Articles | Volume 28, issue 22
https://doi.org/10.5194/hess-28-4989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future response of ecosystem water use efficiency to CO2 effects in the Yellow River Basin, China
Siwei Chen
Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China
Yuxue Guo
Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China
Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China
Lu Wang
Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China
Related authors
Lu Wang, Haiting Gu, Li Liu, Xiao Liang, Siwei Chen, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 29, 361–379, https://doi.org/10.5194/hess-29-361-2025, https://doi.org/10.5194/hess-29-361-2025, 2025
Short summary
Short summary
To understand how ecohydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of ecohydrological processes.
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025, https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Short summary
This study introduces a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek, the vine copula built with this method captured critical spatial–temporal relationships, indicating high synchronization probabilities and flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multi-site flows.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Lu Wang, Haiting Gu, Li Liu, Xiao Liang, Siwei Chen, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 29, 361–379, https://doi.org/10.5194/hess-29-361-2025, https://doi.org/10.5194/hess-29-361-2025, 2025
Short summary
Short summary
To understand how ecohydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of ecohydrological processes.
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025, https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Short summary
This study introduces a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek, the vine copula built with this method captured critical spatial–temporal relationships, indicating high synchronization probabilities and flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multi-site flows.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021, https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 25, 3675–3690, https://doi.org/10.5194/hess-25-3675-2021, https://doi.org/10.5194/hess-25-3675-2021, 2021
Short summary
Short summary
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve the calibration of hydrological models, we designed the E–RD efficiency ratio of fractal dimensions strategy and examined its usability in the calibration of lumped models. The results reveal that, in most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Also, pursuing a better RD during calibration leads to only a minor decrease in E.
Cited articles
A, G., Velicogna, I., Kimball, J. S., Du, J., Kim, Y., Colliander, A., and Njoku, E.: Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought, Environ. Res. Lett., 12, 054006, https://doi.org/10.1088/1748-9326/aa6965, 2017.
Allan, R., Pereira, L., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 1998.
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015
Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil moisture projections under global warming, Geophys. Res. Lett., 44, 236–244, https://doi.org/10.1002/2016GL071921, 2017.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Budyko, M. I.: Climate and Life, 508 pp., Academic Press, New York, ISBN 0121394506, 1974.
Cai, X., Li, L., Fisher, J. B., Zeng, Z., Zhou, S., Tan, X., Liu, B., and Chen, X.: The responses of ecosystem water use efficiency to CO2, nitrogen deposition, and climatic drivers across China, J. Hydrol., 622, 129696, https://doi.org/10.1016/j.jhydrol.2023.129696, 2023.
Cao, S., Li, M., Zhu, Z., Wang, Z., Zha, J., Zhao, W., Duanmu, Z., Chen, J., Zheng, Y., Chen, Y., Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020, Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023, 2023a.
Cao, S., Li, M., Zhu, Z., Wang, Z., Zha, J., Zhao, W., Duanmu, Z., Chen, J., Zheng, Y., Chen, Y., Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS Leaf Area Index (GIMMS LAI4g) from 1982 to 2020 (V1.2), Zenodo [data set], https://doi.org/10.5281/zenodo.8281930, 2023b.
Chen, Z., Wang, W., Forzieri, G., and Cescatti, A.: Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake, Nat. Commun., 15, 1500, https://doi.org/10.1038/s41467-024-45957-x, 2024.
Cheng, L., Xu, Z., Wang, D., and Cai, X.: Assessing interannual variability of evapotranspiration at the catchment scale using satellite-based evapotranspiration data sets, Water Resour. Res., 47, W09509, https://doi.org/10.1029/2011WR010636, 2011.
Choudhury, B.: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, J. Hydrol., 216, 99–110, https://doi.org/10.1016/S0022-1694(98)00293-5, 1999.
De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C., and Terrer, C.: Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity, Nat. Clim. Change, 6, 892–893, https://doi.org/10.1038/nclimate3105, 2016.
De Kauwe, M. G., Medlyn, B. E., and Tissue, D. T.: To what extent can rising [CO2] ameliorate plant drought stress?, New Phytol., 231, 2118–2124, https://doi.org/10.1111/nph.17540, 2021.
Ding, Y. and Peng, S.: Spatiotemporal Trends and Attribution of Drought across China from 1901–2100, Sustainability, 12, 477, https://doi.org/10.3390/su12020477, 2020.
Ding, Y. and Peng, S.: Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100, Theor. Appl. Climatol., 145, 79–94, https://doi.org/10.1007/s00704-021-03625-w, 2021.
Du, J., Kimball, J. S., Velicogna, I., Zhao, M., Jones, L. A., Watts, J. D., and Kim, Y.: Multicomponent Satellite Assessment of Drought Severity in the Contiguous United States From 2002 to 2017 Using AMSR-E and AMSR2, Water Resour. Res., 55, 5394–5412, https://doi.org/10.1029/2018WR024633, 2019.
Fang, Q., Wang, G., Liu, T., Xue, B., Sun, W., and Shrestha, S.: Unraveling the sensitivity and nonlinear response of water use efficiency to the water–energy balance and underlying surface condition in a semiarid basin, Sci. Total Environ., 699, 134405, https://doi.org/10.1016/j.scitotenv.2019.134405, 2020.
Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M., and Haggag, M.: A new Budyko framework extension using time series SARIMAX model, J. Hydrol., 570, 827–838, https://doi.org/10.1016/j.jhydrol.2019.01.037, 2019.
Feng, H., Kang, P., Deng, Z., Zhao, W., Hua, M., Zhu, X., and Wang, Z.: The impact of climate change and human activities to vegetation carbon sequestration variation in Sichuan and Chongqing, Environ. Res., 238, 117138, https://doi.org/10.1016/j.envres.2023.117138, 2023.
Feng, S., Hao, Z., Zhang, X., and Hao, F.: Probabilistic evaluation of the impact of compound dry-hot events on global maize yields, Sci. Total Environ., 689, 1228–1234, https://doi.org/10.1016/j.scitotenv.2019.06.373, 2019.
Fowler, M. D., Kooperman, G. J., Randerson, J. T., and Pritchard, M. S.: The effect of plant physiological responses to rising CO2 on global streamflow, Nat. Clim. Change, 9, 873–879, https://doi.org/10.1038/s41558-019-0602-x, 2019.
Gu, H., Xu, Y.-P., Liu, L., Xie, J., Wang, L., Pan, S., and Guo, Y.: Seasonal catchment memory of high mountain rivers in the Tibetan Plateau, Nat. Commun., 14, 3173, https://doi.org/10.1038/s41467-023-38966-9, 2023.
Gu, L., Yin, J., Gentine, P., Wang, H.-M., Slater, L. J., Sullivan, S. C., Chen, J., Zscheischler, J., and Guo, S.: Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics, Nat. Commun., 14, 3197, https://doi.org/10.1038/s41467-023-39039-7, 2023.
Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B. D., Martin, M., Hollinger, D. Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., Munger, J. W., Novick, K., and Richardson, A. D.: Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency, P. Natl. Acad. Sci. USA, 116, 16909–16914, https://doi.org/10.1073/pnas.1905912116, 2019.
Guo, Y., Yu, X., Xu, Y.-P., Wang, G., Xie, J., and Gu, H.: A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China, Hydrol. Res., 53, 867–891, https://doi.org/10.2166/nh.2022.001, 2022.
He, Y., Liu, Y., Lei, L., Terrer, C., Huntingford, C., Peñuelas, J., Xu, H., and Piao, S.: CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land, Glob. Change Biol., 29, 4313–4326, https://doi.org/10.1111/gcb.16806, 2023.
Huang, L., He, B., Han, L., Liu, J., Wang, H., and Chen, Z.: A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data, Sci. Total Environ., 601–602, 1097–1107, https://doi.org/10.1016/j.scitotenv.2017.05.084, 2017.
Huang, S., Chang, J., Leng, G., and Huang, Q.: Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China, J. Hydrol., 527, 608–618, https://doi.org/10.1016/j.jhydrol.2015.05.032, 2015.
Humphrey, V. and Gudmundsson, L.: GRACE-REC: a reconstruction of climate-driven water storage changes over the last century, Earth Syst. Sci. Data, 11, 1153–1170, https://doi.org/10.5194/essd-11-1153-2019, 2019.
Humphrey, V. and Gudmundsson, L.: GRACE-REC: a reconstruction of climate-driven water storage changes over the last century, figshare [data set], https://doi.org/10.6084/m9.figshare.7670849, 2019.
Jacobs, C. M. J., van den Hurk, B. M. M., and de Bruin, H. A. R.: Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions, Agr. Forest Meteorol., 80, 111–134, 1996.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, https://doi.org/10.1038/nature12291, 2013.
Kim, D., Baik, J., Umair, M., and Choi, M.: Water use efficiency in terrestrial ecosystem over East Asia: Effects of climate regimes and land cover types, Sci. Total Environ., 773, 145519, https://doi.org/10.1016/j.scitotenv.2021.145519, 2021.
Krinner, G., Viovy, N., De Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, 2003GB002199, https://doi.org/10.1029/2003GB002199, 2005.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., Van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., Van Den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., and Long, S. P.: Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought, Plant Physiol., 140, 779–790, https://doi.org/10.1104/pp.105.073957, 2006.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.
Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., Li, B., Abraha, M., and John, R.: Global water use efficiency saturation due to increased vapor pressure deficit, Science, 381, 672–677, https://doi.org/10.1126/science.adf5041, 2023.
Li, H., He, Y., Zhang, L., Cao, S., and Sun, Q.: Spatiotemporal changes of Gross Primary Production in the Yellow River Basin of China under the influence of climate-driven and human-activity, Global Ecol. Conserv., 46, e02550, https://doi.org/10.1016/j.gecco.2023.e02550, 2023.
Li, P., Tedersoo, L., Crowther, T. W., Dumbrell, A. J., Dini-Andreote, F., Bahram, M., Kuang, L., Li, T., Wu, M., Jiang, Y., Luan, L., Saleem, M., De Vries, F. T., Li, Z., Wang, B., and Jiang, J.: Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100, Nature Food, 4, 996–1006, https://doi.org/10.1038/s43016-023-00869-9, 2023.
Lin, S., Wang, G., Hu, Z., Huang, K., Sun, J., and Sun, X.: Spatiotemporal Variability and Driving Factors of Tibetan Plateau Water Use Efficiency, J. Geophys. Res.-Atmos., 125, e2020JD032642, https://doi.org/10.1029/2020JD032642, 2020.
Liu, X., Feng, X., and Fu, B.: Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture, Sci. Total Environ., 698, 134165, https://doi.org/10.1016/j.scitotenv.2019.134165, 2020.
Liu, Y., Ding, Z., Chen, Y., Yan, F., Yu, P., Man, W., Liu, M., Li, H., and Tang, X.: Restored vegetation is more resistant to extreme drought events than natural vegetation in Southwest China, Sci. Total Environ., 866, 161250, https://doi.org/10.1016/j.scitotenv.2022.161250, 2023.
Lu, X. and Zhuang, Q.: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data, Remote Sens. Environ., 114, 1924–1939, https://doi.org/10.1016/j.rse.2010.04.001, 2010.
Ma, N. and Szilagyi, J.: The CR of Evaporation: A Calibration-Free Diagnostic and Benchmarking Tool for Large-Scale Terrestrial Evapotranspiration Modeling, Water Resour. Res., 55, 7246–7274, https://doi.org/10.1029/2019WR024867, 2019.
Ma, N., Szilagyi, J., Zhang, Y., and Liu, W.: Complementary-Relationship-Based Modeling of Terrestrial Evapotranspiration Across China During 1982–2012: Validations and Spatiotemporal Analyses, J. Geophys. Res.-Atmos., 124, 4326–4351, https://doi.org/10.1029/2018JD029850, 2019a.
Ma, N., Jozsef, S., Zhang, Y., and Liu, W.: Terrestrial evapotranspiration dataset across China (1982–2017), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/AtmosPhys.tpe.249493.file, 2019b.
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., and Williams, A. P.: Mid-latitude freshwater availability reduced by projected vegetation responses to climate change, Nat. Geosci., 12, 983–988, https://doi.org/10.1038/s41561-019-0480-x, 2019.
Mathias, J. M. and Thomas, R. B.: Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types, P. Natl. Acad. Sci. USA, 118, e2014286118, https://doi.org/10.1073/pnas.2014286118, 2021.
Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016.
Milly, P. C. D. and Dunne, K. A.: A Hydrologic Drying Bias in Water-Resource Impact Analyses of Anthropogenic Climate Change, J. Am. Water Resour. As., 53, 822–838, https://doi.org/10.1111/1752-1688.12538, 2017.
Naeem, S., Zhang, Y., Zhang, X., Rehman, A. U., Tang, Z., Xu, Z., Li, C., and Azeem, T.: Recent change in ecosystem water use efficiency in China mainly dominated by vegetation greening and increased CO2, Remote Sens. Environ., 298, 113811, https://doi.org/10.1016/j.rse.2023.113811, 2023.
Ning, T., Zhou, S., Chang, F., Shen, H., Li, Z., and Liu, W.: Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework, Agr. Forest Meteorol., 275, 59–68, https://doi.org/10.1016/j.agrformet.2019.05.001, 2019.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land Model (CLM). Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp., https://doi.org/10.5065/D6RR1W7M, 2013.
Peng, S.: High-spatial-resolution monthly precipitation dataset over China during 1901–2017, Zenodo [data set], https://doi.org/10.5281/zenodo.3114194, 2019.
Peng, S.: 1-km monthly potential evapotranspiration dataset for China (1901–2023) National Tibetan Plateau/Third Pole Environment Data Center [data set], https://www.tpdc.ac.cn/en/data/8b11da09-1a40-4014-bd3d-2b86e6dccad4/, 2022.
Peng, D., Lyu, J., Song, Z., Huang, S., Zhang, P., Gao, J., and Zhang, Y.: Mercury budgets in the suspended particulate matters of the Yangtze River, Water Res., 243, 120390, https://doi.org/10.1016/j.watres.2023.120390, 2023.
Piao, S., Friedlingstein, P., Ciais, P., De Noblet-Ducoudré, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends, P. Natl. Acad. Sci. USA, 104, 15242–15247, https://doi.org/10.1073/pnas.0707213104, 2007.
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series, Remote Sensing, 6, 6929–6960, https://doi.org/10.3390/rs6086929, 2014.
Pinzon, J. E., Pak, E. W., Tucker, C. J., Bhatt, U. S., Frost, G. V., and Macander, M. J.: Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022, ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/2187, 2023.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and Wada, Y.: Global terrestrial water storage and drought severity under climate change, Nat. Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021.
Ponce-Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T. E., Eamus, D., Bosch, D. D., Buda, A. R., Gunter, S. A., Scalley, T. H., Kitchen, S. G., McClaran, M. P., McNab, W. H., Montoya, D. S., Morgan, J. A., Peters, D. P. C., Sadler, E. J., Seyfried, M. S., and Starks, P. J.: Ecosystem resilience despite large-scale altered hydroclimatic conditions, Nature, 494, 349–352, https://doi.org/10.1038/nature11836, 2013.
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties, Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826, 2011.
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G.: Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019.
Sun, H., Chen, L., Yang, Y., Lu, M., Qin, H., Zhao, B., Lu, M., Xue, J., and Yan, D.: Assessing Variations in Water Use Efficiency and Linkages with Land-Use Changes Using Three Different Data Sources: A Case Study of the Yellow River, China, Remote Sensing, 14, 1065, https://doi.org/10.3390/rs14051065, 2022.
Sun, S., Song, Z., Wu, X., Wang, T., Wu, Y., Du, W., Che, T., Huang, C., Zhang, X., Ping, B., Lin, X., Li, P., Yang, Y., and Chen, B.: Spatio-temporal variations in water use efficiency and its drivers in China over the last three decades, Ecol. Indic., 94, 292–304, https://doi.org/10.1016/j.ecolind.2018.07.003, 2018.
Swann, A. L. S.: Plants and Drought in a Changing Climate, Current Climate Change Reports, 4, 192–201, https://doi.org/10.1007/s40641-018-0097-y, 2018.
Tan, X., Jia, Y., Niu, C., Yang, D., Lu, W., and Hao, C.: Response of water-use efficiency to phenology in the natural forest and grassland of the Loess Plateau in China, Science China Earth Sciences, 66, 2081–2096, https://doi.org/10.1007/s11430-022-1124-0, 2023.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Wang, S. and Zhang, Y.: Long-term (1982–2018) global gross primary production dataset based on NIRv, National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.6084/m9.figshare.12981977.v2, 2020.
Wang, M., Ding, Z., Wu, C., Song, L., Ma, M., Yu, P., Lu, B., and Tang, X.: Divergent responses of ecosystem water-use efficiency to extreme seasonal droughts in Southwest China, Sci. Total Environ., 760, 143427, https://doi.org/10.1016/j.scitotenv.2020.143427, 2021.
Wang, S., Zhang, Y., Ju, W., Qiu, B., and Zhang, Z.: Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data, Sci. Total Environ., 755, 142569, https://doi.org/10.1016/j.scitotenv.2020.142569, 2021.
Wu, X. and Jiang, D.: Probabilistic impacts of compound dry and hot events on global gross primary production, Environ. Res. Lett., 17, 034049, https://doi.org/10.1088/1748-9326/ac4c5b, 2022.
Xie, J., Chen, J., Sun, G., Zha, T., Yang, B., Chu, H., Liu, J., Wan, S., Zhou, C., Ma, H., Bourque, C. P.-A., Shao, C., John, R., and Ouyang, Z.: Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate, Agr. Forest Meteorol., 218–219, 209–217, https://doi.org/10.1016/j.agrformet.2015.12.059, 2016.
Xie, S., Mo, X., Hu, S., and Liu, S.: Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China, Agr. Forest Meteorol., 295, 108183, https://doi.org/10.1016/j.agrformet.2020.108183, 2020.
Xing, X., Wu, M., Zhang, W., Ju, W., Tagesson, T., He, W., Wang, S., Wang, J., Hu, L., Yuan, S., Zhu, T., Wang, X., Ran, Y., Li, S., Wang, C., and Jiang, F.: Modeling China's terrestrial ecosystem gross primary productivity with BEPS model: Parameter sensitivity analysis and model calibration, Agr. Forest Meteorol., 343, 109789, https://doi.org/10.1016/j.agrformet.2023.109789, 2023.
Xu, X., Li, X., He, C., Tia, W., and Tian, J.: Development of a simple Budyko-based framework for the simulation and attribution of ET variability in dry regions, J. Hydrol., 610, 127955, https://doi.org/10.1016/j.jhydrol.2022.127955, 2022.
Yang, H. and Yang, D.: Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff, Water Resour. Res., 47, W07526, https://doi.org/10.1029/2010WR009287, 2011.
Yang, L., Feng, Q., Wen, X., Barzegar, R., Adamowski, J. F., Zhu, M., and Yin, Z.: Contributions of climate, elevated atmospheric CO2 concentration and land surface changes to variation in water use efficiency in Northwest China, CATENA, 213, 106220, https://doi.org/10.1016/j.catena.2022.106220, 2022.
Yang, S., Zhang, J., Han, J., Wang, J., Zhang, S., Bai, Y., Cao, D., Xun, L., Zheng, M., Chen, H., Xu, C., and Rong, Y.: Evaluating global ecosystem water use efficiency response to drought based on multi-model analysis, Sci. Total Environ., 778, 146356, https://doi.org/10.1016/j.scitotenv.2021.146356, 2021.
Yang, X., Wang, C., Du, J., Qiu, S., and Liu, J.: Dynamic evolution of attribution analysis of runoff based on the complementary Budyko equation in the source area of Lancang river, Front. Earth Sci., 11, 1160520, https://doi.org/10.3389/feart.2023.1160520, 2023.
Yang, Y., Donohue, R. J., McVicar, T. R., and Roderick, M. L.: An analytical model for relating global terrestrial carbon assimilation with climate and surface conditions using a rate limitation framework, Geophys. Res. Lett., 42, 9825–9835, https://doi.org/10.1002/2015GL066835, 2015.
Yang, Y., Wu, Q., Yun, H., Jin, H., and Zhang, Z.: Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai–Tibet Plateau using stable isotopes, Global Planet. Change, 140, 1–8, https://doi.org/10.1016/j.gloplacha.2016.03.006, 2016.
Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., and Guo, S.: Large increase in global storm runoff extremes driven by climate and anthropogenic changes, Nat. Commun., 9, 4389, https://doi.org/10.1038/s41467-018-06765-2, 2018.
Yin, J., Guo, S., Yang, Y., Chen, J., Gu, L., Wang, J., He, S., Wu, B., and Xiong, J.: Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China, Science China Earth Sciences, 65, 1772–1787, https://doi.org/10.1007/s11430-021-9927-x, 2022.
Yin, J., Gentine, P., Slater, L., Gu, L., Pokhrel, Y., Hanasaki, N., Guo, S., Xiong, L., and Schlenker, W.: Future socio-ecosystem productivity threatened by compound drought–heatwave events, Nat. Sustain., 6, 259–272, https://doi.org/10.1038/s41893-022-01024-1, 2023.
Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., and Otkin, J. A.: A global transition to flash droughts under climate change, Science, 380, 187–191, https://doi.org/10.1126/science.abn6301, 2023.
Zhan, C., Orth, R., Migliavacca, M., Zaehle, S., Reichstein, M., Engel, J., Rammig, A., and Winkler, A. J.: Emergence of the physiological effects of elevated CO2 on land–atmosphere exchange of carbon and water, Glob. Change Biol., 28, 7313–7326, https://doi.org/10.1111/gcb.16397, 2022.
Zhang, Y., Piao, S., Sun, Y., Rogers, B. M., Li, X., Lian, X., Liu, Z., Chen, A., and Peñuelas, J.: Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere, Nat. Clim. Change, 12, 581–586, https://doi.org/10.1038/s41558-022-01374-w, 2022.
Zhang, Y., He, Y., and Song, J.: Effects of climate change and land use on runoff in the Huangfuchuan Basin, China, J. Hydrol., 626, 130195, https://doi.org/10.1016/j.jhydrol.2023.130195, 2023.
Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., and Li, Z.: The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence, Remote Sens. Environ., 240, 111686, https://doi.org/10.1016/j.rse.2020.111686, 2020.
Zhao, F., Wu, Y., Ma, S., Lei, X., and Liao, W.: Increased Water Use Efficiency in China and Its Drivers During 2000–2016, Ecosystems, 25, 1476–1492, https://doi.org/10.1007/s10021-021-00727-4, 2022a.
Zhao, F., Ma, S., Wu, Y., Qiu, L., Wang, W., Lian, Y., Chen, J., and Sivakumar, B.: The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China, Agr. Forest Meteorol., 316, 108842, https://doi.org/10.1016/j.agrformet.2022.108842, 2022b.
Zhao, M., A, G., Velicogna, I., and Kimball, J. S.: Satellite Observations of Regional Drought Severity in the Continental United States Using GRACE-Based Terrestrial Water Storage Changes, J. Climate, 30, 6297–6308, https://doi.org/10.1175/JCLI-D-16-0458.1, 2017.
Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J. M., Ju, W., Zhang, L., and Yuan, W.: Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017, Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, 2020.
Zhong, Y., Tian, B., Vishwakarma, B. D., Feng, W., Wu, Y., Bai, H., and Zhong, M.: Reinterpreting Global GRACE Trends Based on Century-Long GRACE-REC Data, Water Resour. Res., 59, e2023WR035817, https://doi.org/10.1029/2023WR035817, 2023.
Zhou, S., Yu, B., Huang, Y., and Wang, G.: The complementary relationship and generation of the Budyko functions, Geophys. Res. Lett., 42, 1781–1790, https://doi.org/10.1002/2015GL063511, 2015.
Zhou, S., Yu, B., Zhang, L., Huang, Y., Pan, M., and Wang, G.: A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship: Partitioning the climate and catchment effect on runoff, Water Resour. Res., 52, 7163–7177, https://doi.org/10.1002/2016WR019046, 2016.
Zhou, S., Yu, B., Schwalm, C. R., Ciais, P., Zhang, Y., Fisher, J. B., Michalak, A. M., Wang, W., Poulter, B., Huntzinger, D. N., Niu, S., Mao, J., Jain, A., Ricciuto, D. M., Shi, X., Ito, A., Wei, Y., Huang, Y., and Wang, G.: Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models, Global Biogeochem. Cy., 31, 1639–1655, https://doi.org/10.1002/2017GB005733, 2017.
Zhou, S., Keenan, T. F., Williams, A. P., Lintner, B. R., Zhang, Y., and Gentine, P.: Large Divergence in Tropical Hydrological Projections Caused by Model Spread in Vegetation Responses to Elevated CO2, Earths Future, 10, e2021EF002457, https://doi.org/10.1029/2021EF002457, 2022.
Zhou, S., Yu, B., Lintner, B. R., Findell, K. L., and Zhang, Y.: Projected increase in global runoff dominated by land surface changes, Nat. Clim. Chang., 13, 442–449, https://doi.org/10.1038/s41558-023-01659-8, 2023.
Zhu, Q., Jiang, H., Peng, C., Liu, J., Wei, X., Fang, X., Liu, S., Zhou, G., and Yu, S.: Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China, Ecol. Model., 222, 2414–2429, https://doi.org/10.1016/j.ecolmodel.2010.09.035, 2011.
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River...