Articles | Volume 29, issue 14
https://doi.org/10.5194/hess-29-3037-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3037-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends in long-term hydrological data from European karst areas: insights for groundwater recharge evaluation
BRGM, Univ. Montpellier, Montpellier, France
G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM, Montpellier, France
Yvan Caballero
BRGM, Univ. Montpellier, Montpellier, France
G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM, Montpellier, France
Andreas Hartmann
Institute for Groundwater Management, TU Dresden, Dresden, Germany
Jean-Baptiste Charlier
BRGM, Univ. Montpellier, Montpellier, France
G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Institut Agro, BRGM, Montpellier, France
Related authors
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Thomas Fichtner, Yuly Juliana Aguilar Avila, Andreas Hartmann, Stefan Seeger, Martin Maier, and Stephan Raspe
EGUsphere, https://doi.org/10.5194/egusphere-2025-4025, https://doi.org/10.5194/egusphere-2025-4025, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study examines how spatial soil moisture variability influences SVAT model calibration and the estimation of groundwater recharge in forest ecosystems. We show that model-inherent uncertainties affect predictions more strongly than soil moisture variability itself. Our results demonstrate that reliable groundwater recharge can be achieved using data from just six to seven profiles, providing practical guidance for more efficient field monitoring and model calibration.
Theresa Blume, Peter Chifflard, Stefan Achleitner, Andreas Hartmann, Stefan Hergarten, Luisa Hopp, Bernhard Kohl, Florian Leese, Ilja van Meerveld, Christian Reinhardt-Imjela, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2025-4424, https://doi.org/10.5194/egusphere-2025-4424, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Subsurface stormflow (SSF) is one of the least studied and therefore least understood runoff generation processes because detecting and quantifying SSF is extremely challenging. We present an ongoing concerted experimental effort to systematically investigate SSF across four catchments using a variety of methods covering different spatial scales. Centerpiece of this effort is the construction of 12 large trenches to capture and monitor SSF.
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 29, 2925–2950, https://doi.org/10.5194/hess-29-2925-2025, https://doi.org/10.5194/hess-29-2925-2025, 2025
Short summary
Short summary
Groundwater is a crucial resource at risk due to droughts. To understand drought effects on groundwater levels in Germany, we grouped 6626 wells into six regional and two national patterns. Weather explained half of the level variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (a few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77, https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript not accepted
Short summary
Short summary
This study presents a work to investigate the feasibility of using EC to predict the discharge in a typical karst catchment. We found that the spring discharge can be well predicted by EC in storms using LSTM (Long Short Term Memory) model, while the prediction has relatively large uncertainties in small recharge events. To establish a roust LSTM model for long-term discharge prediction from EC in ungauged catchments, the random or fixed-interval discharge monitoring strategy is recommended.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271, https://doi.org/10.5194/hess-2021-271, 2021
Preprint withdrawn
Short summary
Short summary
In this study we demonstrate the use of global data products for the regionalization of model parameters. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets identification, and spatial cross-validation. Our results show the best validation parameters provide the most robust regionalization results, and the uncertainties from the regionalization in the ungauged catchments are higher than those obtained from simulations in the gauged catchments.
Martin Le Mesnil, Roger Moussa, Jean-Baptiste Charlier, and Yvan Caballero
Hydrol. Earth Syst. Sci., 25, 1259–1282, https://doi.org/10.5194/hess-25-1259-2021, https://doi.org/10.5194/hess-25-1259-2021, 2021
Short summary
Short summary
We present an innovative approach consisting of the statistical analysis and comparison of 15 hydrological descriptors, characterizing catchment response to rainfall events. The distribution of these descriptors is analysed according to the occurrence of karst areas inside 108 catchments. It shows that karst impacts on storm events mainly result in river losses and that interbasin groundwater flows can represent a significant part of the catchment water budget ah the event timescale.
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.
Cited articles
Bailly-Comte, V., Ladouche, B., Charlier, J.-B., Hakoun, V., and Maréchal, J.-C.: XLKarst, an Excel tool for time series analysis, spring recession curve analysis and classification of karst aquifers, Hydrogeol. J., 31, 2401–2415, https://doi.org/10.1007/s10040-023-02710-w, 2023.
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.
Barthel, R., Stangefelt, M., Giese, M., Nygren, M., Seftigen, K., and Chen, D.: Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar climate, Geogr. Ann. A, 103, 323–345, https://doi.org/10.1080/04353676.2021.1969130, 2021.
Baulon, D., Massei, N., Bessiere, H., Fournier, M., and Bault, V.: Influence of low-frequency variability on groundwater level trends, J. Hydrol., 606, 127436, https://doi.org/10.1016/j.jhydrol.2022.127436, 2022.
Berghuijs, W. R., Woods, R. A., and Hrochowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/NCLIMATE2246, 2014.
Binet, S., Probst, J.-L., Batiot, C., Seidel, J. L., Emblanch, C., Peyraube, N., Charlier, J.-B., Bakalowicz, M., and Probst, A.: Global warming and acid atmospheric deposition impacts on carbonate dissolution and CO2 fluxes in French karst hydrosystems: Evidence from hydrochemical monitoring in recent decades, Geochim. Cosmochim. Ac., 270, 184–200, https://doi.org/10.1016/j.gca.2019.11.021, 2020.
Binet, S., Charlier, J.-B., Jozja, N., Défarge, C., and Moquet, J. S.: Evidence of long term biogeochemical interactions in carbonate weathering: The role of planktonic microorganisms and riverine bivalves in a large fluviokarst system, Sci. Total Environ., 842, 156823, https://doi.org/10.1016/j.scitotenv.2022.156823, 2022.
Bloomfield, J. P., Marchant, B. P., and McKenzie, A. A.: Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, 2019.
Blöschl, G., Hall, J., Viglione, A., Perdigao, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Bohac, M., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Boé, J. and Habets, F.: Multi-decadal river flow variations in France, Hydrol. Earth Syst. Sci., 18, 691–708, https://doi.org/10.5194/hess-18-691-2014, 2014.
Brenner, S., Coxon, G., Howden, N. J. K., Freer, J., and Hartmann, A.: Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England, Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, 2018.
Brunner, M. I. and Stahl, K.: Temporal hydrological drought clustering varies with climate and land-surface processes, Environ. Res. Lett., 18, 034011, https://doi.org/10.1088/1748-9326/acb8ca, 2023.
Charlier, J.-B., Ladouche, B., and Maréchal, J.-C.: Identyfying the impact of climate and anthropic pressure on karst aquifers using wavelet analysis, J. Hydrol., 523, 610–623, https://doi.org/10.1007/s10040-016-1519-3, 2015.
Charlier, J.-B., Tourenne, D., Hévin, G., Desprats, J.-F.: NUTRI-Karst – Réponses des agro-hydro-systèmes du massif du Jura face au changement climatique et aux activités anthropiques, BRGM/RP-72229-FR report, 238 pp., http://infoterre.brgm.fr/rapports/RP-72229-FR.pdf (last access: June 2024), 2022 (in French).
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Mossdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.: The world karst aquifer mapping project: concept, mapping prodecure and map of Europe, Hydrogeol. J., 25, 771–785, https://doi.org/10.1007/s10040-016-1519-3, 2017.
Chen, Z., Hartmann, A., Wagener, T., and Goldscheider, N.: Dynamics of water fluxes and storages in an Alpine karst catchment under current and potential future climate conditions, Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, 2018.
Cinkus, G., Mazzilli, N., and Jourde, H.: Identification of relevant indicators for the assessment of karst systems hydrological functioning: Proposal of a new classification, J. Hydrol., 603, 127006, https://doi.org/10.1016/j.jhydrol.2021.127006, 2021.
Clavera-Gispert, R., Quintana-Seguí, P., Palazn, L., Zabaleta, A., Cenobio, O., Barella-Ortiz, A., and Beguería, S.: Streamflow trends of the Pyrenees using observations and multi-model approach (1980–2013), Journal of Hydrology: Regional Studies, 46, 101322, https://doi.org/10.1016/j.ejrh.2023.101322, 2023.
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: 2018: An ensemble version of the E-OBS temperature and precipitation datasets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Dakhlalla, A. O., Parajuli, P. B., Ouyang, Y., and Schmitz, D.W.: Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed, Agr. Water Manage., 163, 332–343, https://doi.org/10.1016/j.agwat.2015.10.001, 2016.
Deng, K.-Q., Azorin-Molina, C., Yang, S., Hu, C.-D., Zhang, G.-F., Molina, L., Vicente-Serrano, S., and Chen, D.: Shifting of summertime weather extremes in Western Europe during 2012–2020, Advances in Climate Change Research, 13, 218–227, https://doi.org/10.1016/j.accre.2022.01.008, 2022.
De Vita, P., Allocca, V., Manna, F., and Fabbrocino, S.: Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy), Hydrol. Earth Syst. Sci., 16, 1389–1399, https://doi.org/10.5194/hess-16-1389-2012, 2012.
Dubois, E., Doummar, J., Pistre, S., and Larocque, M.: Calibration of a lumped karst system model and application to the Qachqouch karst spring (Lebanon) under climate change conditions, Hydrol. Earth Syst. Sci., 24, 4275–4290, 2020.
Eaufrance: Hydroportail, Eaufrance [data set], https://www.hydro.eaufrance.fr/, last access: 25 June 2025.
Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Fan, X., Goeppert, N., and Goldscheider, N.: Quantifiying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe, Hydrogeol. J., 31, 2213–2229, https://doi.org/10.1007/s10040-023-02703-9, 2023.
Fiorillo, F. and Doglioni, A.: The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy), Hydrogeol. J., 18, 1881–1895, https://doi.org/10.1007/s10040-010-0666-1, 2010.
Fiorillo, F. and Guadango, F. M.: Long karst spring discharge time series and droughts occurrence in Southern Italy, Environ. Earth. Sci., 65, 2273–2283, https://doi.org/10.1007/s12665-011-1495-9, 2012.
Fiorillo, F., Petitta, M., Preziosi, E., Rusi, S., Esposito, L., and Tallini, M.: Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy), Environ. Earth. Sci., 74, 153–172, https://doi.org/10.1007/s12665-014-3946-6, 2015.
Fiorillo, F., Leonel, G., Pagnozzi, M., and Esposito, L.: Long-term trends in karst spring discharge and relation to climate factors and changes, Hydrogeol. J., 29, 347–377, https://doi.org/10.1007/s10040-020-02265-0, 2021.
Ford, D. and Williams, P.: Karst Hydrogeology and Geomorphology, John Wiley & Sons Ltd, Chichester, https://doi.org/10.1002/9781118684986, 2007.
Giese, M.: Trends in long-term hydrological data from European karst areas: insights for groundwater recharge evaluation, Zenodo [code], https://doi.org/10.5281/zenodo.15870548, 2025.
Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A.: Low flows in France and their relationship to large-scale climate indices, J. Hydrol., 482, 105–118, 2013.
Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, J., Jiang, G., Moosdorf, N., Stevanovic, Z., and Veni, G.: Global distribution of carbonate rocks and karst water resources, Hydrogeol. J., 28, 1661–1677, 2020.
Haas, J. C. and Birk, S.: Trends in Austrian groundwater – Climate or human impact, Journal of Hydrology: Regional Studies, 22, 100597, https://doi.org/10.1016/j.ejrh.2019.100597, 2019.
Hamed, K. H. and Rao, R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204, 182–196, 1998.
Hänsel, S., Ustrnul, Z., Łupikasza, E., and Skalak, P.: Assessing seasonal drought variations and trends over Central Europe, Adv. Water Resour., 127, 53–75, https://doi.org/10.1016/j.advwatres.2019.03.005, 2019.
Harrigan, S., Hannaford, J., Muchan, K., and Marsh, T. J.: Designation and trend analysis of the updated UK Benchmark Network of river flow stations: The UKBN2 dataset, Hydrol. Res., 49, 552–567, https://doi.org/10.2166/nh.2017.058, 2018.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst water resources in a changing world: Review of hydrological modeling approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.: Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017.
Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Renard, B., Stahl, K., Fleig, A. K., Madsen, H., Mediero, L., Korhonen, J., Murphy, C., and Wilson, D.: Climate-driven variability in the occurrence of major floods across North America and Europe, J. Hydrol., 552, 704–717, https://doi.org/10.1016/j.jhydrol.2017.07.027, 2017.
Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., and Gurdak, J. J.: Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence, Hydrogeol. J., 19, 1269–1278, https://doi.org/10.1007/s10040-011-0755-9, 2011.
Ionita, M., Nagavciuc, V., Scholz, P., and Dima, M.: Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation, Journal of Hydrology: Regional Studies, 42, 101176, https://doi.org/10.1016/j.ejrh.2022.101176, 2022.
IPCC: Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, ISBN 978-1009157889, 2021.
Jódar, J., González-Ramón, A., Martos-Rosillo, S., Heredia, J., Herrera, C., Urrutia, J., Caballero, Y., Zabaleta, A., Antigüedad, I., Custodio, E., and Lambán, L. J.: Snowmelt as a determinant factor in the hydrogeological behaviour of high mountain karst aquifers: The Garcés karst system, Central Pyrenees (Spain), Sci. Total Environ., 748, 141363, https://doi.org/10.1016/j.scitotenv.2020.141363, 2020.
Kendall, M. G.: Rank Correlation Methods, Griffin, ISBN 0-85264-199-0, 1948.
Kovacic, G., Petric, M., and Ravbar, N.: Evaluation and quantification of the effects of climate and vegetation cover change on karst water sources: case studies of two springs in south-western Slovenia, Water-Sui., 12, 3087, https://doi.org/10.3390/w12113087, 2020.
Ladson, A. R., Brown, R., Neal, B., and Nathan, R.: A standard approach to baseflow separation using the Lyne and Hollick filter, Australian Journal of Water Resources, 17, 173–180, 2013.
Lanini, S. and Caballero, Y.: ESPERE, a tool for multimethod aquifer recharge estimation: What' s new with version 2?, Groundwater, 59, 5–6, https://doi.org/10.1111/gwat.13049, 2021.
Larocque, M., Mangin, A., Razack, M., and Banton, O.: Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France), J. Hydrol., 205, 217–231, https://doi.org/10.1016/S0022-1694(97)00155-8, 1998.
Leone, G., Pagnozzi, M., Catani, V., Ventafridda, G., Esposito, L., and Fiorillo, F.: A hundred years of Caposele spring discharge measurements: trends and statistics for understanding water resource availability under climate change, Stochastical Environmental Research and Risk Assessment, 35, 345–370, https://doi.org/10.1007/s00477-020-01908-8, 2021.
Lorenzi, V., Sbarbati, C., Benzato, F., Lacchini, A., and Petitta, M.: Recharge assessment of the Gran Sasso aquifer (Central Italy): Time-variable infiltration and influence of snow cover extension, Journal of Hydrology: Regional Studies, 41, 101090, https://doi.org/10.1016/j.ejrh.2022.101090, 2022.
Lorenzo-Lacruz, J., Moran-Tejeda, E., Vicente-Serrano, S. M., Hannaford, J., Garcia, C., Pena-Angulo, D., and Murphy, C.: Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns, Global Planet. Change, 212, 103797, https://doi.org/10.1016/j.gloplacha.2022.103797, 2022.
Lyne, V. and Hollick, M.: Stochastic time-variable rainfall-runoff modelling, Hydrology and Water Resources Symposium. Institution of Engineers Australia, National Conference, January 1979, Perth, Western Australia, 89–93, 1979.
Maillet, E. T.: Essais d'hydraulique souterraine et fluviale, Herman et Cle, Paris, 1905.
Mangin, A.: Contribution à l'étude hydrodynamique de aquifères karstiques, PhD thesis, Université de Dijon, France, 1975.
Mangin, A.: Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale, J. Hydrol., 67, 25–43, https://doi.org/10.1016/0022-1694(84)90230-0, 1984.
Mangini, W., Viglione, V., Hall, J., Hundecha, Y., Ceola, S., Montanari, A., Rogger, M., Salina, J. L., Borzi, I., and Paraika, J.: Detection of trends in magnitude and frequency of flood peaks across Europe, Hydrolog. Sci. J., 63, 493–512, https://doi.org/10.1080/02626667.2018.1444766, 2018.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
Maréchal, J.-C., Ladouche, B., and Dörfliger, N.: Karst flash flooding in a Mediterranean karst, the example of Fontaine de Nîmes, Eng. Geol., 99, 138–146, https://doi.org/10.1016/j.enggeo.2007.11.013, 2008.
Martinsen, G., Bessiere, H., Caballero, Y., Koch, J., Collados-Lara, A. J., Mansour, M., Sallasmaa, O., Pulido-Velazquez, D., Hunter Williams, N., Jan Zaadnoordijk, W., and Stisen, S.: Developing a pan-European high-resolution groundwater recharge map – Combining satellite data and national survey data using machine learning, Sci. Total Environ., 822, 153464, https://doi.org/10.1016/j.scitotenv.2022.153464, 2022.
Moeck, C., Grech-Cumboa, N., Podgorski, J., Bretzler, A., Gurdak, J. J., Berg, M., and Schirmer, M.: A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships, Sci. Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020.
Mohan, C., Western, A. W., Wei, Y., and Saft, M.: Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study, Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, 2018.
Neves, M. C., Jerez, S., and Trigo, R. M.: The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns, J. Hydrol., 568, 1105–1117, https://doi.org/10.1016/j.jhydrol.2018.11.054, 2019.
Nygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M., and Barthel, R.: Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone, J. Hydrology X, 8, 100062, https://doi.org/10.1016/j.hydroa.2020.100062, 2020.
Nygren, M., Giese, M., and Barthel, R.: Recent trends in hydroclimate and groundwater levels in a region with seasonal frost cover, J. Hydrol., 602, 126732, https://doi.org/10.1016/j.jhydrol.2021.126732, 2021.
Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B., Auler, A., Barberá, J. A., Batiot-Guilhe, C., Bechtel, T., Binet, S., Bittner, D., Blatnik, M., Bolger, T., Brunet, P., Charlier, J.-B., Chen, Z., Chiogna, G., Coxon, G., De Vita, P., Doummar, J., Epting, J., Fournier, M., Goldscheider, N., Gunn, J., Guo, F., Guyot, J. L., Howden, N., Huggenberger, P., Hunt, B., Jeannin, P. Y., Jiang, G., Jones, G., Jourde, H., Karmann, I., Koit, O., Kordilla, J., Labat, D., Ladouche, B., Liso, I. S., Liu, Z., Massei, N., Mazzilli, N., Mudarra, M., Parise, M., Pu, J., Ravbar, N., Sanchez, L. H., Santo, A., Sauter, M., Sivelle, V., Skoglund, R. Ø., Stevanovic, Z., Wood, C., Worthington, S., and Hartmann, A.: Global karst soring hydrograph dataset for research and management of the world' s fastest-flowing groundwater, Sci. Data, 7, 59, https://doi.org/10.1038/s41597-019-0346-5, 2020 (code available at: https://github.com/KarstHub/WoKaS, last access: 11 August 2023).
Owen, P. W., Roberts, G., Prigent, O., Markus, R., Tanguy, B., Bridgford, M., Katharina, B., Ciabatti, I., Gatter, L., Gilson, V., Kubat, J., Laanes, L., Simeonova, R., Critoph, H., and Annette, Z.: Flood Directive: progress in assessing risks, while planning and implementation need to improve, Special Report No. 25, Luxembourg, https://doi.org/10.2865/12240, 2018.
Padilla, A. and Pulido-Bosch, A.: Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis, J. Hydrol., 168, 73–89, https://doi.org/10.1016/0022-1694(94)02648-U, 1995.
Palacios-Cabrera, T., Valdes-Abellan, J., Jodar-Abellan, A., and Rodrigo-Cominod, J.: Land-use changes and precipitation cycles to understand hydrodynamic responses in semiarid Mediterranean karstic watersheds, Sci. Total Environ., 819, 153182, https://doi.org/10.1016/j.scitotenv.2022.153182, 2022.
Palmer, A. N.: Origin and morphology of limestone caves, Geol. Soc. Am. Bull., 103, 1–21, 1991.
Peña-Angulo, D., Reig-Gracia, F., Domínguez-Castro, F., Revuelto, J., Aguilar, E., van der Schrier, G., and Vicente-Serrano, S. M.: ECTACI: European climatology and trend atlas of climate indices (1979–2017), J. Geophys. Res.-Atmos., 125, e2020JD032798, https://doi.org/10.1029/2020JD032798, 2020.
Petitta, M., Benzato, F., Lorenzi, V., Matani, E., and Sbarbati, C.: Determining recharge distribution in fractured carbonate aquifers in central Italy using environmental isotopes: snowpack cover as an indicator for future availability of groundwater resources, Hydrogeol. J., 30, 1619–1636, https://doi.org/10.1007/s10040-022-02501-9, 2022.
Philip, S. Y., Kew, S. F., van der Wiel, K., Wanders, N., and van Oldenborgh, G. J.: Regional differentiation in climate change induced drought trends in the Netherlands, Environ. Res. Lett., 15, 094081, https://doi.org/10.1088/1748-9326/ab97ca, 2020.
Piggott, A. R., Moin, S., and Southam, C.: A revised approach to the UKIH method for the calculation of baseflow, Hydrolog. Sci. J., 50, 911–920, https://doi.org/10.1623/hysj.2005.50.5.911, 2005.
Quinlan, J. F. and Ewers, R. O.: Ground Water Flow in Limestone Terranes: Strategy Rationale and Procedure for Reliable, Efficient Monitoring of Ground Water Quality in Karst Areas. Fifth National Symposium and Exposition on Aquifer Restoration, Columbus, Ohio , Proceedings, 197–234, 1985.
Riedel, T. and Weber, T. K. D.: The influence of global change on Europe's water cycle and groundwater recharge, Hydrogeol. J., 28, 1939–1959, https://doi.org/10.1007/s10040-020-02165-3, 2020.
Rust, W., Holman, I., Corstanje, R., Bloomfield, J., and Cuthbert, M.: A conceptual model for climatic teleconnection signal control on groundwater variability in Europe, Earth-Sci. Rev., 177, 164–174, 2018.
Rust, W., Holman, I., Bloomfield, J., Cuthbert, M., and Corstanje, R.: Understanding the potential of climate teleconnections to project future groundwater drought, Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019, 2019.
Rutledge, A. T.: Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow data – update, U. S. Geological Survey Water-Resources Investigations Report, 98–4148, 1998.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Seidenfaden, I. K., Mansour, M., Bessiere, H., Pulido-Velazquez, D., Højberg, A., Samolov, K. A., Baena-Ruiz, L., Bishop, H., Dessì, B., Hinsby, K., Hunter-Williams, N. H., Larva, O., Martarelli, L., Mowbray, R., Nielsen, A. J., Öhman, J., Petrovic-Pantic, T., Stroj, A., van der Keur, P., and Zaadnoordijk, W. J.: Evaluating recharge estimates based on groundwater head from different lumped models in Europe, J. Hydrol.: Regional Studies, 47, 101399, https://doi.org/10.1016/j.ejrh.2023.101399, 2023.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Sloto, R. A. and Crouse, M. Y.: HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis, U. S. Geological Survey Water-Resources Investigations Report 1996–4040, https://pubs.er.usgs.gov/publication/wri964040 (last access: June 2025), 1996.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol., 240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Smart, P. L. and Hobbs, S. L.: Characterization of carbonate aquifers – A conceptual base, in: Environmental problems in karst terranes and their solutions: Bowling Green, KY, 1–14, 1986.
Teuling, A. J., de Badts, E. A. G., Jansen, F. A., Fuchs, R., Buitink, J., Hoek van Dijke, A. J., and Sterling, S. M.: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe, Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, 2019.
Tramblay, Y., Mimeau, L., Neppel, L., Vinet, F., and Sauquet, E.: Detection and attribution of flood trends in Mediterranean basins, Hydrol. Earth Syst. Sci., 23, 4419–4431, https://doi.org/10.5194/hess-23-4419-2019, 2019.
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S., Cailleret, M., Cindrić Kalin, K., Davi, H., Dupuy, J.-L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D., Turco, M., Türkeş, M., Trigo, R., Vidal, J.-P., Vilagrosa, A., Zribi, M., and Polcher, J.: Challenges for drought assessment in the Mediterranean region under future climate scenarios, Earth-Sci. Rev., 210, 103348, https://doi.org/10.1016/j.earscirev.2020.103348, 2020.
Vicente-Serrano, S. M., Peña-Gallardo, M., Hannaford, J., Murphy, C., Lorenzo-Lacruz, J., Dominguez-Castro, F., López-Moreno, J. L., Beguería, S., Noguera, I., Harrigan, S., and Vidal, J.-P.: Climate, irrigation, and land cover change explain streamflow trends in countries bordering the northeast Atlantic, Geophys. Res. Lett., 46, 10821–10833, https://doi.org/10.1029/2019GL084084, 2019.
Vilhar, U., Kermavna, J., Kozamernik, E., Petric, M., and Ravbar, N.: The effects of large-scale forest disturbances on hydrology – An overview with special emphasis on karst aquifer systems, Earth-Sci. Rev., 235, 104243, https://doi.org/10.1016/j.earscirev.2022.104243, 2022.
Zhang, J., Liesch, T., Chen, Z., and Goldscheider, N.: Global analysis of land-use changes in karst areas and the implications for water resources, Hydrogeol. J., 31, 1197–1208, https://doi.org/10.1007/s10040-023-02650-5, 2023.
Short summary
Karst springs respond quickly to environmental changes, making them crucial to understanding climate impacts on groundwater. This study analyses long-term trends in precipitation, temperature, and discharge from more than 50 springs across Europe. Results show that while historical discharge trends align with those of rivers, recent changes are driven by rising temperatures rather than precipitation. These findings highlight climate-driven shifts in groundwater recharge and storage processes.
Karst springs respond quickly to environmental changes, making them crucial to understanding...