Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2587-2015
https://doi.org/10.5194/hess-19-2587-2015
Research article
 | 
02 Jun 2015
Research article |  | 02 Jun 2015

Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand

M. K. Stewart

Related authors

Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021,https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Irrigation return flow causing a nitrate hotspot and denitrification imprints in groundwater at Tinwald, New Zealand
Michael Kilgour Stewart and Philippa Lauren Aitchison-Earl
Hydrol. Earth Syst. Sci., 24, 3583–3601, https://doi.org/10.5194/hess-24-3583-2020,https://doi.org/10.5194/hess-24-3583-2020, 2020
Short summary
Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems
Michael K. Stewart, Uwe Morgenstern, Maksym A. Gusyev, and Piotr Małoszewski
Hydrol. Earth Syst. Sci., 21, 4615–4627, https://doi.org/10.5194/hess-21-4615-2017,https://doi.org/10.5194/hess-21-4615-2017, 2017
Short summary
Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds
Maksym A. Gusyev, Uwe Morgenstern, Michael K. Stewart, Yusuke Yamazaki, Kazuhisa Kashiwaya, Terumasa Nishihara, Daisuke Kuribayashi, Hisaya Sawano, and Yoichi Iwami
Hydrol. Earth Syst. Sci., 20, 3043–3058, https://doi.org/10.5194/hess-20-3043-2016,https://doi.org/10.5194/hess-20-3043-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
The role of catchment characteristics, discharge, and active layer thaw on seasonal stream chemistry across ten permafrost catchments
Arsh Grewal, Erin M. Nicholls, and Sean K. Carey
EGUsphere, https://doi.org/10.5194/egusphere-2024-2645,https://doi.org/10.5194/egusphere-2024-2645, 2024
Short summary
Ratio limits of water storage and outflow in a rainfall–runoff process
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024,https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary

Cited articles

Barthel, R.: HESS Opinions "Integration of groundwater and surface water research: an interdisciplinary problem?", Hydrol. Earth Syst. Sci., 18, 2615–2628, https://doi.org/10.5194/hess-18-2615-2014, 2014.
Bazemore, D. E., Eshleman, K. N., and Hollenbeck, K. J.: The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence, J. Hydrol., 162, 47–75, 1994.
Beven, K. J.: Hydrograph separation?, in: Proceedings of the BHS 3rd National Hydrology Symposium, Southampton, 1991.
Beven, K. J.: Rainfall–runoff modelling: the primer, 2nd Edn., Wiley-Blackwell, Chichester, 2012.
Biswal, B. and Marani, M.: Geomorphological origin of recession curves, Geophys. Res. Lett., 37, L24403, https://doi.org/10.1029/2010GL045415, 2010.
Download
Short summary
This paper presents new baseflow separation and recession analysis methods for streamflow. The baseflow separation method ("bump and rise method" or BRM) aims to accurately simulate the shape of tracer-determined baseflow or pre-event water. The recession analysis approach advocates analyzing quickflow and baseflow as well as streamflow because analyzing the latter alone gives misleading information on catchment storage reservoirs. The methods are demonstrated for the Glendhu streamflow record.
Share