Articles | Volume 20, issue 6
https://doi.org/10.5194/hess-20-2519-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-2519-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru
Marcelo A. Somos-Valenzuela
Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, USA
Rachel E. Chisolm
Center for Research in Water Resources, University of Texas at Austin, Austin, Texas, USA
Denny S. Rivas
Center for Research in Water Resources, University of Texas at Austin, Austin, Texas, USA
Cesar Portocarrero
Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña (INAIGEM), Huaraz, Peru
Daene C. McKinney
CORRESPONDING AUTHOR
Center for Research in Water Resources, University of Texas at Austin, Austin, Texas, USA
Related authors
D. S. Rivas, M. A. Somos-Valenzuela, B. R. Hodges, and D. C. McKinney
Nat. Hazards Earth Syst. Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015, https://doi.org/10.5194/nhess-15-1163-2015, 2015
M. A. Somos-Valenzuela, D. C. McKinney, A. C. Byers, D. R. Rounce, C. Portocarrero, and D. Lamsal
Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015, https://doi.org/10.5194/hess-19-1401-2015, 2015
Short summary
Short summary
The potential flooding impacts from Imja glacial lake in Nepal were studied using a two-dimensional debris-flow model to evaluate the effectiveness of proposed measures to reduce possible flooding impacts to downstream communities by lowering the lake level. The results indicate that only a minor benefits is achieved with modest (~3m) lowering and lowering of 20m almost eliminates all flood impact at Dingboche.
M. A. Somos-Valenzuela, D. C. McKinney, D. R. Rounce, and A. C. Byers
The Cryosphere, 8, 1661–1671, https://doi.org/10.5194/tc-8-1661-2014, https://doi.org/10.5194/tc-8-1661-2014, 2014
Jonathan M. Lala, David R. Rounce, and Daene C. McKinney
Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018, https://doi.org/10.5194/hess-22-3721-2018, 2018
Short summary
Short summary
Many glacial lakes in the Himalayas are held in place by natural sediment dams, which are prone to collapse, causing a glacial lake outburst flood (GLOF). This study models a GLOF as a process chain, in which an avalanche enters the lake, creates a large wave that erodes the sediment dam, and produces a flood downstream. Results indicate that Imja Tsho presents little hazard for the next 30 years, but the model is replicable and should be used at other lakes that may present greater hazard.
Rachel E. Chisolm and Daene C. McKinney
Nat. Hazards Earth Syst. Sci., 18, 1373–1393, https://doi.org/10.5194/nhess-18-1373-2018, https://doi.org/10.5194/nhess-18-1373-2018, 2018
Short summary
Short summary
This paper studies the lake dynamics for avalanche-triggered glacial lake outburst floods (GLOFs) in the Cordillera Blanca mountain range in Ancash, Peru. Lake Palcacocha is used as a case study to analyze the upper watershed processes that typically comprise a GLOF event, specifically the lake dynamics when an avalanche produces a large displacement wave that might overtop and erode the lake-damming moraine.
David R. Rounce, Alton C. Byers, Elizabeth A. Byers, and Daene C. McKinney
The Cryosphere, 11, 443–449, https://doi.org/10.5194/tc-11-443-2017, https://doi.org/10.5194/tc-11-443-2017, 2017
Short summary
Short summary
On 12 June 2016, the authors witnessed a glacier outburst flood with origins from Lhotse Glacier, located in the Everest region of Nepal. Observations regarding the size of the flood and a reconstruction of its path immediately following the event were performed. Most of the flood water was stored in the glacier's subsurface and likely released by dam failure. A similar flood from Lhotse Glacier was also reported by local community members on 25 May 2015.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
D. R. Rounce, D. J. Quincey, and D. C. McKinney
The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, https://doi.org/10.5194/tc-9-2295-2015, 2015
Short summary
Short summary
A debris-covered glacier energy balance was used to model debris temperatures and sub-debris ablation rates on Imja-Lhotse Shar Glacier during the 2014 melt season. Field measurements were used to assess model performance. A novel method was also developed using Structure from Motion to estimate the surface roughness. Lastly, the effects of temporal resolution, i.e., 6h and daily time steps, and various methods for estimating the latent heat flux were also investigated.
D. S. Rivas, M. A. Somos-Valenzuela, B. R. Hodges, and D. C. McKinney
Nat. Hazards Earth Syst. Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015, https://doi.org/10.5194/nhess-15-1163-2015, 2015
M. A. Somos-Valenzuela, D. C. McKinney, A. C. Byers, D. R. Rounce, C. Portocarrero, and D. Lamsal
Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015, https://doi.org/10.5194/hess-19-1401-2015, 2015
Short summary
Short summary
The potential flooding impacts from Imja glacial lake in Nepal were studied using a two-dimensional debris-flow model to evaluate the effectiveness of proposed measures to reduce possible flooding impacts to downstream communities by lowering the lake level. The results indicate that only a minor benefits is achieved with modest (~3m) lowering and lowering of 20m almost eliminates all flood impact at Dingboche.
M. A. Somos-Valenzuela, D. C. McKinney, D. R. Rounce, and A. C. Byers
The Cryosphere, 8, 1661–1671, https://doi.org/10.5194/tc-8-1661-2014, https://doi.org/10.5194/tc-8-1661-2014, 2014
D. R. Rounce and D. C. McKinney
The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014, https://doi.org/10.5194/tc-8-1317-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Assessment of Upscaling Methodologies for Daily Crop Transpiration using Sap-Flows and Two-Source Energy Balance Models in Almonds under Different Water Status and Production Systems
Developing water supply reservoir operating rules for large-scale hydrological modelling
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Making a case for power-sensitive water modelling: a literature review
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Assessing interannual variability in nitrogen sourcing and retention through hybrid Bayesian watershed modeling
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-5, https://doi.org/10.5194/hess-2024-5, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
EGUsphere, https://doi.org/10.5194/egusphere-2024-326, https://doi.org/10.5194/egusphere-2024-326, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large-scales. We design a new, simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain where we can significantly improve the simulation of reservoir-impacted flow.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-164, https://doi.org/10.5194/hess-2023-164, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 49 scientific articles shows that in scientific literature little attention is given to the power of hydrological models to influence development processes and outcomes. However, that there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling which means that people are critical about how models made and with what effects.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Jonathan W. Miller, Kimia Karimi, Arumugam Sankarasubramanian, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 25, 2789–2804, https://doi.org/10.5194/hess-25-2789-2021, https://doi.org/10.5194/hess-25-2789-2021, 2021
Short summary
Short summary
Within a watershed, nutrient export can vary greatly over time and space. In this study, we develop a model to leverage over 30 years of streamflow, precipitation, and nutrient sampling data to characterize nitrogen export from various livestock and land use types across a range of precipitation conditions. Modeling results reveal that urban lands developed before 1980 have remarkably high levels of nitrogen export, while agricultural export is most responsive to precipitation.
Chia-Wen Wu, Frederick N.-F. Chou, and Fong-Zuo Lee
Hydrol. Earth Syst. Sci., 25, 2063–2087, https://doi.org/10.5194/hess-25-2063-2021, https://doi.org/10.5194/hess-25-2063-2021, 2021
Short summary
Short summary
This paper promotes the feasibility of emptying instream storage through joint operation of multiple reservoirs. The trade-off between water supply and emptying reservoir storage and alleviating impacts on downstream environment are thoroughly discussed. Operation of reservoirs is optimized to calibrate the optimal parameters defining the activation and termination of emptying reservoir. The optimized strategy limits the water shortage and maximizes the expected benefits of emptying reservoir.
Cited articles
Alean, J.: Ice Avalanches: Some Empirical Information About Their Formation and Reach, J. Glaciol., 31, 324–333, 1985.
Ashida, K. and Michiue, M.: An investigation of river bed degradation downstream of a dam, Proc. 14th Congress of IAHR, Paris, France, 3, 247–256, 1971.
Awal, R., Nakagawa, H., Fujita, M., Kawaike, K., Baba, Y., and Zhang, H.: Experimental Study on Glacial Lake Outburst Floods Due to Waves Overtopping and Erosion of Moraine Dam. Annuals of Disas. Prev. Res Inst. Kyoto University, 53, 2010.
Bajracharya, B., Shrestha, A. B., and Rajbhandar, L.: Glacial Lake Outburst Floods in the Sagarmatha Region, Mount. Res. Develop., 27, 336–344, 2007.
Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., and Schumacher, L.: RAMMS: Rapid Mass Movement Simulation: A numerical model for snow avalanches in research and practice. User Manual v1.5 – Avalanche, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 89 pp., 2013.
Biscarini, C.: Computational Fluid Dynamics Modelling of Landslide Generated Water Waves. Landslides, 7, 117–124, 2010.
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, M. E., Dolz, J., and Coll, A.: Iber: herramienta de simulación numérica del flujo en ríos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30, 1–10, 2014.
Burns, P. and Nolin, A.: Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010, Remote Sens. Environ., 140, 165–178, 2014.
Byers, A. C., McKinney, D. C., Somos, M. A., Watanabe, T., andLamsal, D.: Glacial Lakes of the Hongu Valley, Makalu-Barun National Park and Buffer Zone, Nepal, Nat. Hazards, 69, 115–139, 2013.
Carey, M.: In the Shadow of Melting Glaciers: Climate Change and Andean Society, Oxford Univ. Press, New York, 273 pp., 2010.
Carey, M., Huggel, C., Bury, J., Portocarrero, C., and Haeberli, W.: An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru, Clim. Change, 112, 733–767, 2012.
Cenderelli, D. A. and Wohl, E. E.: Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal, Earth Surf. Process. Landf. 28, 385–407, 2003.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors, Remote Sens. Environ. 113, 893–903, 2009.
Christen, M., Bartelt, P., and Gruber, U.: Numerical Calculations of Snow Avalanche Runout Distances, Proceedings of the ASCE International Conference on Computing in Civil Engineering, Paper No. 8769, 1–12, 12–15 July, Cancun, Mexico, 2005.
Christen, M., Bartelt, P., Kowalski, J., and Stoffel, L.: Calculation of Dense Snow Avalanches in Three-Dimensional Terrain with the Numerical Simulation Program Ramms Proceedings Whistler 2008 International Snow Science Workshop, 21–27 September, Whistler, BC, 2008.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, 2010.
Clague, J. J. and Evans, S. G.: A review of catastrophic drainage of moraine-dammed lakes in British Columbia, Quaternary Sci. Rev., 19, 1763–1783, 2000.
Costa, J. E. and Schuster, R. L.: The formation and failure of natural dams, Geol. Soc. Am. Bull., 100, 1054–1068, 1988.
Cremonesi, M., Frangi, A., and Perego, U.: A Lagrangian finite element approach for the simulation of water-waves induced by landslides, Comput. Struct., 89, 1086–193, 2011.
Deltares: Delft3D-FLOW: 3D/2D modelling suite for integral water solutions, user manual, Deltares, Delft, 684 pp., 2014.
Diario La Republica: www.larepublica.pe/regionales/20/04/2010/declaran-en-emergencia-la-laguna-palcacocha-en-huaraz, last access: 10 September 2015.
Emmer, A. and Cochachin, A.: The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas, AUC Geographica, 48, 5–15, 2013.
Emmer, A. and Vilímek, V.: Review Article: Lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru), Nat. Hazards Earth Syst. Sci., 13, 1551–1565, https://doi.org/10.5194/nhess-13-1551-2013, 2013.
Emmer, A. and Vilímek, V.: New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru, Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, 2014.
Evans, S. G. and Clague, J. J.: Catastrophic rock avalanches in glacial environments. Proc. Fifth Int. Symp. on Landslides, 2, 1153–1158, 1988.
Evans, S. G., Bishop, N. F., Smoll, L. F., Valderrama-Murillo, P., Delaney, K. B., and Oliver-Smith, A.: A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96–118, 2009.
Fah, R.: Numerik an der VAW: Entwicklungen und Beispiel des Triftgletschers, In: Festkolloquium VAW 75 JAHRE, edited by: Minor, H.-E., Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie ETH-Zentrum CH-8092 Zürich, 187–200, 2005.
FEMA – Federal Emergency Management Agency: Guidelines and specifications for flood hazards mapping partners, Appendix G, Guidance for alluvial fans flooding analyses and mapping, Washington DC http://www.fema.gov/mit/ft_alfan.htm (last access: 10 September 2015), 2003.
Fernandez, R. and Van Beek, R.: Erosion and transport of bed-load sediment, J. Hydr. Res., 14, 127–144, 1976.
Fiebiger, G.: Hazard Mapping in Austria, J. Torr. Aval. Landsl. Rockf. Eng., 61, 153–164, 1997.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
FLO2D: FLO2D PRO Reference Manual, FLO2D Software, Inc., Nutrioso, AZ, 75 pp., 2012.
Flow Science: FLOW3D Documentation: Release 10.1.0, Flow Science, Inc., Santa Fe, New Mexico, 811 pp., 2012.
Fread, D. L.: DAMBRK: The NWS dam-break flood forecasting model, National Weather Service, Office of Hydrology, Silver Spring, MD, 60 pp., 1984.
Fread, D. L.: DAMBRK: The NWS DAMBRK Model: Theoretical Background/User Documentation, Hydrologic Research Laboratory, National Weather Service, Office of Hydrology, Silver Spring, MD, 328 pp., 1988.
Frey, H., Haeberli, W., Linsbauer, A., Huggel, C., and Paul, F.: A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials, Nat. Hazards Earth Syst. Sci., 10, 339–352, https://doi.org/10.5194/nhess-10-339-2010, 2010.
Fritz, H. M., Hager, W. H., and Minor, H. E.: Near Field Characteristics of Landslide Generated Impulse Waves. J. Waterway, Port, Coast. Ocean Eng., 130, 287–302, 2004.
García, R., López, J. L., Noya, M. E., Bello, M. E., González, N., Paredes, G., and Vivas, M. I.: Hazard maps for debris and debris flow events in Vargas State and Caracas, Avila Project Report, Caracas, Venezuela, 2002.
Garcia, R., Noya, L. M., Bello, M. E., Bello, M. T,, Gonzalez, N., Paredes, G., and Vivas, M. I.: Hazard mapping for debris flow events in the alluvial fans of northern Venezuela, in Debris-flow hazards Mitigation: Mechanics, Prediction, and Assessment, Third International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment Davos, Switzerland, 10–12 September 2003, edited by: Rickenmann, D. and Chen, C. L., Millpress, Rotterdam, 589–600, 2003.
García-Martinez, R. and Lopez, J. L.: Debris flows of December 1999 in Venezuela, Chapter 20, edited by: Jakob, M. and Hungr, O., Debris-flow Hazards and Related Phenomena, Praxis, Springer, Berlin and Heidelberg, 519–538, 2005.
Ghozlani, B., Zouhaier, H., and Khlifa, M.: Numerical study of surface water waves generated by mass movement, Fluid Dynam. Res., 45, 055506, https://doi.org/10.1088/0169-5983/45/5/055506, 2013.
Google Earth 7 January 2014: Lake Palcacocha 9°23′7′′ S, 77°22′15′′ W, elevation 4956 m, Eye alt 11.87 km, CNES/Astrium, http://www.earth.google.com (last access: 15 November 2015), 2014.
Greenshields, C. J.: Open Foam – The Open Source CFD Toolbox, User Guide, Open Foam Foundation, Reading, UK, 228 pp., 2015.
Haeberli, W.: Mountain permafrost – research frontiers and a special long-term challenge, Cold Reg. Sci. Technol., 96, 71–76, 2013.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol. 56, 1043–1058, 2010.
Hegglin, E. and Huggel, C.: An integrated assessment of vulnerability to glacial hazards, Mount. Res. Develop., 28, 299–309, 2008.
Heinrich, P.: Nonlinear Water Waves Generated by Submarine and Aerial Landslides, J. Waterway, Port, Coast. Ocean Eng., 118, 249–266, 1992.
Heller, V. and Hager, W. H.: Impulse Product Parameter in Landslide Generated Impulse Waves. J. Waterway, Port, Coast. Ocean Eng., 136, 145–155, 2010.
HiMAP – High Mountains Adaptation Partnership: Quillcay Plan de Acción Local Para la Adaptacion al Cambio Climatico Subcuenca de Quillcay, Mancomunidad Municipal WARAQ, Climate Change Resilient Development Project, United States Agency for International Development, Washington DC, http://pdf.usaid.gov/pdf_docs/PA00KNV6.pdf (last access: 4 October 2015), 2014.
Horizons – Horizons South America S.A.C.: Informe Técnico del Proyecto, Consultoría Para El Levantamiento Fotogramétrico Detallado De La Sub Cuenca Del Río Quillcay Y La Ciudad De Huaraz Para El Proyecto, Implementación de Medidas de Adaptación al Cambio Climático y Gestión de Riesgos en la Sub-cuenca Quillcay (IMACC-QUILLCAY) – BID-MINAM (PE-T 1168), Ministerio Del Ambiente A Travel Del Fonam – Administrador De Los Recursos Del BID, Lima, Peru, 2013.
Hossain, A. K. M. A., Jia, Y., and Chao, X.: Estimation of Manning's roughness coefficient distribution for hydrodynamic model using remotely sensed land cover features. In Proceedings of IEEE 17th International Conference on Geoinformatics, 12–14 August, George Mason University, Fairfax, VA, 1–4, https://doi.org/10.1109/GEOINFORMATICS.2009.5293484, 2009.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.: Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps, Can. Geotech. J., 39, 316–330, 2002.
Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.: An assessment procedure for glacial hazards in the Swiss Alps, Can. Geotech. J., 41, 1068–1083, 2004.
Hürlimann, M., Copons, R., and Altimir, J.: Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach, Geomorphology 78, 359–372, 2006.
INDECI – Instituto Nacional de Defensa Civil, Plan de Prevención ante Desastres: Usos del Suelo y Medidas de Mitigacion Ciudad de Huaraz. Plate 33, Proyecto INDECI – PNUD PER/02/051 Ciudades Sostenibles, Lima, 2003.
INDECI – Instituto Nacional de Defensa Civil.: Informe de peligro No. 003-12/05/2011/COEN-SINADECI/15:00 horas (Informe No. 01): Peligro por aluvión en el departamento de Ancash, Huaraz-Peru: COEN-SINADECI, 2011.
http://bvpad.indeci.gob.pe/doc/estudios_CS/Region_Ancash/ancash/huaraz.pdf, last access: 15 April 2016.
IPCC – Intergovernmental Panel on Climate Change: Climate Change: The Physical Science Basis. Working Group I Contribution to the IPCC 5th Assessment Report, Geneva, Switzerland, 2013.
Julien, P. Y.: Erosion and Sedimentation, second edition, Cambridge, UK, Cambridge University Press, 371 pp., 2010.
Julien, P. Y. and Leon, C. A.: Mudfloods, mudflows and debris flows, classification in rheology and structural design. Proc. Int. Workshop on the Debris Flow Disaster 27 November–1 December 1999, 1–15, Universidad Central de Venezuela, Caracas, Venezuela, 2000.
Kafle, J., Pokhrel, P. R., Khattri, K. B., Kattel, P., Tuladhar, B. M., and Pudasain, S. P.: Landslide-generated tsunami and particle transport in mountain lakes and reservoirs, Ann. Glaciol., 57, 232–244, https://doi.org/10.3189/2016AoG71A034, 2016.
Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides. Proc. 12th Coastal Engineering Conf. 13–18 September 1970, Washington DC, ASCE, 1, 575–588, 1970.
Kattleman, R.: Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard?, Nat. Hazards, 28, 145–154, 2003.
Klimes, J., Benesova, M. Vilimek, V. Bouska, P., and Cochachin-Rapre, A.: The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru, Nat. Hazards, 71, 1617–1638, https://doi.org/10.1007/s11069-013-0968-4, 2013.
Klimes, J., Benesová, M., Vilímek, V., Bouska, P., and Cochachin-Rapre, A.: HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru, Nat. Hazards, 71, 1617–1638, 2014.
Lliboutry, L. L., Morales-Arnao, B., Pautre, A., and Schneider, B.: Glaciological Problems Set by the Control of Dangerous Lakes in Cordillera Blanca, Peru 1: Historical Failures of Morainic Dams, Their Causes and Prevention, J. Glaciol., 18, 239–254, 1977.
Liu, P. L. F, Wu, T. R., Raichlen, F., Synolakis, C. E., and Borrero, J. C.: Runup and rundown generated by three-dimensional sliding masses, J. Fluid Mech., 536 107–44, 2005.
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D.: Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345, 919–921, https://doi.org/10.1126/science.1254702, 2014.
Mergili, M., Schneider, D., Worni, R., and Schneider, J. F.: Glacial lake outburst floods (GLOFs): challenges in prediction and modelling. Proceedings, 5th International Conference on Debris-Flow Hazard Mitigation: Mechanics, Prediction and Assessment, edited by: Genevois, R., Hamilton, D. L., and Prestininzi, A., Padua, Italy, 13–17 June, 973–982, 2011.
Meon, G. and Schwarz, W.: Estimation of Glacier Lake Outburst Flood and its impact on a hydro project in Nepal, edited by: Young, G. J., Snow and Glacier Hydrology, IAHS Publication No. 209, 331–340, 1993.
Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, Proc. 2nd Meeting, IAHR, Stockholm, Sweden, 39–64, 1948.
Morris, M. W.: Breaching of Earth Embankments and Dams, Ph. D. dissertation, Open University, Milton Keynes, UK, 338 pp., December 2011.
Muller, D. R.: Auflaufen and Uberschwappen von Impulswellen an Talsperren: Zurich, VAW-ETH, Mitt. Nr. 137, 1995.
Novotný, J. and Klimeš, J.: Grain size distribution of soils within the Cordillera Blanca, Peru: an indicator of basic mechanical properties for slope stability evaluation, J. Mount. Sci., 11, 563–577, 2014.
NWS – National Weather Service: NWS FLDWAV Model, Silver Spring, MD: Hydrologic Research Laboratory, Office of Hydrology, National Oceanic and Atmospheric Administration, 335 pp., 1998.
O'Brien, J. S. and Julien, P. Y.: Laboratory Analysis of Mudflow Properties, J. Hydr. Eng. 114, 877–887, 1988.
O'Brien, J. S., Julien, P. Y., and Fullerton, W. T.: Two-Dimensional Water Flood and Mudflow Simulation, J. Hydraul. Eng.-ASCE, 119, 244–261, 1993.
O'Brien, J. S.: FLO2D User's Manual (Version 2003.06), FLO2D, Nutrioso, AZ, 2003.
O'Brien, J. S.: New approaches to Alluvial Fan Flood Hazard, Chapter 4, in Flood Hazard Identification and Mitigation in Semi- and Arid Environments, edited by: French, R. H. and Miller, J. J., World Scientific Publishing Co., Singapore, 62–86, 2012.
OFEE, OFAT, ODEFP (Switzerland) (Ed.): Prise en compte des dangers dus aux cruses le cadre des activités de l'aménagement du teritoire, Office fédéral de l'économie de aux (OFEE), Office fédéral de l'aménagement du territoire (OFAT), Office fédéral de l'environment, des forets et du paysage (OFEFP), Bienne, Switzerland, 1997.
Osti, R. and Egashira, S.: Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal, Hydrol. Process., 23, 2943–2955, 2009.
Portocarrero, C.: Reducing Risk From Dangerous Glacial Lakes in the Cordillera Blanca, Technical Report: The Glacial Lake Handbook, edited by: Armstrong, B., Anderson, G., Byers, A., Cote, M., Harlin, J., and McKinney, D., High Mountains Adaptation Program, United States Agency for International Development, Washington D.C., 2014.
PREVENE: Contribution to "Natural" Disaster Prevention in Venezuela. Cooperation: Venezuela – Switzerland – PNUD (Project VEN/00/005), 2001.
Raetzo, H., Lateltin, O., Bollinger, D., and Tripet, J. P.: Hazard assessment in Switzerland – Codes of Practice for mass Movements, Bull. Eng. Geol. Environ., 61, 263–268, 2002.
Reynolds, J. M., Dolecki, A., and Portocarrero, C.: The construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Cordillera Blanca, Peru, Geological Society, London, Engineering Geology Special Publications, 15, 41–48, 1998.
Ribberink, J. S.: Bed-load transport for steady flows and unsteady oscillatory flows, Coast. Eng., 34, 59–82, 1998.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern. Int., 65/66, 31–47, 2000.
Rickenmann, D.: Empirical Relationships for Debris Flows. Nat. Hazards, 19, 47–77, 1999.
Rivas, D. S., Somos-Valenzuela, M. A., Hodges, B. R., and McKinney, D. C.: Predicting outflow induced by moraine failure in glacial lakes: the Lake Palcacocha case from an uncertainty perspective, Nat. Hazards Earth Syst. Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015, 2015.
Rosenzweig C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., and Tryjanowski, P.: Assessment of observed changes and responses in natural and managed systems, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 79–131, 2007.
Rzadkiewicz, S. A., Mariotti, C., and Heinrich, P.: Numerical Simulation of Submarine Landslides and their Hydraulic Effects. J. Waterway, Port, Coast. Ocean Eng., 123, 149–157, 1997.
Schneider, D., Bartelt, P., Caplan-Auerbach, J., Christen, M., Huggel, C., and McArdell, B. W.: Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model, J. Geo. Res. 115, F04026, https://doi.org/10.1029/2010JF001734, 2010.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacial lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155, 2014.
Servicio Nacional de Geología y Minería: PMA_GCA – Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas: Movimientos en masa en la región andina: una guía para la evaluación de amenazas, Publicación Geológica Multinacional, 4, Proyecto Multinacional Andino, Geociencias para las Comunidades Andinas, Canada, No. 4, 432 pp., 2007.
Slingerland, R. L. and Voight, B.: Occurences, Properties and Predictive Models of Landslide-generated Impulse Waves, in: Rockslides and Avalanches, edited by: Voight, B., Develop. Geotechn. Eng., Elsevier, Amsterdam, 2, 317–397, 1979.
Slingerland, R. L. and Voight, B.: Evaluating hazard of landslide-induced water waves, J. of the Waterway, Port, Coastal and Ocean Div., Am. Soc. Civil Eng., 108, 504–512, 1982.
Somos-Valenzuela, M. A.: Vulnerability and Decision Risk Analysis in Glacier Lake Outburst Floods (GLOF), Case Studies: Quillcay Sub Basin in the Cordillera Blanca in Peru and Dudh Koshi Sub Basin in the Everest Region in Nepal, Ph.D. Dissertation, University of Texas at Austin, Austin, Texas, 2014.
Somos-Valenzuela, M. A., Chisolm, R. E., McKinney, D. C., and Rivas, D. A.: Inundation Modeling of a Potential Glacial Lake Outburst Flood in Huaraz, Peru, Center for Research in Water Resources Online Report 14-01, Center for Research in Water Resources, University of Texas at Austin, March 2014.
Somos-Valenzuela, M. A., McKinney, D. C., Byers, A. C., Rounce, D. R., Portocarrero, C., and Lamsal, D.: Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal, Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015, 2015..
Synolakis, C. E.: The runup of solitary waves, J. Fluid Mech., 185, 523–545, 1987.
Synolakis, C. E.: Tsunami runup on steep slopes – How good linear theory really is, Nat. Hazards, 4, 221–234, 1991.
UGRH – Unidad de Glaciologia y Recursos Hidricos: Autoridad Nacional de Agua (ANA) de Peru, Huaraz, Peru, 2009.
UGRH – Unidad de Glaciologia y Recursos Hidricos: Area de Inventario de Glaciares y Lagunas, Autoridad nacional del Agua, Direcccion de Conservacion y Planeamiento de Recursos Hidricos, Huaraz, Peru, 2010.
USACE – US Army Corps of Engineers: HEC-RAS River Analysis System Hydraulic Users Manual (Version 4.1). Hydrological Engineering Center, Davis, CA, 2010.
Vetsch, D., Siviglia, A., Ehrbar, D., Facchini, M., Gerber, M., Kammerer, S., Peter, S., Vonwiller, L., Volz, C., Farshi, D., Mueller, R., Rousselot, P., Veprek, R., and Faeh, R.: BASEMENT – Basement Simulation Environment for Computation of Environmental Flow and Natural Hazard Simuation, Version 2.5, ETH Zurich, VAW, 2006.
Vetsch, D., Rousselot, P., Volz, C., Vonwiller, L., Peter, S., Ehrbar, D., Gerber, M., Faeh, R., Farshi, D., Mueller, R., and Veprek, R.: System Manuals of BASEMENT, Version 2.4. Laboratory of Hydraulics, Glaciology and Hydrology (VAW, ETH Zurich, 314 pp., 2014.
Vilímek, V., Zapata, M., Klimeš, J., Patzelt, Z., and Santillán, N.: Influence of Glacial Retreat on Natural Hazards of the Palcacocha Lake Area, Peru, Landslides, 2, 107–115, 2005.
Visser, K., Hanson, G., Temple, D., Lobrecht, M., Neilsen, M., Funderburk, T., and Moody, H.: WinDAM B Earthen Embankment Overtopping Analysis Software, USDA-NRCS, Fort Worth, TX, 2011.
Wegner, S. A.: Lo Que el Agua se Llevó: Consecuencias y Lecciones del Aluvión de Huaraz de 1941, Technical Note 7 of the series 'Technical Notes on Climate Change", Ministry of Environment, Lima, Peru, 88 pp., 2014.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed glacial lakes, Earth Sci. Rev., 134, 137–159, July 2014, https://doi.org/10.1016/j.earscirev.2014.03.009, 2014a.
Westoby, M. J., Glasser, N. F., Hambrey, M. J., Brasington, J., Reynolds, J. M., and Hassan, M. A. A. M.: Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya, Earth Surf. Process. Landf., 39, 1675–1692, 2014b.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., Reynolds, J. M., Hassan, M. A. A. M., and Lowe, A.: Numerical modelling of glacial lake outburst floods using physically based dam-breach models, Earth Surf. Dynam., 3, 171–199, 2015.
WGMS – World Glacier Monitoring Service: Fluctuations of Glaciers 2005-2010 (Vol. X), edited by: Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., and W. Haeberli, ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 336 pp., Publication based on database version, https://doi.org/10.5904/wgms-fog-2012-11, 2012.
Wong, M. and Parker, G.: Reanalysis and correction of bed-load relation of Meyer-Peter and Mueller using their own database, J. Hydr. Eng., 132, 1159–1168, 2006.
Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., and Luckman, B.: Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina), J. Hydrol. 444–445, 134–145, 2012.
Worni, R., Huggel, C., Clague, J. J., Schaubd, Y., and Stoffel, M.: Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective, Geomorphology, 224, 161–176, 2014.
Wu, W., Wang, S. S. Y., and Jia, Y.: Nonuniform Sediment Transport in Alluvial Rivers, J. Hydr. Res., IAHR, 38, 427–434, 2000
Zweifel, A., Hager, W. H., and Minor, H. E.: Plane Impulse Waves in Reservoirs. J. Waterway, Port, Coast. Ocean Eng., 132, 358–368, 2006.
Short summary
This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha above the city of Huaraz, Peru. The chain of processes starting form an avalanche falling into the lake and leading to a possible GLOF are simulated and converted into flood intensity and hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Erosion from the overtopping wave did not result in failure of the damming moraine.
This paper presents simulations of all of the processes involved in a potential GLOF originating...