Articles | Volume 20, issue 12
https://doi.org/10.5194/hess-20-4929-2016
https://doi.org/10.5194/hess-20-4929-2016
Research article
 | 
15 Dec 2016
Research article |  | 15 Dec 2016

Age-ranked hydrological budgets and a travel time description of catchment hydrology

Riccardo Rigon, Marialaura Bancheri, and Timothy R. Green

Related authors

A component based modular treatment of the soil-plant-atmosphere continuum: the GEOSPACE framework (v.1.2.9)
Concetta D'Amato, Niccolò Tubini, and Riccardo Rigon
EGUsphere, https://doi.org/10.5194/egusphere-2024-4128,https://doi.org/10.5194/egusphere-2024-4128, 2025
Short summary
On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023,https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022,https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022,https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021,https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Delayed stormflow generation in a semi-humid forested watershed controlled by soil water storage and groundwater dynamics
Zhen Cui and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2275–2291, https://doi.org/10.5194/hess-29-2275-2025,https://doi.org/10.5194/hess-29-2275-2025, 2025
Short summary
HESS Opinions: Floods and droughts – are land use, soil management, and landscape hydrology more significant drivers than increasing CO2?
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
Hydrol. Earth Syst. Sci., 29, 2185–2200, https://doi.org/10.5194/hess-29-2185-2025,https://doi.org/10.5194/hess-29-2185-2025, 2025
Short summary
Causal relationships of vegetation productivity with root zone water availability and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025,https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary

Cited articles

Ali, M., Fiori, A., and Russo, D.: A comparison of travel-time based catchment transport models, with application to numerical experiments, J. Hydrol., 511, 605–618, 2014.
Benettin, P., Rinaldo, A., and Botter, G.: Kinematics of age mixing in advection-dispersion models, Water Resour. Res., 49, 8539–8551, 2013.
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: forward and backward formulations, Hydrol. Process., 29, 5203–5213, 2015.
Berman, E. S., Gupta, M., Gabrielli, C., Garland, T., and McDonnell, J. J.: High-frequency field-deployable isotope analyzer for hydrological applications, Water Resour. Res., 45, W10201, https://doi.org/10.1029/2009WR008265, 2009.
Birkel, C., Tetzlaff, D., Dunn, S., and Soulsby, C.: Towards a simple dynamic process conceptualization in rainfall–runoff models using multi-criteria calibration and tracers in temperate, upland catchments, Hydrol. Process., 24, 260–275, 2010.
Download
Short summary
The goal of the paper is to analyze the theory of water age inside a catchment while accounting for multiple outflows. It tries to propose the material under a new perspective where it lines up concepts, cleans the notation, discusses some classical results, and offers some examples that help to relate the modern achievements to the theory of the IUH, clarifying assets of both of them. In doing all of this, it also produces various new results, and some regarding solute transport.
Share