Articles | Volume 29, issue 6
https://doi.org/10.5194/hess-29-1525-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-1525-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City, 106319, Republic of China
Ralf Merz
Institute of Geosciences and Geography, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
Department Catchment Hydrology, Helmholtz-Centre for Environmental Research, Halle (Saale), Germany
Stefano Basso
Department of Geography, Norwegian University of Science and Technology, Trondheim, 7491, Norway
Related authors
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Christina Franziska Radtke, Xiaoqiang Yang, Christin Müller, Jarno Rouhiainen, Ralf Merz, Stefanie R. Lutz, Paolo Benettin, Hong Wei, and Kay Knöller
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-109, https://doi.org/10.5194/hess-2024-109, 2024
Preprint under review for HESS
Short summary
Short summary
Most studies assume no difference between transit times of water and nitrate, because nitrate is transported by water. With an 8-year high-frequency dataset of isotopic signatures of both, water and nitrate, and a transit time model, we show the temporal varying difference of nitrate and water transit times. This finding is highly relevant for applied future research related to nutrient dynamics in landscapes under anthropogenic forcing and for managing impacts of nitrate on aquatic ecosystems.
Matteo Pesce, Alberto Viglione, Jost von Hardenberg, Larisa Tarasova, Stefano Basso, Ralf Merz, Juraj Parajka, and Rui Tong
Proc. IAHS, 385, 65–69, https://doi.org/10.5194/piahs-385-65-2024, https://doi.org/10.5194/piahs-385-65-2024, 2024
Short summary
Short summary
The manuscript describes an application of PArameter Set Shuffling (PASS) approach in the Alpine region. A machine learning decision-tree algorithm is applied for the regional calibration of a conceptual semi-distributed hydrological model. Regional model efficiencies don't decrease significantly when moving in space from catchments used for the regional calibration (training) to catchments used for the procedure validation (test) and, in time, from the calibration to the verification period.
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Xing Chen, Mukesh Kumar, Stefano Basso, and Marco Marani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-65, https://doi.org/10.5194/hess-2018-65, 2018
Preprint withdrawn
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Exploring the provenance of information across Canadian hydrometric stations: implications for discharge estimation and uncertainty quantification
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Hydrological Controls on Temporal Contributions of Three Nested Forested Subcatchments to DOC Export
Technical Note on high-frequency, multi-elemental stream water monitoring: experiences, feedbacks, and suggestions from seven years of running three French field laboratories (Riverlabs)
Changes in flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru
Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain
Adaptively monitoring streamflow using a stereo computer vision system
Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Seasonal variation and release of soluble reactive phosphorus in an agricultural upland headwater in central Germany
Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration–discharge relationship derived from a high-frequency data set
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
CABra: a novel large-sample dataset for Brazilian catchments
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Soil moisture sensor network design for hydrological applications
Catchment-scale drought: capturing the whole drought cycle using multiple indicators
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Surface water as a cause of land degradation from dryland salinity
Technical note: A microcontroller-based automatic rain sampler for stable isotope studies
Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment
Open-source Arduino-compatible data loggers designed for field research
Water-use dynamics of an alien-invaded riparian forest within the summer rainfall zone of South Africa
Technical note: Mapping surface-saturation dynamics with thermal infrared imagery
Value of uncertain streamflow observations for hydrological modelling
Why has catchment evaporation increased in the past 40 years? A data-based study in Austria
Technical note: GUARD – an automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions
Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China
Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)
Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017)
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024, https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-250, https://doi.org/10.5194/hess-2024-250, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The release of carbon from landscapes into streams is one important component within the global carbon cycle. We measured the concentrations of dissolved organic carbon (DOC), one of the forms in which carbon can be present, in the streams of three nested forested subcatchments over 12 months. The export of DOC is closely linked to water flow processes within the subcatchments, but the interplay of soils, vegetation, topography and microclimate results in distinct seasonal DOC release patterns.
Nicolai Brekenfeld, Solenn Cotel, Mikael Faucheux, Colin Fourtet, Yannick Hamon, Patrice Petitjean, Arnaud Blanchouin, Celine Bouillis, Marie-Claire Pierret, Hocine Henine, Anne-Catherine Pierson-Wickmann, Sophie Guillon, Paul Floury, and Ophelie Fovet
EGUsphere, https://doi.org/10.5194/egusphere-2024-902, https://doi.org/10.5194/egusphere-2024-902, 2024
Short summary
Short summary
In the last decade, the development of on-site field laboratories to measure water chemistry at sub-hourly measurement intervals drastically advanced while there is no litterature that provide detailed technical, organisational and operational guidelines in running such equipments. Based on our experiences of running three French field laboratories over seven years, we share the difficulties we encountered and the procedures we used to identify and eliminate their causes.
Izabela Bujak-Ozga, Jana von Freyberg, Margaret Zimmer, Andrea Rinaldo, Paolo Benettin, and Ilja van Meerveld
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-67, https://doi.org/10.5194/hess-2024-67, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Stream networks expand and contract affecting the amount and quality of water in perennial streams. This study presents measurements of changes in water chemistry and the flowing portion of the drainage network during rainfall events in two neighboring catchments. Despite the proximity, similar size, soil and bedrock, water chemistry and stream network dynamics differed substantially for the two catchments. These differences are attributed to the differences in slope and channel network.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023, https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Short summary
In semi-arid regions, the problem of water shortages is becoming more and more serious with the acceleration of urbanization. Based on isotope data and hydrometeorological data, we analysed the impact of urbanization on the water cycle of the basin. The results showed that urbanization sped up the process of rainfall runoff. The MRT got shorter from upstream to downstream, and the landscape dams that were built during urbanization made the river evaporate even more.
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023, https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Short summary
Rapid climate warming creates barriers for us to investigate water resource states. Using stable and radioactive isotopes, we identified the seasonality and spatiality of the water cycle in the northeastern Tibetan Plateau. Climate warming/humidification accelerates the water cycle in alpine arid basins. Precipitation and meltwater infiltrate along preferential flow paths to facilitate rapid groundwater recharge. Total water resources may show an initially increasing and then decreasing trend.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023, https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023, https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023, https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
Short summary
Undisturbed soil monoliths combine advantages of outdoor and indoor experiments; however, there are often size limitations. A promising approach is the combination of smaller blocks to form a single large monolith. We compared the runoff properties of monoliths cut in half and recombined with uncut blocks. The effect of the combination procedure was negligible compared to the inherent soil heterogeneity, and we conclude that advantages outweigh possible adverse effects.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
María Luz Rodríguez-Blanco, María Teresa Taboada-Castro, and María Mercedes Taboada-Castro
Hydrol. Earth Syst. Sci., 27, 1243–1259, https://doi.org/10.5194/hess-27-1243-2023, https://doi.org/10.5194/hess-27-1243-2023, 2023
Short summary
Short summary
We examine the N dynamics in an Atlantic headwater catchment in the NW Iberian Peninsula, using high-frequency measurements of NO3 and TKN (total Kjeldahl N) during runoff events. The divergence dynamics observed between N components exemplifies the complexity of and variability in NO3 and TKN processes, highlighting the need to understand dominant hydrological pathways for the development of N-specific management plans to ensure that control measures are most effective at the catchment scale.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Short summary
We have collected and synthesized catchment attributes from multiple sources into an extensive dataset, the Catchment Attributes for Brazil (CABra). CABra contains streamflow and climate daily series for 735 catchments in the 1980–2010 period, aside from dozens of attributes of topography, climate, streamflow, groundwater, soil, geology, land cover, and hydrologic disturbance. The CABra intends to pave the way for a better understanding of catchments' behavior in Brazil and the world.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021, https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Short summary
Understanding when, where, and how nitrate is exported from watersheds is the key to addressing the challenges that excess nutrients pose. We analyzed daily nitrate and streamflow data for five nested, agricultural watersheds that export high levels of nitrate over a 4-year time period. Nutrient export patterns varied seasonally during baseflow but were stationary during stormflow. Additionally, anthropogenic and geologic factors drove nutrient export during both baseflow and stormflow.
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021, https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary
Short summary
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution (e.g. gullies generate approximately 40 % of the sediment pollution impacting the Great Barrier Reef). This study used a new method of monitoring to demonstrate how large-scale earthworks used to remediated large gullies (i.e. eroding landforms > 1 ha) can drastically improve the water quality of connected waterways and, thus, protect vulnerable ecosystems in downstream-receiving waters.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020, https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary
Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020, https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Short summary
Soil moisture plays an important role in hydrological modelling. However, most existing in situ observation networks rarely provide sufficient coverage to capture soil moisture variations. Clearly, there is a need to develop a systematic approach, so that with the minimal number of sensors the soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed (WRF, PCA, CA), which can provide very efficient soil moisture estimations.
Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose
Hydrol. Earth Syst. Sci., 24, 1985–2002, https://doi.org/10.5194/hess-24-1985-2020, https://doi.org/10.5194/hess-24-1985-2020, 2020
Short summary
Short summary
To be better prepared for drought, we need to be able to characterize how they begin, translate to on-ground impacts and how they end. We created a 100-year drought record for an area on the east coast of Australia and compared this with soil moisture and vegetation data. Drought reduces vegetation and soil moisture, but recovery rates are different across different catchments. Our methods can be universally applied and show the need to develop area-specific data to inform drought management.
Clemens Messerschmid, Martin Sauter, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020, https://doi.org/10.5194/hess-24-887-2020, 2020
Short summary
Short summary
Recharge assessment in the shared transboundary Western Aquifer Basin is highly relevant, scientifically as well as hydropolitically (in Israeli–Palestinian water negotiations). Our unique combination of field-measured soil characteristics and soil moisture time series with soil moisture saturation excess modelling provides a new basis for the spatial differentiation of formation-specific groundwater recharge (at any scale), applicable also in other previously ungauged basins around the world.
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020, https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Nils Michelsen, Gerrit Laube, Jan Friesen, Stephan M. Weise, Ali Bakhit Ali Bait Said, and Thomas Müller
Hydrol. Earth Syst. Sci., 23, 2637–2645, https://doi.org/10.5194/hess-23-2637-2019, https://doi.org/10.5194/hess-23-2637-2019, 2019
Short summary
Short summary
Most commercial automatic rain samplers are costly and do not prevent evaporation from the collection bottles. Hence, we have developed a microcontroller-based collector enabling timer-actuated integral rain sampling. The simple, low-cost device is robust and effectively minimizes post-sampling evaporation. The excellent performance of the collector during an evaporation experiment in a lab oven suggests that even multi-week field deployments in warm climates are feasible.
Michael Engel, Daniele Penna, Giacomo Bertoldi, Gianluca Vignoli, Werner Tirler, and Francesco Comiti
Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019, https://doi.org/10.5194/hess-23-2041-2019, 2019
Short summary
Short summary
Hydrometric and geochemical dynamics are controlled by interplay of meteorological conditions, topography and geological heterogeneity. Nivo-meteorological indicators (such as global solar radiation, temperature and decreasing snow depth) explain monthly conductivity and isotopic dynamics best. These insights are important for better understanding hydrochemical responses of glacierized catchments under a changing cryosphere.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Bruce C. Scott-Shaw and Colin S. Everson
Hydrol. Earth Syst. Sci., 23, 1553–1565, https://doi.org/10.5194/hess-23-1553-2019, https://doi.org/10.5194/hess-23-1553-2019, 2019
Short summary
Short summary
The research undertaken for this study has allowed for an accurate direct comparison of indigenous and introduced tree water use. The measurements of trees growing in the understorey indicate significant water use in the subcanopy layer. The results showed that individual tree water use is largely inter-species specific. The introduced species remain active during the dry winter periods, resulting in their cumulative water use being significantly greater than that of the indigenous species.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Doris Duethmann and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, https://doi.org/10.5194/hess-22-5143-2018, 2018
Short summary
Short summary
We analyze changes in catchment evaporation estimated from the water balances of 156 catchments in Austria over 1977–2014, as well as the possible causes of these changes. Our results show that catchment evaporation increased on average by 29 ± 14 mm yr−1 decade−1. We attribute this increase to changes in atmospheric demand (based on reference and pan evaporation), changes in vegetation (quantified by a satellite-based vegetation index), and changes in precipitation.
Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann
Hydrol. Earth Syst. Sci., 22, 4281–4293, https://doi.org/10.5194/hess-22-4281-2018, https://doi.org/10.5194/hess-22-4281-2018, 2018
Short summary
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.
Yuedong Guo, Changchun Song, Wenwen Tan, Xianwei Wang, and Yongzheng Lu
Hydrol. Earth Syst. Sci., 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018, https://doi.org/10.5194/hess-22-1081-2018, 2018
Short summary
Short summary
The study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China. The findings indicated that the DOC export is a transport-limited process and the DOC load was significant for the net carbon balance in the studied catchment. The flowpath shift process is key to observed DOC concentration, resources and chemical characteristics in discharge. Permafrost degradation would likely elevate the proportion of microbe-originated DOC in baseflow.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Daniele P. Viero
Hydrol. Earth Syst. Sci., 22, 171–177, https://doi.org/10.5194/hess-22-171-2018, https://doi.org/10.5194/hess-22-171-2018, 2018
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, Rome, ISBN 92-5-104219-5,998.
Alstott, J., Bullmore, E., and Plenz, D.: Powerlaw: A python package for analysis of heavy-tailed distributions, PLoS One, 9, e95816, https://doi.org/10.1371/journal.pone.0085777, 2014.
Arai, R., Toyoda, Y., and Kazama, S.: Runoff recession features in an analytical probabilistic streamflow model, J. Hydrol., 597, 125745, https://doi.org/10.1016/j.jhydrol.2020.125745, 2020.
Barnes, B. S.: The structure of discharge-recession curves, EOS T. AGU, 20, 721–725, https://doi.org/10.1029/TR020i004p00721, 1939.
Basso, S., Botter, G., Merz, R., and Miniussi, A.: PHEV! The PHysically-based Extreme Value distribution of river flows, Environ. Res. Lett., 16, 124065, https://doi.org/10.1088/1748-9326/ac3d59, 2021.
Basso, S., Schirmer, M., and Botter, G.: On the emergence of heavy-tailed streamflow distributions, Adv. Water Resour., 82, 98–105, https://doi.org/10.1016/j.advwatres.2015.04.013, 2015.
Basso, S., Schirmer, M., and Botter, G.: A physically based analytical model of flood frequency curves, Geophys. Res. Lett., 43, 9070–9076, https://doi.org/10.1002/2016GL069915, 2016.
Basso, S., Merz, R., Tarasova, L., and Miniussi, A.: Extreme flooding controlled by stream network organization and flow regime, Nat. Geosci., 16, 339–343, https://doi.org/10.1038/s41561-023-01155-w, 2023.
Bayerisches Landesamt für Umwelt: Abfluss Bayern, Bayerisches Landesamt für Umwelt [data set], https://www.gkd.bayern.de/de/fluesse/abfluss, last access: 26 August 2022.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bernardara, P., Schertzer, D., Sauquet, E., Tchiguirinskaia, I., and Lang, M.: The flood probability distribution tail: How heavy is it?, Stoch. Env. Res. Risk A., 22, 107–122, https://doi.org/10.1007/s00477-006-0101-2, 2008.
Bevere, L. and Remondi, F.: Natural catastrophes in 2021: the floodgates are open, Swiss Re Institute sigma research, https://www.swissre.com/press-release/Extreme-flood-events-once-again-drive-high-losses-in-2021-yet-75-of-flood-risks-remain-uninsured-Swiss-Re-Institute-reveals/3269ad99-b743-4398-82e3-534a87783910 (last access: 5 December 2022), 2022.
Biswal, B. and Kumar, D. N.: Study of dynamic behaviour of recession curves, Hydrol. Process., 792, 784–792, https://doi.org/10.1002/hyp.9604, 2014.
Biswal, B. and Marani, M.: Geomorphological origin of recession curves, Geophys. Res. Lett., 37, L24403, https://doi.org/10.1029/2010GL045415, 2010.
Botter, G.: Stochastic recession rates and the probabilistic structure of stream flows, Water Resour. Res., 46, W12527, https://doi.org/10.1029/2010WR009217, 2010.
Botter, G., Peratoner, F., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Signatures of large-scale soil moisture dynamics on streamflow statistics across U.S. climate regimes, Water Resour. Res., 43, 1–10, https://doi.org/10.1029/2007WR006162, 2007a.
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response, Water Resour. Res., 43, 1–14, https://doi.org/10.1029/2006WR005043, 2007b.
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Nonlinear storage-discharge relations and catchment streamflow regimes, Water Resour. Res., 45, 1–16, https://doi.org/10.1029/2008WR007658, 2009.
Botter, G., Basso, S., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Natural streamflow regime alterations: Damming of the Piave river basin (Italy), Water Resour. Res., 46, 1–14, https://doi.org/10.1029/2009WR008523, 2010.
Brutsaert, W. and Nieber, J. L.: Regionalized drought flow hydrographs from a mature glaciated plateau, Water Resour. Res., 13, 637–643, https://doi.org/10.1029/WR013i003p00637, 1977.
Bundesanstalt für Gewässerkunde: Global Runoff Database, Bundesanstalt für Gewässerkunde [data set], https://grdc.bafg.de/data/data_portal_guide/, last access: 29 August 2022.
Cai, Y. and Hames, D.: Minimum sample size determination for generalized extreme value distribution, Commun. Stat. Simulat., 40, 87–98, https://doi.org/10.1080/03610918.2010.530368, 2010.
Ceola, S., Botter, G., Bertuzzo, E., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Comparative study of ecohydrological streamflow probability distributions, Water Resour. Res., 46, 1–12, https://doi.org/10.1029/2010WR009102, 2010.
CGIAR Consortium for Spatial Information: SRTM 90m Digital Elevation Database v4.1, CGIAR Consortium for Spatial Information [data set], https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1, last access: 21 August 2022.
Chen, B. and Krajewski, W.: Analysing individual recession events: sensitivity of parameter determination to the calculation procedure, Hydrolog. Sci. J., 61, 2887–2901, https://doi.org/10.1080/02626667.2016.1170940, 2016.
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-law distributions in empirical data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009.
Clauset, A., Young, M., and Gleditsch, K. S.: On the Frequency of Severe Terrorist Events, J. Conflict Resolut., 51, 58–87, https://doi.org/10.1177/0022002706296157, 2007.
Cunderlik, J. M. and Burn, D. H.: Utilisation d'une information sur le régime des crues dans une analyse fréquentielle régionale des crues, Hydrolog. Sci. J., 47, 77–92, https://doi.org/10.1080/02626660209492909, 2002.
Doulatyari, B., Betterle, A., Basso, S., Biswal, B., Schirmer, M., and Botter, G.: Predicting streamflow distributions and flow duration curves from landscape and climate, Adv. Water Resour., 83, 285–298, https://doi.org/10.1016/j.advwatres.2015.06.013, 2015.
Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., and Thompson, S. E.: Event-scale power law recession analysis: quantifying methodological uncertainty, Hydrol. Earth Syst. Sci., 21, 65–81, https://doi.org/10.5194/hess-21-65-2017, 2017.
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H. V, Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3–17, https://doi.org/10.1016/j.jhydrol.2005.07.031, 2006.
Durrans, S. R., Eiffe, M. A., Thomas, W. O., and Goranflo, H. M.: Joint Seasonal/Annual Flood Frequency Analysis, J. Hydrol. Eng., 8, 181–189, https://doi.org/10.1061/(asce)1084-0699(2003)8:4(181), 2003.
El Adlouni, S., Bobée, B., and Ouarda, T. B. M. J.: On the tails of extreme event distributions in hydrology, J. Hydrol., 355, 16–33, https://doi.org/10.1016/j.jhydrol.2008.02.011, 2008.
European Environmental Agency: Mapping the impacts of natural hazards and technological accidents in Europe An overview of the last decade, Publications Office of the European Union, https://doi.org/10.2800/62638, 2010.
Farquharson, F. A. K., Meigh, J. R., and Sutcliffe, J. V.: Regional flood frequency analysis in arid and semi-arid areas, J. Hydrol., 138, 487–501, https://doi.org/10.1016/0022-1694(92)90132-F, 1992.
Fick, S. E. and Hijmans, R. J.: WorldClim 2 new 1-km spatial resolution climate surfaces for global land areas.pdf.crdownload, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fiorentino, M., Manfreda, S., and Iacobellis, V.: Peak runoff contributing area as hydrological signature of the probability distribution of floods, Adv. Water Resour., 30, 2123–2134, https://doi.org/10.1016/j.advwatres.2006.11.017, 2007.
Fischer, S. and Schumann, A.: Robust flood statistics: comparison of peak over threshold approaches based on monthly maxima and TL-moments, Hydrolog. Sci. J., 61, 457–470, https://doi.org/10.1080/02626667.2015.1054391, 2016.
Gaume, E.: On the asymptotic behavior of flood peak distributions, Hydrol. Earth Syst. Sci., 10, 233–243, https://doi.org/10.5194/hess-10-233-2006, 2006.
Gioia, A., Iacobellis, V., Manfreda, S., and Fiorentino, M.: Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295–1307, https://doi.org/10.5194/hess-12-1295-2008, 2008.
Gumbel, E. J.: Statistics of Extremes, Columbia University Press, https://doi.org/10.7312/gumb92958, 1958.
Guo, J., Li, H.-Y., Leung, L. R., Guo, S., Liu, P., and Sivapalan, M.: Links between flood frequency and annual water balance behaviors: A basis for similarity and regionalization, Water Resour. Res., 50, 937–953, https://doi.org/10.1002/2013WR014374, 2014.
Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics, J. R. Stat. Soc., 52, 105–124, 1990.
Hosking, J. R. M. and Wallis, J. R.: Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, 29, 339–349, https://doi.org/10.1080/00401706.1987.10488243, 1987.
Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation of the generalized extreme-value distribution by the method of probability-weighted moments, Technometrics, 27, 251–261, https://doi.org/10.1080/00401706.1985.10488049, 1985.
Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Hannaford, J., Kay, A. L., Lockwood, M., Prudhomme, C., Reynard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C., Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins, A., Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo, J., and Allen, M. R.: Potential influences on the United Kingdom's floods of winter 2013/14, Nat. Clim. Change, 4, 769–777, https://doi.org/10.1038/nclimate2314, 2014.
Interagency Advisory Committee on Water Data: Guidelines for determining flood flow frequency: Bulletin 17B, https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf (last access: 12 October 2024), 1982.
Jachens, E. R., Rupp, D. E., Roques, C., and Selker, J. S.: Recession analysis revisited: impacts of climate on parameter estimation, Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, 2020.
Katz, R.: Statistics of Extremes in Climatology and Hydrology, Adv. Water Resour., 25, 1287–1304, 2002.
Kirchner, J. W.: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward, Water Resour. Res., 45, 1–34, https://doi.org/10.1029/2008WR006912, 2009.
Klaus, A., Yu, S., and Plenz, D.: Statistical analyses support power law distributions found in neuronal avalanches, PLoS One, 6, e19779, https://doi.org/10.1371/journal.pone.0019779, 2011.
Kondor, D., Pósfai, M., Csabai, I., and Vattay, G.: Do the rich get richer? An empirical analysis of the Bitcoin transaction network, PLoS One, 9, e86197, https://doi.org/10.1371/journal.pone.0086197, 2014.
Laio, F., Porporato, A., Fernandez-Illescas, C. P., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: Active role in hydrologic processes and responce to water stress IV. Discussion of real cases, Adv. Water Resour., 24, 745–762, https://doi.org/10.1016/S0309-1708(01)00007-0, 2001.
Lehner, B., Liermann, C. R., Revenga, C., Vörömsmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Lins, H. F.: Challenges to hydrological observations, WMO Bull., 57, 55–58, 2008.
Macdonald, E., Merz, B., Guse, B., Wietzke, L., Ullrich, S., Kemter, M., Ahrens, B., and Vorogushyn, S.: Event and Catchment Controls of Heavy Tail Behavior of Floods, Water Resour. Res., 58, 1–25, https://doi.org/10.1029/2021wr031260, 2022.
Malamud, B. D.: Tails of natural hazards, Phys. World, 17, 31–35, https://doi.org/10.1088/2058-7058/17/8/35, 2004.
Malamud, B. D. and Turcotte, D. L.: The applicability of power-law frequency statistics to floods, J. Hydrol., 322, 168–180, https://doi.org/10.1016/j.jhydrol.2005.02.032, 2006.
Mathai, J. and Mujumdar, P. P.: Use of streamflow indices to identify the catchment drivers of hydrographs, Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, 2022.
McCuen, R. H. and Smith, E.: Origin of Flood Skew, J. Hydrol. Eng., 13, 771–775, https://doi.org/10.1061/(asce)1084-0699(2008)13:9(771), 2008.
McDermott, T. K. J.: Global exposure to flood risk and poverty, Nat. Commun., 13, 6–8, https://doi.org/10.1038/s41467-022-30725-6, 2022.
Meigh, J. R., Farquharson, F. A. K., and Sutcliffe, J. V.: A worldwide comparison of regional flood estimation methods and climate, Hydrolog. Sci. J., 42, 225–244, https://doi.org/10.1080/02626669709492022, 1997.
Mejía, A., Daly, E., Rossel, F., Javanovic, T., and Gironás, J.: A stochastic model of streamflow for urbanized basins, Water Resour. Res., 50, 1984–2001, https://doi.org/10.1002/2013WR014834, 2014.
Merz, B., Basso, S., Fischer, S., Lun, D., Blöschl, G., Merz, R., Guse, B., Viglione, A., Vorogushyn, S., Macdonald, E., Wietzke, L., and Schumann, A.: Understanding heavy tails of flood peak distributions, Water Resour. Res., 58, 1–37, https://doi.org/10.1029/2021wr030506, 2022.
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., and Macdonald, E.: Causes, impacts and patterns of disastrous river floods, Nat. Rev. Earth Environ., 2, 592–609, https://doi.org/10.1038/s43017-021-00195-3, 2021.
Merz, R. and Blöschl, G.: Process controls on the statistical flood moments – a data based analysis, Hydrol. Process., 23, 675–696, https://doi.org/10.1002/hyp, 2009.
Molnar, P., Anderson, R. S., Kier, G., and Rose, J.: Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision, J. Geophys. Res.-Earth, 111, 1–10, https://doi.org/10.1029/2005JF000310, 2006.
Morrison, J. E. and Smith, J. A.: Stochastic modeling of flood peaks using the generalized extreme value distribution, Water Resour. Res., 38, 41-1–41-12, https://doi.org/10.1029/2001wr000502, 2002.
Müller, M. F., Dralle, D. N., and Thompson, S. E.: Analytical model for flow duration curves in seasonally dry climates, Water Resour. Res., 50, 5510–5531, https://doi.org/10.1002/2014WR015301, 2014.
Müller, M. F., Roche, K. R., and Dralle, D. N.: Catchment processes can amplify the effect of increasing rainfall variability, Environ. Res. Lett., 16, 084032, https://doi.org/10.1088/1748-9326/ac153e, 2021.
Mushtaq, S., Miniussi, A., Merz, R., and Basso, S.: Reliable estimation of high floods: A method to select the most suitable ordinary distribution in the Metastatistical extreme value framework, Adv. Water Resour., 161, 104127, https://doi.org/10.1016/j.advwatres.2022.104127, 2022.
Mutzner, R., Bertuzzo, E., Tarolli, P., Weijs, S. V., Nicotina, L., Ceola, S., Tomasic, N., Rodriguez-Iturbe, I., Parlange, M. B., and Rinaldo, A.: Geomorphic signatures on Brutsaert base flow recession analysis, Water Resour. Res., 49, 5462–5472, https://doi.org/10.1002/wrcr.20417, 2013.
Nair, J., Wierman, A., and Zwart, B.: The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation, Cambridge University Press, https://doi.org/10.1017/9781009053730, 2022.
Németh, L., Hübnerová, Z., and Zempléni, A.: Trend detection in GEV models, 1–13, arXiv [preprint], https://doi.org/10.48550/arXiv.1907.09435, 2019.
NOAA-National Weather Service-Office of Hydrologic Development: MOPEX, NOAA [data set], https://hiscentral.cuahsi.org/pub_network.aspx?n=5599, last access: 5 September 2022.
Osborn, T. J., Hulme, M., Jones, P. D., and Basnett, T. A.: Observed trends in the daily intensity of United Kingdom precipitation, Int. J. Climatol., 20, 347–364, https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<347::AID-JOC475>3.0.CO;2-C, 2000.
Pallard, B., Castellarin, A., and Montanari, A.: A look at the links between drainage density and flood statistics, Hydrol. Earth Syst. Sci., 13, 1019–1029, https://doi.org/10.5194/hess-13-1019-2009, 2009.
Papalexiou, S. M., Koutsoyiannis, D., and Makropoulos, C.: How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrol. Earth Syst. Sci., 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, 2013.
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resour. Res., 49, 187–201, https://doi.org/10.1029/2012WR012557, 2013.
Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil water balance and ecosystem response to climate change, Am. Nat., 164, 625–632, https://doi.org/10.1086/424970, 2004.
Pumo, D., Viola, F., La Loggia, G., and Noto, L. V.: Annual flow duration curves assessment in ephemeral small basins, J. Hydrol., 519, 258–270, https://doi.org/10.1016/j.jhydrol.2014.07.024, 2014.
Robson, A. J.: Evidence for trends in UK flooding, Philos. T. R. Soc. A, 360, 1327–1343, https://doi.org/10.1098/rsta.2002.1003, 2002.
Rogger, M., Pirkl, H., Viglione, A., Komma, J., Kohl, B., Kirnbauer, R., and Merz, R.: Step changes in the flood frequency curve: Process controls, Water Resour. Res., 48, 1–15, https://doi.org/10.1029/2011WR011187, 2012.
Rudd, A. C., Kay, A. L., and Sayers, P. B.: Climate change impacts on flood peaks in Britain for a range of global mean surface temperature changes, J. Flood Risk Manag., 16, 1–15, https://doi.org/10.1111/jfr3.12863, 2023.
Santos, A. C., Portela, M. M., Rinaldo, A., and Schaefli, B.: Analytical flow duration curves for summer streamflow in Switzerland, Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, 2018.
Sartori, M. and Schiavo, S.: Connected we stand: A network perspective on trade and global food security, Food Policy, 57, 114–127, https://doi.org/10.1016/j.foodpol.2015.10.004, 2015.
Schaefli, B., Rinaldo, A., and Botter, G.: Analytic probability distributions for snow-dominated streamflow, Water Resour. Res., 49, 2701–2713, https://doi.org/10.1002/wrcr.20234, 2013.
Shaw, S. B.: Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catchment in New York state, Hydrol. Process., 30, 479–492, https://doi.org/10.1002/hyp.10626, 2016.
Shaw, S. B. and Riha, S. J.: Examining individual recession events instead of a data cloud: Using a modified interpretation of dQ/dt−Q streamflow recession in glaciated watersheds to better inform models of low flow, J. Hydrol., 434–435, 46–54, https://doi.org/10.1016/j.jhydrol.2012.02.034, 2012.
Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L., and Bates, P.: Strange Floods: The Upper Tail of Flood Peaks in the United States, Water Resour. Res., 54, 6510–6542, https://doi.org/10.1029/2018WR022539, 2018.
Spearman, C.: The proof and measurement of association between two things, Am. J. Psychol., 15, 72–101, https://doi.org/10.2307/1412159, 1904.
Struthers, I. and Sivapalan, M.: A conceptual investigation of process controls upon flood frequency: role of thresholds, Hydrol. Earth Syst. Sci., 11, 1405–1416, https://doi.org/10.5194/hess-11-1405-2007, 2007.
Tarasova, L., Basso, S., and Merz, R.: Transformation of Generation Processes From Small Runoff Events to Large Floods, Geophys. Res. Lett., 47, e2020GL090547, https://doi.org/10.1029/2020GL090547, 2020.
Tarasova, L., Basso, S., Zink, M., and Merz, R.: Exploring Controls on Rainfall-Runoff Events: 1. Time Series-Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany, Water Resour. Res., 54, 7711–7732, https://doi.org/10.1029/2018WR022587, 2018.
Tarasova, L., Lun, D., Merz, R., Blöschl, G., Basso, S., Bertola, M., Miniussi, A., Rakovec, O., Samaniego, L., Thober, S., and Kumar, R.: Shifts in flood generation processes exacerbate regional flood anomalies in Europe, Commun. Earth Environ., 4, 49, https://doi.org/10.1038/s43247-023-00714-8, 2023.
Tashie, A., Pavelsky, T., and Band, L. E.: An Empirical Reevaluation of Streamflow Recession Analysis at the Continental Scale, Water Resour. Res., 56, e2019WR025448, https://doi.org/10.1029/2019WR025448, 2020a.
Tashie, A., Pavelsky, T., and Emanuel, R. E.: Spatial and Temporal Patterns in Baseflow Recession in the Continental United States, Water Resour. Res., 56, e2019WR026425, https://doi.org/10.1029/2019WR026425, 2020b.
Tashie, A., Scaife, C. I., and Band, L. E.: Transpiration and subsurface controls of streamflow recession characteristics, Hydrol. Process., 33, 2561–2575, https://doi.org/10.1002/hyp.13530, 2019.
Thomas, B. F., Vogel, R. M., and Famiglietti, J. S.: Objective hydrograph baseflow recession analysis, J. Hydrol., 525, 102–112, https://doi.org/10.1016/j.jhydrol.2015.03.028, 2015.
Thorarinsdottir, T. L., Hellton, K. H., Steinbakk, G. H., Schlichting, L., and Engeland, K.: Bayesian Regional Flood Frequency Analysis for Large Catchments, Water Resour. Res., 54, 6929–6947, https://doi.org/10.1029/2017WR022460, 2018.
Viglione, A., Merz, R., and Blöschl, G.: On the role of the runoff coefficient in the mapping of rainfall to flood return periods, Hydrol. Earth Syst. Sci., 13, 577–593, https://doi.org/10.5194/hess-13-577-2009, 2009.
Villarini, G. and Smith, J. A.: Flood peak distributions for the eastern United States, Water Resour. Res., 46, 1–17, https://doi.org/10.1029/2009WR008395, 2010.
Vogel, R. M. and Fennesse, N. M.: L moment diagrams should replace product moment diagrams, Water Resour. Res., 29, 1745–1752, https://doi.org/10.1029/93WR00341, 1993.
Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., and Wong, W. K.: Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway, J. Hydrol., 538, 33–48, https://doi.org/10.1016/j.jhydrol.2016.03.066, 2016.
Wang, H., Merz, R., Yang, S., Tarasova, L., and Basso, S.: Emergence of heavy tails in streamflow distributions: the role of spatial rainfall variability, Adv. Water Resour. J., 171, 104359, https://doi.org/10.1016/j.advwatres.2022.104359, 2023.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations, Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, 2022a.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, M. S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: Georeferenced global Dams And Reservoirs dataset for bridging attributes and geolocations, Zenodo [data set], https://doi.org/10.5281/zenodo.6163413, 2022b.
Ward, A. S., Wondzell, S. M., Schmadel, N. M., and Herzog, S. P.: Climate Change Causes River Network Contraction and Disconnection in the H.J. Andrews Experimental Forest, Oregon, USA, Front. Water, 2, 1–10, https://doi.org/10.3389/frwa.2020.00007, 2020.
Werner, T. and Upper, C.: Time Variation in the Tail Behaviour of Bund Futures Returns, https://ideas.repec.org/p/zbw/bubdp1/4190.html (last access: 6 September 2023), 2002.
Wietzke, L. M., Merz, B., Gerlitz, L., Kreibich, H., Guse, B., Castellarin, A., and Vorogushyn, S.: Comparative analysis of scalar upper tail indicators, Hydrolog. Sci. J., 65, 1625–1639, https://doi.org/10.1080/02626667.2020.1769104, 2020.
Wilcoxon, F.: Individual comparisons by ranking methods, Biometrics Bull., 1, 80–83, https://doi.org/10.2307/3001968, 1945.
Wu, Q., Ke, L., Wang, J., Pavelsky, T. M., Allen, G. H., Sheng, Y., Duan, X., Zhu, Y., Wu, J., Wang, L., Liu, K., Chen, T., Zhang, W., Fan, C., Yong, B., and Song, C.: Satellites reveal hotspots of global river extent change, Nat. Commun., 14, 1587, https://doi.org/10.1038/s41467-023-37061-3, 2023.
Ye, S., Li, H. Y., Huang, M., Alebachew, M. A., Leng, G., Leung, L. R., Wang, S. wen, and Sivapalan, M.: Regionalization of subsurface stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow recession curves, J. Hydrol., 519, 670–682, https://doi.org/10.1016/j.jhydrol.2014.07.017, 2014.
Zaerpour, M., Papalexiou, S. M., Pietroniro, A., &Nazemi, A.: How extreme are flood peak distributions? A quasi-global analysis of daily discharge records, J. Hydrol., 631, 130849, https://doi.org/10.1016/j.jhydrol.2024.130849, 2024.
Zhou, X., Sheng, Z., Yang, Y., Han, S., Zhang, Q., Li, H., and Yang, Y.: Catchment water storage dynamics and its role in modulating streamflow generation in spectral perspective: a case study in the headwater of Baiyang Lake, China, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2022-357, 2022.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential Evapotranspiration Database, Sci. Data, 9, 1–15, https://doi.org/10.1038/s41597-022-01493-1, 2022.
Short summary
Extreme floods are more common than expected. Knowing where these floods are likely to occur is key for risk management. Traditional methods struggle with limited data, causing uncertainty. We use common streamflow dynamics to indicate extreme flood propensity. Analyzing data from Atlantic Europe, northern Europe, and the US, we validate this novel approach and unravel intrinsic linkages between regional geographic patterns and extreme flood drivers.
Extreme floods are more common than expected. Knowing where these floods are likely to occur is...