Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4929-2016
https://doi.org/10.5194/hess-20-4929-2016
Research article
 | 
15 Dec 2016
Research article |  | 15 Dec 2016

Age-ranked hydrological budgets and a travel time description of catchment hydrology

Riccardo Rigon, Marialaura Bancheri, and Timothy R. Green

Related authors

On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023,https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022,https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022,https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021,https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017,https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024,https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024,https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Technical Note: The Divide and Measure Nonconformity
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-59,https://doi.org/10.5194/hess-2024-59, 2024
Preprint under review for HESS
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024,https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary

Cited articles

Ali, M., Fiori, A., and Russo, D.: A comparison of travel-time based catchment transport models, with application to numerical experiments, J. Hydrol., 511, 605–618, 2014.
Benettin, P., Rinaldo, A., and Botter, G.: Kinematics of age mixing in advection-dispersion models, Water Resour. Res., 49, 8539–8551, 2013.
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: forward and backward formulations, Hydrol. Process., 29, 5203–5213, 2015.
Berman, E. S., Gupta, M., Gabrielli, C., Garland, T., and McDonnell, J. J.: High-frequency field-deployable isotope analyzer for hydrological applications, Water Resour. Res., 45, W10201, https://doi.org/10.1029/2009WR008265, 2009.
Birkel, C., Tetzlaff, D., Dunn, S., and Soulsby, C.: Towards a simple dynamic process conceptualization in rainfall–runoff models using multi-criteria calibration and tracers in temperate, upland catchments, Hydrol. Process., 24, 260–275, 2010.
Download
Short summary
The goal of the paper is to analyze the theory of water age inside a catchment while accounting for multiple outflows. It tries to propose the material under a new perspective where it lines up concepts, cleans the notation, discusses some classical results, and offers some examples that help to relate the modern achievements to the theory of the IUH, clarifying assets of both of them. In doing all of this, it also produces various new results, and some regarding solute transport.