview of Ground Water in India.pdf, last access: 6 September 2016.
Swenson, S. and Wahr, J.: Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid, J. Geophys. Res., 107, 2194, https://doi.org/10.1029/2000JB000024, 2002.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2005GL025285, 2006.
Swenson, S., Yeh, P. J. F., Wahr, J., and Famiglietti, J.: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL026962, 2006.
Taniguichi, M., Endo, A., Gurdak, J. J., and Swarzenski, P.: Water-Energy-Food Nexus in Asia Pacific Region, J. Hydrol. Reg. Stud., special issue on the Water-Energy-Food Nexus of the Asia-Pacific, Region, in press, 2017.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL019920, 2004.
Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Chang., 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013.
Thomas, A. C., Reager, J. T., Famiglietti, J. S., and Rodell, M.: A GRACE-based water storage deficit approach for hydrological drought characterization, Geophys. Res. Lett., 41, 1537–1545, https://doi.org/10.1002/2014GL059323, 2014.
Tiwari, V. M., Wahr, J., and Swenson, S.: Dwindling groundwater resources in northern India, from satellite gravity observations, Geophys. Res. Lett., 36, L18401, https://doi.org/10.1029/2009GL039401, 2009.
Udmale, P., Ichikawa, Y., Manandhar, S., Ishidaira, H., and Kiem, A. S.: Farmers' perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India, International Journal of Disaster Risk Reduction, 10, 250–269, https://doi.org/10.1016/j.ijdrr.2014.09.011, 2014.
Wada, C. A., Burnett, K. and Gurdak, J.: The Water-Energy-Food Nexus in Pajaro Valley, California, J. Sustainable Agriculture Research, 5, https://doi.org/10.5539/sar.v5n3p76, 2016.
WRIS: available at: http://cgwb.gov.in/GW-data-access.html, last access: 6 September 2016.
Wu, W., Lan, C., and Lo, M.: Increases in the Annual Range of Soil Water Storage at Northern Middle and High Latitudes under Global Warming, Geophys. Res. Lett., 42, 3903–3910, https://doi.org/10.1002/2015GL064110, 2015.
WWAP (United Nations World Water Assessment Programme): The United Nations World Water Development Report 2015, Water for a Sustainable World, Paris, UNESCO, available at: http://unesdoc.unesco.org/images/0023/002318/231823E.pdf (last access: 16 September 2016), 2015.
Wyrwoll, P.: India's groundwater crisis, GWF Discussion Paper 1228, Global Water Forum, 2012.
Yang, Y., Long, D., Guan, H., Scanlon, B. R., Simmons, C. T., Jiang, L., and Xu, X.: GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia, J. Geophys. Res.-Biogeo., 119, 2245–2260, https://doi.org/10.1002/2014JG002670, 2014.
Yeh, P. J. F., Swenson, S. C., Famiglietti, J. S., and Rodell, M.: Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 42, 1–7, https://doi.org/10.1029/2006WR005374, 2006.
Yi, S., Sun, W., Feng, W., and Chen, J.: Anthropogenic and climate-driven water depletion in Asia, Geophys. Res. Lett., 43, 9061–9069, https://doi.org/10.1002/2016GL069985, 2016.
Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., and Nicholas, R. E.: Invisible water, visible impact: groundwater use and Indian agriculture under climate change, Environ. Res. Lett., 11, 084005, https://doi.org/10.1088/1748-9326/11/8/084005, 2016.
Short summary
The article summarises changing patterns of the water-food-energy nexus in India during recent decades. The work first analyses satellite data of water storage with a validation using the observed well data. Northern India shows a declining trend of water storage and western-central India shows an increasing trend of the same. Major droughts result in a drop in water storage which is not recovered due to uncontrolled ground water irrigation for agricultural activities even in good monsoon years.
The article summarises changing patterns of the water-food-energy nexus in India during recent...
Special issue