Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 4
Hydrol. Earth Syst. Sci., 21, 1895–1909, 2017
https://doi.org/10.5194/hess-21-1895-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 1895–1909, 2017
https://doi.org/10.5194/hess-21-1895-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Apr 2017

Research article | 04 Apr 2017

Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands

Georgiy Kirillin et al.

Related authors

Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020,https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Numerical study on the response of the largest lake in China to climate change
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019,https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Future projections of temperature and mixing regime of European temperate lakes
Tom Shatwell, Wim Thiery, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019,https://doi.org/10.5194/hess-23-1533-2019, 2019
Short summary
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018,https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown features of its thermohaline structure
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018,https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020,https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020,https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Worldwide lake level trends and responses to background climate variation
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020,https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Modeling inorganic carbon dynamics in the Seine River continuum in France
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020,https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
A new form of the Saint–Venant equations for variable topography
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-75,https://doi.org/10.5194/hess-2020-75, 2020
Revised manuscript accepted for HESS
Short summary

Cited articles

Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler, D. E.: Effects of Climatic Variability on the Thermal Properties of Lake Washington, Limnol. Oceanogr., 49, 256–270, 2004.
Aslamov, I. A., Kozlov, V. V., Kirillin, G. B., Mizandrontsev, I. B., Kucher, K. M., Makarov, M. M., Gornov, A. Y., and Granin, N. G.: Ice–water heat exchange during ice growth in Lake Baikal, J. Gt. Lakes Res., 40, 599–607, 2014.
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007.
Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau, J. Climate, 26, 206–214, 2013.
Publications Copernicus
Download
Short summary
We report a first description of the seasonal temperature, mixing, and ice regime in the two largest freshwater lakes of the Tibetan Plateau. We perform a validation of lake model FLake for the parameterization of the Tibetan lake system in regional climate models and present evidence of the absent warming trend in the Tibetan lakes despite significant atmospheric warming. The reason for this unexpected behavior is the significant decrease in solar radiation at the surface.
We report a first description of the seasonal temperature, mixing, and ice regime in the two...
Citation