
Hydrol. Earth Syst. Sci., 28, 4989–5009, 2024
https://doi.org/10.5194/hess-28-4989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Future response of ecosystem water use efficiency to CO2 effects in
the Yellow River Basin, China
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Institute of Water Science and Engineering, Civil Engineering, Zhejiang University, Hangzhou 310058, China

Correspondence: Yue-Ping Xu (yuepingxu@zju.edu.cn)

Received: 12 May 2024 – Discussion started: 17 May 2024
Revised: 23 September 2024 – Accepted: 26 September 2024 – Published: 25 November 2024

Abstract. Ecosystem water use efficiency (WUE) is piv-
otal for understanding carbon–water cycle interplay. Cur-
rent research seldom addresses how WUE might change un-
der future elevated CO2 concentrations, limiting our under-
standing of regional ecohydrological effects. We present a
land–atmosphere attribution framework for WUE in the Yel-
low River basin (YRB), integrating the Budyko model with
global climate models (GCMs) to quantify the impacts of
climate and underlying surface changes induced by CO2.
Additionally, we further quantitatively decoupled the direct
and secondary impacts of CO2 radiative and biogeochem-
ical effects. Attribution results indicate that WUE in the
YRB is projected to increase by 0.36–0.84 gC kg−1H2O in
the future, with climate change being the predominant fac-
tor (relative contribution rate of 77.9 %–101.4 %). However,
as carbon emissions intensify, the relative importance of land
surface changes becomes increasingly important (respective
contribution rates of −1.4 %, 14.9 %, 16.9 %, and 22.1 % in
SSP126, SSP245, SSP370, and SSP585). Typically, WUE is
considered a reflection of an ecosystem’s adaptability to wa-
ter stress. Thus, we analyzed the response of WUE under
different scenarios and periods and various drought condi-
tions. The results show a distinct “two-stage” response pat-
tern of WUE to drought in the YRB, where WUE increases
under moderate–severe drought conditions but decreases as
drought intensifies across most areas. Furthermore, GCM
projections suggest that plant adaptability to water stress may
improve under higher-carbon-emission scenarios. Our find-
ings enhance the understanding of regional ecohydrologi-
cal processes and provide insights for future predictions of
drought impacts on terrestrial ecosystems.

1 Introduction

Ecosystem water use efficiency (WUE) is commonly de-
fined as the ratio of the ecosystem’s gross primary pro-
ductivity (GPP) to water evapotranspiration (ET), i.e.,
WUE=GPP/ET, which reflects the carbon gain per unit of
water lost (Keenan et al., 2013; Li et al., 2023a; Naeem et al.,
2023). This metric couples the water and carbon cycle pro-
cesses, serving as a key characteristic indicator for ecosystem
function (Liu et al., 2020). Investigating the spatiotemporal
characteristics and driving factors of WUE holds substan-
tial practical importance for exploring the response mecha-
nisms of ecosystems under changing environmental condi-
tions (Huang et al., 2017; Tan et al., 2023; Zhou et al., 2017).

The increase in atmospheric CO2 concentrations brings
profound impacts on regional WUE, GPP, and ET through
radiative effects and biogeochemical effects (Naeem et al.,
2023; Yang et al., 2022). The interactions between land and
atmosphere further complicate the changes associated with
rising CO2 levels (De Kauwe et al., 2021; He et al., 2023;
Zhan et al., 2022). Regarding radiative effects, elevated CO2
directly affects hydro-atmospheric processes, altering global
and regional precipitation and evaporation patterns (Bintanja
and Andry, 2017; L. Gu et al., 2023; Yin et al., 2018). The
biogeochemical effects are primarily manifested through the
impacts of CO2 fertilization and changes in plant stomatal
conductance on the underlying vegetation structure. Fertil-
ization effect refers to the increased CO2 concentrations en-
hancing photosynthesis rates, thereby increasing vegetation
productivity and promoting plant growth (Chen et al., 2024;
Sun et al., 2018). He et al. (2023) demonstrated that CO2 was
the dominant driver of the increase in forest carbon sinks over
the past few decades. The growth in plant biomass can lead
to an increase in evapotranspiration (Xie et al., 2020). How-
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ever, elevated CO2 concentrations can also contribute to a
reduction in leaf stomatal conductance, potentially resulting
in a decrease in transpiration (De Kauwe et al., 2021; Zhu et
al., 2011). Beyond these direct climatic changes through ra-
diative and direct biogeochemical effects on the land surface,
the climate and land surface are also subject to secondary ef-
fects. For example, climate change can further impact veg-
etation cover (Berg et al., 2017); changes in the structure
of surface vegetation will alter the water–energy exchange
process, thereby affecting precipitation and other processes
(Zhou et al., 2022). Few studies have focused on the rela-
tive contributions of CO2’s direct and secondary effects on
WUE. However, understanding these contributions is crucial
for exploring the mechanisms of WUE changes and accu-
rately predicting future changes in WUE.

Conducting a joint analysis of hydrological variables us-
ing conceptual models and global climate models (GCMs)
serves as an effective method for attributing land–atmosphere
processes (Zhou et al., 2023). Since its inception, the
Budyko model (Budyko, 1974) has been extensively em-
ployed to evaluate the relationships between water–energy
exchanges and changes in surface characteristics under dif-
ferent climate scenarios (Fang et al., 2020; Fathi et al.,
2019; Roderick and Farquhar, 2011). As a conceptual frame-
work, the Budyko model is characterized by its simplic-
ity and excellent performance, elucidating the relation-
ship between ET/P (evapotranspiration/precipitation) and
PET/P (potentialevapotranspiration/precipitation) (Cheng
et al., 2011; Choudhury, 1999; Xu et al., 2022). Yang et
al. (2015) applied the Budyko framework to the carbon cy-
cle, revealing the relationship between GPP and energy ex-
change. Fang et al. (2020) explored the relationship between
GPP, WUE, and water–energy relations in semi-arid basins
through the Budyko model, investigating the correlations
between WUE and underlying surface parameters. Despite
previous efforts to extend the scope of the Budyko model
from water–energy relations to water–carbon–energy rela-
tions, there have been few descriptions of how these rela-
tionships may change in the future along with the relative
contribution of elements to the studied variables.

The complexity of drought events can have significant im-
pacts on the regional economy and environment (Yin et al.,
2023; Yuan et al., 2023). Variations in WUE under drought
conditions have been recognized as an indicator of ecosys-
tems’ adaptability to drought stress (Huang et al., 2017;
Ponce-Campos et al., 2013). Ponce-Campos et al. (2013)
suggested that ecosystems increased their WUE in response
to water stress. However, observations have shown con-
siderable variability in WUE responses to drought events
across different regions (Huang et al., 2017; Lu and Zhuang,
2010; M. Wang et al., 2021; Xie et al., 2016; Yang et al.,
2021). This indicates the need for more in-depth research
into the WUE–drought relationship. According to Pokhrel
et al. (2021), in the context of climate change, the risk of
drought in most regions worldwide is expected to continue

increasing, which raises the question of how WUE will re-
spond to drought in the future. This study aims to explore
the future response mechanisms of WUE to drought to bet-
ter assess the resilience of ecosystems under climate change.
The drought severity index (TWSA-DSI) based on the terres-
trial water storage anomaly (TWSA) has been widely used
in drought monitoring and analysis (Yin et al., 2022, 2023;
Zhao et al., 2017). This index effectively monitors regional
drought characteristics and development paths (Yin et al.,
2022). Compared to other traditional drought indicators such
as the Palmer drought severity index (PDSI), soil moisture
drought index (SMI), standardized precipitation index (SPI),
standardized runoff index (SRI), etc., TWSA-DSI is better
able to detect overall regional drought conditions and to ex-
plore the effects of drought on hydrological systems and veg-
etation growth (A et al., 2017; Du et al., 2019; Zhao et al.,
2017). This study chooses to use TWSA-DSI to identify re-
gional drought events, allowing for a more nuanced under-
standing of how WUE may adapt or respond to these condi-
tions in various ecosystems.

The Yellow River basin (YRB) is an important basin in
China, situated in the arid and semi-arid regions. The ecosys-
tem within the basin is complex and vulnerable to drought
(Huang et al., 2015). Changes in the ecohydrological pro-
cesses of the YRB in the future will profoundly impact
China’s socioeconomic development. This paper selects the
YRB as the study area, trying to deepen the understanding of
the spatiotemporal variation mechanisms of WUE in this re-
gion. This study aims to answer the following three research
questions over both historical and future timescales:

a. What changes will occur in the spatiotemporal distribu-
tion of WUE within the basin?

b. How can the impact of elevated atmospheric CO2
concentrations on WUE changes be quantitatively ex-
plained?

c. How does the response mechanism of WUE to drought
within the basin evolve under future scenarios?

The reminder of this paper is organized as follows. Section 2
describes the study area and the data used. Section 3 defines
the methodology. Section 4 and Sect. 5 give the results and
discussion of the study, respectively. Finally, Sect. 6 con-
cludes the paper.

2 Study area and data

2.1 Study area

The Yellow River is the second-longest river in China and the
fifth-longest river in the world, with a total length of about
5464 km. The YRB (32–41° N, 95–119° E) is the second-
largest drainage basin in China (Fig. 1), with an approximate
area of 795 000 km2 (including a 42 000 km2 inland flow
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area). The YRB spans the Tibetan Plateau, the Inner Mon-
golian Plateau, the Loess Plateau, and the North China Plain.
The average altitude of the basin exceeds 3000 m, and the
terrain becomes progressively lower from west to east. The
sub-basins are characterized by a wide range of climatic and
geomorphologic variations. Overall, the basin has a largely
semi-humid climate in the southeast and an arid/semi-arid
climate in the center and the northwest. The YRB is one
of the earliest origins of human civilization, and the Yellow
River is also known as the “mother river” of China. The YRB
has a population of more than 120 million people, a gross na-
tional product of about 8 trillion RMB (≈ 1.1 trillion USD),
and a cultivated agricultural area of about 200 000 km2. The
YRB has been regarded as one of the most important basins
in China because of its important role in socioeconomic de-
velopment, ecological resource protection, and agricultural
food production.

2.2 Data collection

2.2.1 Climate and GPP data

The monthly precipitation, potential evapotranspiration, and
evapotranspiration and GPP datasets during 1997–2016 were
both retrieved from National Tibetan Plateau Data Cen-
ter (https://data.tpdc.ac.cn/, last access: 1 February 2024).
The precipitation and potential evapotranspiration dataset
are based on the Climatic Research Unit (CRU) time se-
ries (TS) v4.02 dataset and WorldClim v2.0 data to gen-
erate data with high spatial resolution and accuracy (Ding
and Peng, 2020, 2021). The evapotranspiration dataset em-
ployed a calibration-free nonlinear complementary relation-
ship model, and the evaluation suggests that the evapotran-
spiration dataset has a good performance (Ma et al., 2019a;
Ma and Szilagyi, 2019). The GPP dataset was developed
based on the satellite-based near-infrared reflectance of veg-
etation (NIRv) (S. Wang et al., 2021). The accuracy and reli-
ability have been validated by many studies (Cai et al., 2023;
Feng et al., 2023; P. Li et al., 2023; Peng et al., 2023; Xing et
al., 2023). For consistency, the above data were bilinearly in-
terpolated to 0.25°×0.25°. To avoid uncertainties introduced
by extremely small values, this study calculated only grid-
point monthly WUE with GPP> 10 gC m2 and ET> 10 mm
following the approach used by Naeem et al. (2023).

2.2.2 Vegetation indicator

In this study, the normalized difference vegetation index
(NDVI) and the leaf area index (LAI) were selected as vege-
tation indicators to characterize the underlying surface con-
ditions. The GIMMS3g NDVI and GIMMS4g LAI data, ac-
quired from the Advanced Very High Resolution Radiometer
(AVHRR) sensor from NOAA’s series of weather satellites,
provide high-spatiotemporal-resolution and high-accuracy
observed vegetation indicators (Pinzon and Tucker, 2014;

Cao et al., 2023a). These data are freely available on NASA’s
website (https://daac.ornl.gov/VEGETATION/guides/
Global_Veg_Greenness_GIMMS_3G.html, last access:
1 February 2024; https://doi.org/10.5281/zenodo.8281930,
Cao et al., 2023b). To match the other data, the vegetation
data were processed into monthly 0.25°× 0.25° gridded
data.

2.2.3 TWSA datasets

To assess long-term changes in drought conditions in the
basin, monthly reconstructed TWSA datasets from 1997–
2016 were used in this study (Humphrey and Gudmundsson,
2019a). This dataset is based on two different Gravity Re-
covery and Climate Experiment (GRACE)/Gravity Recovery
and Climate Experiment Follow-On (GRACE-FO) satellite
products and three different meteorological forcing datasets,
producing six reconstructed TWSA datasets with 100 ensem-
ble members each. Its performance is effectively validated
(H. Gu et al., 2023; Yin et al., 2023; Zhong et al., 2023). In
this study, we calculated the mean results of the six datasets
and thus bilinearly interpolated them to 0.25°× 0.25°.

2.2.4 GCM output data

In order to project future climate scenarios, we selected
seven GCMs in CMIP6 (Table 1). These models were cho-
sen because they encompass most or even all of the vari-
ables required for our analysis. Furthermore, they incorpo-
rate the experimental settings needed for our research and in-
tegrate the dynamic response of vegetation to climate change.
In comparison to CMIP5, CMIP6 uses the matrix frame-
work of the Shared Socioeconomic Pathway (SSP) and the
Representative Concentration Pathway (RCP). In this study,
we utilized simulated monthly data for GPP (gpp), evapo-
transpiration (evspsbl), precipitation (pr), and terrestrial wa-
ter storage (mrtws), where the terms in parentheses rep-
resent the variable names within CMIP6. These data en-
compassed the historical period from 1985–2014 and pro-
jected future scenarios, including SSP126 (sustainable de-
velopment; 2015–2100), SSP245 (moderate development;
2015–2100), SSP370 (regional rivalry development; 2015–
2100), and SSP585 (conventional development; 2015–2100).
These scenarios represent a range of possible futures from
sustainable, low-emission trajectories to high-emission path-
ways based on varying degrees of socioeconomic develop-
ment and environmental policy implementation. To assess
the impact of rising CO2 concentration on WUE, we also
used data from three CO2 sensitivity experiments – namely,
1ptCO2, 1ptCO2-bgc, and 1ptCO2-rad. In 1ptCO2, the con-
centration of CO2 in the atmosphere increases by 1 % per
year. In 1ptCO2-bgc and 1ptCO2-rad, the growth rate of
CO2 is the same as that in 1ptCO2, but the ones ending in
-rad is only coupled with the atmospheric part (CO2 radia-
tive forcing), while that ending in -bgc is only coupled with
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Figure 1. Location and topography of the YRB.

the land part (CO2 biogeochemically forcing), and the other
part maintained the fixed CO2 concentration level of pre-
industrialization. It is notable that in all three experiments,
the CO2 concentration rises at the same rate as in SSP585.

To obtain the TWSA series from CMIP6, the common
practice is to select the same baseline period (2004–2009)
as GRACE/GRACE-FO satellite data and deduct the series
mean value during this period to obtain the TWSA series
(Pokhrel et al., 2021; Yin et al., 2022). In this study, we also
used this method. Since there is no direct output of poten-
tial evapotranspiration from CMIP6, we used near-surface
air temperature (Tas), near-surface wind speed (sfcWind),
relative humidity (hur), surface pressure (ps), heat flux, net
surface radiation, and other data to calculate potential evap-
otranspiration with the Penman–Monteith equation (Eq. 1),
which is the only standard method proposed by the Food and
Agriculture Organization of the United Nations (FAO) (Allan
et al., 1998). All GCM outputs were bilinearly interpolated to
a common spatial resolution of 0.25°× 0.25°.

PET=
0.4081(Rn−G)+ γ

900
T+273µ2 (es − ea)

1+ γ (1+ 0.34µ2)
, (1)

where PET is the potential evapotranspiration (mm),1 is the
slope of the saturation vapor pressure curve at temperature
T (kPa °C−1), Rn is net surface radiation (MJ m−2), G is the
soil heat flux (MJ m−2), γ is the psychrometric constant (kPa
°C−1), T is the near-surface air temperature (°C), µ2 is the
near-surface wind speed (m s−1), and (es − ea) is the vapor
pressure deficit (kPa).

3 Methodology

3.1 Trend-preserving bias correction

Bias correction is the adjustment of GCM simulation data
to reduce their systematic deviation as compared to observa-
tions. Compared to traditional bias correction methods, the
trend-preserving bias correction method enables more robust
bias adjustments for extremes and more accurately main-
tains trends across quantiles. The main steps of the trend-
preserving bias correction are as below (Lange, 2019).

– Step 1. Detrend observation data (xobs
his ), GCM outputs

during historical period (xsim
his ), GCM outputs during the

future period or CO2 experiment period (xsim
fut ) to obtain

three new series, xDobs
his , xDsim

his and xDsim
fut , respectively.

– Step 2. Transfer the change signals between the simu-
lation series (xDsim

his and xDsim
fut ) to the observation series

(xDobs
his ) to obtain the pseudo-observation series, xDobs

fut .

– Step 3. Adjust the distribution of xDsim
fut based on xDobs

fut
by quantile mapping. The formula is as follows:

xDobs
fut = x

Dobs
his + (x

Dsim
fut − x

Dsim
his ).

– Step 4. Add the results from Step 3 to the trend values
previously subtracted to get the corrected results.

This study took into account the variations in the frequency
distribution functions of TWSA across different periods,
thereby implementing corrections for individual months sep-
arately. The results indicate that this month-specific correc-
tion approach yields better outcomes than a correction ap-
proach that does not differentiate by month.
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Table 1. CMIP6 GCMs used in this study. The eighth column shows the model outputs for the three CO2 sensitivity experiments (1ptCO2,
1ptCO2-bgc, and 1ptCO2-rad). GPP, ET, PET, P , and TWSA are represented by red, blue, yellow, green, and black crosses, respectively.

3.2 WUE attribution framework

Many studies applied the Budyko model to isolate the ef-
fects of climate change and land surface properties on evapo-
transpiration or runoff at the basin/catchment scale (Roderick
and Farquhar, 2011; Yang and Yang, 2011; Xu et al., 2022).
The general Budyko model contemplates the interconnec-
tions and feedbacks between water and energy cycles while
also considering the impact of basin characteristics. The ex-
pression of the model is as follows:

E

P
= f

(
PET
P
,c

)
, (2)

where E and P , respectively, represent evapotranspiration
(mm) and precipitation (mm) and c is the basin underlying
surface parameter.

In this study, we analyzed the relationship between hydro-
logical elements and vegetation structure. After a selection
process, we employed the linear Budyko function structure
for WUE as proposed in previous studies (Cheng et al., 2011;
Fang et al., 2020). The formula is expressed as follows:

WUE
P
= f

(
PET
P
,m,n

)
=m

PET
P
+ n, (3)

where WUE is the water use efficiency (g C kg−1 H2O) and
m and n represent the underlying surface conditions of the
basin. The Spearman correlation coefficient and its signifi-
cance were used to study the relationships between variables
in Eq. (3). The model regression results and the coefficient of
determination (R2) were derived from data analysis to eval-
uate the accuracy of the model.

To avoid the effects of climate variability and seasonal
changes in the basin underlying parameters in the Budyko
model, this study focused on a timescale of about 30 years
(Ning et al., 2019).

In traditional attribution analysis based on the Budyko
model, the total differentiation method is widely used. There-

fore, based on Eq. (3), it can be formulated as follows:

dWUE=
∂WUE
∂P

dP +
∂WUE
∂PET

dPET+
∂WUE
∂m

dm

+
∂WUE
∂n

dn, (4)

∂WUE
∂P

= f

(
PET
P
,m,n

)
−

PET
P

∂f

∂
(PET
P

) , (5)

∂WUE
∂PET

=
∂f

∂
(PET
P

) , (6)

∂WUE
∂m

+
∂WUE
∂n

= P
∂f

∂m
+P

∂f

∂n
. (7)

In Eqs. (5) and (6), the terms on the left side of the equal-
ity represent the impact of climate change on WUE. Mean-
while, in Eq. (7), the term on the left represents the influ-
ence of land surface changes. In accordance with Zhou et
al. (2016), we assume that there is such an equation that
holds: ∂WUE

∂m
+
∂WUE
∂n
= P d( ∂WUE

∂P
)+PETd( ∂WUE

∂PET ). In other
words, the impact of land surface changes can be represented
by the calculated result of P d( ∂WUE

∂P
)+PETd( ∂WUE

∂PET ). The
proof proceeds as follows:
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P d
∂WUE
∂P

+PETd
∂WUE
∂PET

= P d

[
f −

PET
P

∂f

∂
( PET
P

)]

+PETd

[
∂f

∂
( PET
P

)]

= P

(
∂f

∂PET
dPET+

∂f

∂P
dP +

∂f

∂m
dm+

∂f

∂n
dn
)

−P d

[
PET
P

∂f

∂
( PET
P

)]+PETd

[
∂f

∂
( PET
P

)]

= P

[
∂f

∂
( PET
P

) ∂ ( PET
P

)
∂PET

dPET
∂f

∂
( PET
P

) ∂ ( PET
P

)
∂P

dP+

+
∂f

∂m
dm+

∂f

∂n
dn
]
−P d

[
PET
P

∂f

∂
( PET
P

)]+PETd

[
∂f

∂
( PET
P

)]

= P

[
1
P

∂f

∂
( PET
P

)dPET−
PET
P 2

∂f

∂
( PET
P

)dP

]
−P d

[
PET
P

∂f

∂
( PET
P

)]

+PETd

[
∂f

∂
( PET
P

)]+P ∂f
∂m

dm+P
∂f

∂n
dn

=
∂f

∂
( PET
P

)dPET+PETd

[
∂f

∂
( PET
P

)]− PET
P

∂f

∂
( PET
P

)dP

−P d

[
PET
P

∂f

∂
( PET
P

)]+P ∂f
∂m

dm+P
∂f

∂n
dn

= dPET
∂f

∂
( PET
P

) − dP
PET
P

∂f

∂
( PET
P

) +P ∂f
∂m

dm+P
∂f

∂n
dn

= P
∂f

∂m
dm+P

∂f

∂n
dn.

(8)

In practical applications, Eq. (4) is commonly expressed as
the first-order Taylor approximation for attribution analysis:

1WUE=
∂WUE
∂P

1P +
∂WUE
∂PET

1PET+
∂WUE
∂m

1m

+
∂WUE
∂n

1n+O, (9)

where 1WUE, 1P , 1PET, 1m, and 1n, respectively, rep-
resent the actual changes in WUE; precipitation; potential
evapotranspiration; and two underlying surface parameters,
i.e., m and n. It is noteworthy that in Eq. (9), there is consis-
tently a residual term, O, which represents the higher-order
terms in the Taylor expansion. The value of O will affect the
accuracy of the attribution results.

Zhou et al. (2015) have proven that if the function structure
between a dependent variableZ andN independent variables
(X1, X2, . . ., XN ) is

Z

X1
= f (

X2

X1

X3

X1

XN

X1
), (10)

the sum of the elasticity coefficients is then unity, i.e. the
following:

∂Z/Z

∂X1/X1
+

∂Z/Z

∂X2/X2
+ . . .+

∂Z/Z

∂XN/XN
= 1. (11)

Demonstrating that a similar complementary relationship ex-
ists in WUE

P
= f (PET

P
mn) is straightforward; namely, the fol-

lowing applies:

∂WUE/WUE
∂P/P

+
∂WUE/WUE
∂PET/PET

= 1. (12)

Therefore, according to previous studies (Zhou et al., 2016;
Yang et al., 2023; Zhang et al., 2023), if such a complemen-
tary relationship (Eq. 12) exists, the difference in dependent
variable Z (1WUE) can be expressed in the following form
without any residual term:

1WUE= α
[(
∂WUE
∂P

)
1
1P +

(
∂WUE
∂PET

)
1
1PET

+P21

(
∂WUE
∂P

)
+PET21

(
∂WUE
∂PET

)]
+ (1−α)

[(
∂WUE
∂P

)
2
1P +

(
∂WUE
∂PET

)
2
1PET

+P11

(
∂WUE
∂P

)
+PET11

(
∂WUE
∂PET

)]
, (13)

where subscripts 1 and 2, respectively, represent the initial-
and final-state quantities; 1 denotes the difference between
the two states; and α is the weighting factor, with a value
range of 0 to 1.

Considering Eqs. (4) and (8), 1WUE can be further writ-
ten as changes due to the climate (1WUEc) and due to the
underlying surface (1WUEu):

1WUE=1WUEc+1WUEu, (14)

1WUEc = α

[(
∂WUE
∂P

)
1
1P +

(
∂WUE
∂PET

)
1
1PET

]
+ (1−α)

[(
∂WUE
∂P

)
2
1P +

(
∂WUE
∂PET

)
2
1PET

]
,

(15)

1WUEu = α

[
P21

(
∂WUE
∂P

)
+PET21

(
∂WUE
∂PET

)]
+ (1−α)

[
P11

(
∂WUE
∂P

)
+PET11

(
∂WUE
∂PET

)]
.

(16)

From Eqs. (14)–(16), the impacts of climate and under-
lying surface changes on WUE can be precisely decom-
posed within the Budyko model. However, attribution solely
through the Budyko model is insufficient to decouple the ef-
fects of CO2 on land and atmosphere. The CO2 sensitivity
experiments of GCMs mentioned in Sect. 2.2.4 had been ap-
plied to explore the atmosphere–surface interactions caused
by elevated CO2 (Piao et al., 2007; Fowler et al., 2019). In
the 1ptCO2-rad experiment, the increase in CO2 concentra-
tion has a direct radiative effect on the climate and an indirect
effect on vegetation physiology; conversely, in the 1ptCO2-
bgc experiment, the increase in CO2 concentration has a di-
rect biogeochemical impact on vegetation and then indirectly
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Table 2. Classification standards for wetness (W) or dryness (D)
levels based on TWSA-DSI.

Category Wet/dry level TWSA-DSI

W4 Exceptionally wet (2.0, +∞)
W3 Extremely wet (1.60, 2.0]
W2 Very wet (1.30, 1.60]
W1 Moderately wet (0.80, 1.30]
W0 Slightly wet (0.50, 0.80]
WD Near-normal (−0.50, 0.50]
D0 Abnormally dry (−0.80, −0.50]
D1 Moderate drought (−1.30, −0.80]
D2 Severe drought (−1.60, −1.30]
D3 Extreme drought (−2.0, −1.60]
D4 Exceptional drought (0, −2.0]

affects the climate. The difference between the combined re-
sults of the -rad and -bgc experiments and the results of the
1ptCO2 experiment are attributed to land–atmosphere inter-
actions. By applying the Budyko attribution method in the
three CO2 experiments (Zhou et al., 2023), the impact of
land–atmosphere coupling on WUE can be quantitatively in-
terpreted.

3.3 TWSA-DSI

The method proposed by Zhao et al. (2017) was employed to
identify terrestrial drought conditions using the TWSA-DSI
index. TWSA-DSI is capable of comparing drought charac-
teristics across regions and periods, and it can also sensi-
tively capture the available water amount affecting vegetation
growth. The calculation is as follows:

TWSA−DSIi,j = (TWSAi,j −TWSAj )/σj , (17)

where TWSA−DSIi,j and TWSAi,j represent the TWSA-
DSI and TWSA data for the ith year and j th month and
TWSAj and σj , respectively, denote the average and stan-
dard deviation of TWSA for the j th month within the study
period.

In this study, the TWSA-DSI index was calculated
for each grid point within the basin for each study pe-
riod (experiment). Based on these results, different lev-
els of terrestrial wetness/dryness were classified as shown
in Table 2 (Yin et al., 2022). Three main categories of
terrestrial wet and dry conditions were investigated in
this study: non-drought (TWSA-DSI>−0.8), moderate–
severe drought (−1.6<TWSA-DSI≤−0.8), and extreme–
exceptional drought (TWSA-DSI≤−1.6).

3.4 Conditional probability

The impact of different drought levels on WUE can be as-
sessed by considering the conditional probability distribution
of the drought index. Referring to previous studies (Feng et
al., 2019; Wu and Jiang, 2022), WUE is transformed into a

standardized form using a meta-Gaussian model specifically
as the standardized water use efficiency index (SWI). The
differences in the distribution of SWI under different drought
conditions (with TWSA-DSI as the drought index) were used
to evaluate the response of WUE to different drought severity
levels. As TWSA-DSI is also a standardized normal random
variable (X), the bivariate conditional distribution of SWI
(Y ) given X can be straightforwardly expressed as follows:

Y |X ∼N
(
µY |X,6Y |X

)
, (18)

where µY |X is the conditional mean and 6Y |X is the condi-
tional variance.

4 Results

4.1 Assessment of bias correction performance

We applied bias correction to the monthly GCM data using
the method described in Sect. 3.1 and compared the correc-
tion results for the overlapping period (1997–2014) with ob-
servation data. It is noteworthy that different GCMs include
a varying number of variables. As a result, even though we
have endeavored to select the same models, the ensemble
GCM members for different variables are not exactly the
same. The performance of correction was presented in the
form of Taylor diagrams (Fig. 2). The correction results for
GPP and ET were substantially better than those for P , PET,
and TWSA. The correlation coefficients (CCs) for GPP and
ET after correction were all above 0.97, with multi-model
average root mean square errors (RMSEs) of 9.90 gC m−2

and 7.35 mm, respectively. The inter-model differences were
also small. Thus, it can be assumed that the WUE calculated
from the corrected output data was credible. For P , PET,
and TWSA, the models with the best correction effects were
IPSL-CM6A-LR, CMCC-ESM2, and CESM2, respectively.
Their CC reaches 0.89, 0.99, and 0.82, with RMSE values
of 18.13, 8.35, and 10.16 mm. In comparison, CMCC-ESM2
performed relatively poor for P with a CC of 0.74. CNRM-
ESM2-1 exhibited suboptimal correction performance for
PET and TWSA, with CC values of 0.78 and 0.70, respec-
tively. Overall, the outputs of all GCMs showed good per-
formance after bias correction (with CCs all greater than or
equal to 0.70). The trend-preserving bias correction method
effectively eliminated systematic errors between GCMs and
observation data. The corrected data can be used for the as-
sessment and attribution of future climate scenarios.

4.2 Changes in WUE over YRB

Figure 3 illustrated the time series of multi-model annual av-
erages for WUE, GPP, and ET under historical and different
future scenarios. During the historical period, WUE and GPP
in the YRB showed an increasing trend, while ET exhibited a
slight rise with fluctuations. From 2015 to 2100, the changes
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Figure 2. Taylor diagrams for corrected GCM data of (a) GPP, (b) ET, (c) P , (d) PET, and (e) TWSA.

in each indicator varied in different scenarios, but the trend
patterns of WUE and GPP are relatively similar (Fig. 3a
and b). Under the low-emission pathway scenario (SSP126),
WUE and GPP first experienced a slight increase in the fu-
ture (peaking around 1.68 gC kg−1H2O and 675 gC m−2, re-
spectively), which was then followed by a decline. In the
moderate-emission scenario (SSP245), WUE and GPP in-
creased before stabilizing at the end of the century (2070–
2099), with values of 1.55 gC kg−1H2O and 771 gC m−2,
respectively. Both WUE and GPP exhibited a continuous
upward trend in the high-emission scenarios (SSP370 and
SSP585), and SSP585 showed a higher growth rate compared
to SSP370. For ET (Fig. 3c), there was a subtle increase un-
der the low-emission scenario (SSP126) and a slight decrease
towards the end of the century. Guo et al. (2022) observed
that temperature and precipitation demonstrate similar de-
velopmental trends in the YRB under SSP126 as the low-
emission pathway aims to limit global warming. Given that
temperature and precipitation are crucial drivers of evapo-
transpiration, it is logical to see ET following this pattern of
development. In other scenarios, ET showed an overall up-
ward trend, and with increasing carbon emissions, ET in the
YRB increased more rapidly. Additionally, it can be observed
from the box plots that the outputs for WUE, GPP, and ET
from the multi-model ensemble were more concentrated dur-
ing the historical period, whereas they were more dispersed

in the future periods. Furthermore, the degree of dispersion
increased with the rise in carbon emission concentrations.

The first column in Fig. 4 displays the spatial distribu-
tion of annual WUE in the YRB during the historical period
(1985–2014) and the future period (2070–2099) under dif-
ferent SSPs. The multi-model average results indicated that
during the historical period, the multi-year average WUE in
the YRB predominantly exhibited a pattern of higher values
in the east and lower values in the west, with higher values
in the south and lower values in the north. High WUE values
were observed in the upstream areas and downstream coastal
areas, while low values appeared in the northwest part of the
basin, specifically the Inner Mongolia Plateau. Under differ-
ent scenarios, the future distribution characteristics of WUE
remained similar. As shown in the first column of Fig. 5,
there was a predominant upward trend in WUE in the middle-
downstream region in the future, and the relative growth in-
creased with increasing carbon emissions. In some areas, the
growth exceeded 200 %. However, the Hetao region in the
northwest part of the Yellow River consistently experienced
a downward trend in WUE under different scenarios, with the
greater decline as carbon emissions increased. In the SSP585
scenario, this region experienced a negative growth of close
to 20 %. The upstream areas of the YRB showed relatively
consistent changes under different scenarios except for a no-
ticeable decrease in the southwestern of the basin, i.e., the
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Figure 3. Annual averaged time series and box plots during historical-period (1985–2014) and future-period (2070–2099) (a) WUE, (b) GPP,
and (c) ET from the CMIP6 multi-model ensemble in the YRB.

Qinghai–Tibet Plateau region, while changes in other regions
were less evident.

To further investigate the spatial distribution characteris-
tics of WUE, we plotted the spatial distribution and relative
changes in GPP and ET (different columns in Figs. 4 and
5). The spatial distribution characteristics of GPP closely
resembled those of WUE (the first and second column in
Fig. 4), with the locations of high and low values aligning
well. Under different scenarios, the entire YRB experienced
an increase in GPP, though the degree varies (the second col-
umn in Fig. 5). Overall, there was relatively little change in
GPP in the source area of the YRB, while significant growth
was observed in the Loess Plateau and the intra-basin areas.
The growth in GPP increased sequentially from SSP126 to
SSP585. In SSP585, most regions in the basin, including the
Loess Plateau and Ningxia Plain, exhibited a 260 % growth
in GPP. Extremely low values ET were observed in the Hetao
area, with ET increasing in a radial pattern, indicating higher

ET values at locations increasingly distant from this region
(the third column in Fig. 4). Throughout different periods
and scenarios, the minimum values consistently appeared in
the northwest part of the basin, specifically the Inner Mon-
golia Plateau, all below 60 mm. The maximum values oc-
curred along the Qinling (which also serves as the boundary
between northern and southern China), where ET exceeds
780 mm. The relative changes in ET in the YRB exhibited
the opposite trend, increasing from southeast to northwest
(the third column in Fig. 5). In the low-emission scenario
(SSP126), ET showed minimal variation within the basin.
However, with increasing carbon emissions, the growth in
ET became more drastic, especially in the Inner Mongolia
Plateau. In SSP585, the growth in this area and its vicinity
reached 52 %. In comparison, ET changes in other regions
are not significant except for in the source area, where ET
also increased.
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Figure 4. Spatial distribution of multi-model average results in the YRB under different scenarios. The three columns represent the multi-
year average of WUE (the first column), GPP (the second column), and ET (the third column) during the historical (the first row) period
(1985–2014) and future periods (2070–2099) under the SSP126 (the second row), SSP245 (the third row), SSP370 (the fourth row), and
SSP585 (the fifth row) scenarios.

4.3 Attribution of WUE changes over the YRB

We constructed a Budyko-type model of water–energy ex-
change for WUE based on the method outlined in Sect. 3.2.
Figure 6a illustrates the Spearman correlation coefficients
between the underlying surface parameters of the Budyko
model, WUE, and vegetation indices based on observation
data. WUE showed a strong positive correlation with LAI
and NDVI, with correlation coefficients reaching 0.97 and
0.95, respectively. The correlation with the underlying land
surface parameter, m, was also significant (p < 0.01), with
a coefficient of 0.56. Although the negative correlation be-
tween WUE and n was relatively weaker (−0.26), it was still
statistically significant (p < 0.01). The basin underlying sur-
face parameters (m and n) exhibited good correlations with
vegetation indices (LAI and NDVI) at 0.53, 0.65,−0.30, and
−0.33, respectively. In general, an increase in LAI and NDVI

will cause an increase inm and a decrease in n, consequently
resulting in an increase in WUE.

Furthermore, we established Budyko models for WUE us-
ing the multi-model average data under different periods and
scenarios to assess the combined impacts of climate and
vegetation patterns on WUE. As depicted in Fig. 6b, the
selected linear Budyko models demonstrated good perfor-
mance across various periods and scenarios. It exhibited the
best fits in SSP370 and historical scenarios, withR2 values of
0.73 and 0.71, respectively, while performing relatively less
well in SSP245, with anR2 of 0.60. Overall, the models’ per-
formance had been satisfactorily validated in the YRB (R2

consistently exceeding 0.60), providing confidence for sub-
sequent attribution analyses.

Based on the established Budyko models, we calculated
the changes in WUE and the attribution results for the YRB
(Fig. 7a). The results indicated an increase trend in the multi-
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Figure 5. Spatial distribution of the relative changes in WUE (the first column), GPP (the second column), and ET (the third column)
compared to the historical period under different scenarios.

Figure 6. Performance of the Budyko model. (a) Cross-correlation coefficients among WUE, Budyko model parameters, and vegetation
indices based on observation data (∗ indicates a significance of p < 0.01). (b) Budyko model performance for WUE in the historical period
(1985–2014) and under different SSPs (2070–2099). The shading represents the 95 % confidence interval.

year average WUE for the basin in the future period (2070–
2099) compared to the historical period (1985–2014). More-
over, with intensifying carbon emissions, the increase in
WUE became more substantial, with average increases in
WUE sequentially from SSP126 to SSP585 by 0.36, 0.54,
0.75, and 0.84 gC kg−1 H2O. SSP585 exhibited the high-
est growth in WUE, although we observed a slowdown in
the increase from SSP370 to SSP585. According to the at-

tribution results, climate change consistently remained the
predominant factor influencing WUE changes, especially in
SSP126, where almost the entire variation in WUE was at-
tributable to climate change (101.4 %). In SSP126, SSP245,
SSP370, and SSP585, the proportions dominated by under-
lying change were −1.4 %, 14.9 %, 16.9 %, and 22.1 %, re-
spectively. However, we also observed that with increasing
carbon emissions, the impacts of underlying surface changes
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on WUE became more significant. In the low-emission sce-
nario (SSP126), the influence of land surface changes in
the basin was minimal, only playing a slightly negative role
(−1.4 %). But in SSP245, SSP370, and SSP585, the promot-
ing effects of land surface factors on WUE became more pro-
nounced. In SSP585, nearly a quarter of the WUE growth
was attributed to changes in the underlying surface. These
phenomena could be explained by the fertilization effect of
carbon dioxide. In the SSP126 scenario, atmospheric CO2
concentrations for the future period (2070–2099) were pro-
jected to be lower than in the historical period (1985–2014),
which could be detrimental to plant growth and especially
GPP. Therefore, under the low-emission scenario, changes in
the land surface might have a slight impact on WUE. With
the increase in carbon emissions, the growth of vegetation
was further promoted, and the changes in vegetation pro-
ductivity due to different carbon emission scenarios might
be more pronounced compared to the impacts of climate
change. Thus, the role of underlying land surface changes
became increasingly important in the variation in WUE.

Due to the consistent increase in CO2 concentration in
the three CO2 sensitivity experiments at the same rate as in
SSP585, we combined the CO2 experiments with the attri-
bution in SSP585 to decouple the direct and secondary ef-
fects of CO2-induced radiative and biogeochemical impacts.
To ensure the validity of the results, we selected the first
30 years and the subsequent 30 years of the CO2 experi-
ment, with a time span consistent with SSP585. As shown in
Fig. 7b, compared to the radiative effect (−1.3 %), the bio-
geochemical effect of CO2 overwhelmingly dominated the
change in WUE (100.6 %). This was understandable as the
majority of the effects from the biogeochemical experiment
directly acted on land surface (94.5 %) and specifically on the
vegetation structure. Climate-induced feedback on changes
in vegetation structure also played a positive role in WUE
growth (6.1 %). Analyzing the attribution results from the ra-
diative experiment, we found that although the radiative ef-
fect had a minimal negative impact on WUE (−1.3 %), this
outcome was due to the significant weakening or even sur-
passing of the indirect response of the land surface vegetation
structure to the climate (−56.3 %) compared to the direct ra-
diative forcing effect of CO2 on the climate (55.0 %). The
mutual offsetting of these two results led to the radiative ef-
fect having a very small negative impact on WUE changes.
However, the direct forcing of the radiative effect on climate
(55.0 %), the indirect feedback in the biogeochemical exper-
iment (6.1 %), and the interaction between the two experi-
ments (16.8 %) ultimately made climate change the dominant
factor (77.9 %) in the growth of the YRB.

4.4 WUE response to drought

In order to investigate how WUE responds to different lev-
els of drought under various scenarios, we calculated the
anomaly of WUE at each pixel at different drought levels

and averaged the anomaly results across different GCMs. To
obtain a sufficient number of event samples at the grid scale
and derive more universally applicable conclusions, we fo-
cused only on the moderate–severe drought (−1.6<TWSA-
DSI≤−0.8) and extreme–exceptional drought (TWSA-
DSI≤−1.6) categories by treating all other conditions as
non-drought situations (TWSA-DSI>−0.8) (Yin et al.,
2022). In the analysis of future drought responses, particu-
lar attention was given to the potential influence of long-term
trends on the calculated values of WUE and TWSA. To mit-
igate this effect, we calculated the mean and standard devia-
tion of WUE and TWSA for the same time spans separately
to get the WUE anomaly and TWSA-DSI, which ensures that
our analysis focuses on the specific variations and conditions
within each period. As shown in Fig. 8 (the first and second
columns), in most regions of YRB, the response of WUE to
drought can be divided into two stages: an increase in WUE
during moderate–severe drought and a decrease in WUE dur-
ing extreme–exceptional drought. The area percentages of
the two-stage model in different periods and scenarios are
98.0 % in historical, 96.8 % in SSP126, 97.6 % in SSP245,
97.0 % in SSP370, and 99.2 % in SSP585. The spatial char-
acteristics of WUE response patterns were also similar across
different periods and scenarios.

In the historical period (1985–2014), WUE generally in-
creased during moderate–severe drought, with a widespread
increase, and only a few areas (specifically, two pixels in the
Ningxia Plain) showed a decrease. The middle reaches of the
YRB showed a relatively small increase, while more signif-
icant increases were observed in the upstream source area
and downstream estuary. As drought intensified to extreme–
exceptional levels, there was a large-scale decrease in WUE
across the basin. The areas with increased WUE compared
to the previous stage also experienced a decline in this stage.
Similar to moderate–severe drought, the middle reaches of
the YRB saw a significant decrease in WUE, while the source
and downstream areas showed a slight increase.

Looking into the future (2070–2099), WUE’s positive re-
sponse to drought became more prominent under all SSPs.
This was evident in the significantly higher increase in WUE
during moderate–severe drought compared to the historical
period. Moreover, the areas with a decrease in WUE dur-
ing extreme–exceptional drought became smaller. With in-
creasing carbon emissions, the positive response of WUE
to drought became more pronounced. This was due to the
fact that CO2 not only promoted the growth of the plant,
but also reduced stomatal conductance, allowing water to be
better retained in the body during dry periods. In SSP126,
the WUE response pattern to drought was similar to that
of the historical period. However, in SSP585, almost all re-
gions within the basin showed a positive response of WUE
to moderate–severe drought, with WUE anomalies reaching
around 1.0 gC kg−1H2O. Even during extreme–exceptional
drought, there were very few areas where WUE decreased
across the basin.
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Figure 7. Attribution results for WUE changes. (a) Changes in WUE in the YRB under different SSPs along with the relative contributions of
climate factors and underlying surface factors. The stacked chart represents the relative contribution rates of climate change and underlying
changes to WUE variations under different scenarios. The line graph depicts the average WUE changes (during 1985–2014 and 2070–2099)
across the basin under various scenarios. (b) Land–atmosphere decoupling attribution results based on SSP585 and CO2 experiments. The
percentages represents the relative contribution rates.

Figure 8 (the third column) quantitatively described the
conditional probability distribution of SWI under differ-
ent dry and wet conditions. Across different periods and
SSPs, the mean (µ) of SWI under extreme–exceptional
drought conditions was lower than that under moderate–
severe drought conditions. Combining the previously men-
tioned two-stage response characteristics, this is understand-
able because as drought intensified, the WUE response in the
basin tended to shift towards negative values. However, we
also observe that µ under non-drought conditions was gen-
erally higher than that under drought conditions. A reason-
able explanation was that, compared to the wet season, the
basin tended to have lower WUE during seasons or months
prone to drought. Therefore, even with a positive response
during drought, the value of µ remained lower than in non-
drought periods. Additionally, compared to the historical pe-
riod, the future µ under different scenarios showed vary-
ing degrees of growth. This growth was less pronounced in
the low-emission scenario (SSP126) but became more sig-
nificant with increasing carbon emissions, reaching its max-
imum in SSP585. This was consistent with the results in
Sect. 4.2.

Furthermore, we observed that with the increase in car-
bon emissions, the gap between µ under non-drought condi-
tions and that under drought conditions became more appar-
ent. The difference in µ (1µ) represents the difference in the
mean values of WUE across varying intensities of drought
within the same period. This measure, utilized to analyze
the differential impacts of drought levels, also became larger
(from SSP126 to SSP585, 1µ is 0.01, 0.01, 0.02, and 0.12,
respectively). This implied that a high-carbon-emission sce-
nario would exacerbate the numerical differences in WUE
between dry and wet seasons in the YRB while also ampli-
fying the response differences in WUE to different drought
levels. Moreover, in SSP585, these differences were signifi-
cantly greater than in other scenarios.

5 Discussion

5.1 Spatiotemporal variation characteristics of WUE
in the YRB

Unlike many studies that focus solely on the historical trends
of WUE (Kim et al., 2021; Huang et al., 2017; Lu and
Zhuang, 2010), this research systematically projected the de-
velopment trends of WUE, GPP, and ET in the YRB for both
historical and future periods. GPP, as a key variable in calcu-
lating WUE, exhibits significant differences among various
GPP datasets, such as NIRv, GIMMS, FLUXCOM (based on
upscaled eddy covariance flux tower measurements), LUE
(based on the light-use efficiency model), and TRENDY (a
recent model intercomparison project) (S. Wang et al., 2021).
Compared to NIRv GPP data, GIMMS ignores the impact of
CO2 on LUE (De Kauwe et al., 2016), and FLUXCOM GPP
lacks consideration of the CO2 fertilization effect (Anav et
al., 2015), thus underestimating the interannual sensitivity of
GPP to climate change. A recent study has improved the tra-
ditional LUE method using eddy covariance, which produced
a revised global GPP product (EC-LUE GPP) (Zheng et al.,
2020). However, satellite-based APAR (absorbed photosyn-
thetic radiation) data used may lead to inaccuracies in some
regions due to saturation (Zhang et al., 2020). Furthermore,
the GPP trends in TRENDY vary significantly between dif-
ferent models and offer lower spatial resolution (Zheng et
al., 2020). Considering all these factors, we opted for the ad-
vanced GPP dataset based on NIRv with high temporal and
spatial resolutions. Our results also indicate that these data
are reasonable and accurate. During the historical period, the
average results from multiple GCMs closely align with pre-
vious findings (H. Li et al., 2023; Sun et al., 2022; Zhao et
al., 2022b), which indirectly demonstrated the excellent per-
formance of bias correction done in this study. According to
Fig. 3, WUE, GPP, and ET were projected to increase to vary-
ing degrees in the future. The growth rate was higher under
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Figure 8. Responses of WUE to different levels of drought. The first column shows the anomalies of WUE during moderate–severe drought.
The second column shows the anomalies of WUE during extreme–exceptional drought. The third column illustrates the conditional proba-
bility function of SWI under different drought levels.

high-emission scenarios, while under the SSP126 scenario,
all three showed an initial increase followed by a decline.
F. Li et al. (2023) suggested that global WUE had been ap-
proaching saturation in recent years and may maintain the
saturated state in the future. According to our results, under
SSP245 (which is also most consistent with the Chinese con-
text), WUE in the YRB is expected to reach a relatively stable
“saturated” state by the end of this century, with a value of
around 1.55 gC kg−1H2O. The spatial distribution of WUE
in the YRB can be summarized as “higher in the south and
lower in the north, higher in the east and lower in the west”
(Fig. 4). This spatial pattern and the regions where extreme
values occur align well with the study of Sun et al. (2022).
We also observed that the future spatial distribution of WUE

was very similar to GPP (Fig. 4) (Liu et al., 2020). Com-
bining these results with those in Fig. 2, despite the gen-
eral increase in ET, WUE in most regions of the YRB is
still on the rise. Therefore, we conclude that in most areas
of the YRB, GPP’s relative contribution to WUE change is
higher than that of ET. In other words, GPP dominates the
future changes in WUE in the basin, which is in good agree-
ment with other scholars’ findings (Naeem et al., 2023; Tan
et al., 2023). However, ET remains a primary driving factor
for WUE in arid regions (Yang et al., 2016), a point espe-
cially evident in the Yellow River source region. In the up-
stream source region of the YRB, ET shows an increasing
trend under different SSPs, while GPP’s growth is relatively
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slow. This asymmetrical growth between GPP and ET has
led to a decline in WUE in the source region.

5.2 Interpretation of Budyko model parameters and
attribution results

In this study, we employed the linear Budyko model to de-
scribe the relationship between WUE and the water–energy
nexus in the YRB. In Eq. (3), m and n are the underlying
surface parameters of the basin. To validate the rationality
of these parameters, we conducted a correlation analysis be-
tween m, n, and vegetation indices as shown in Fig. 6a. The
results indicate good correlations between underlying surface
parameters and LAI, NDVI. This suggests that the chosen pa-
rameters can effectively reflect the underlying surface vege-
tation conditions closely related to WUE, further validating
the physical significance of the established Budyko model.
Additionally, we demonstrated a strong positive correlation
between WUE and both LAI and NDVI due to the signif-
icant enhancement of the region’s GPP by increased vege-
tation factors. In the mostly arid areas of the YRB, the im-
pacts of these vegetation changes on ET is minimal (Liu et
al., 2020; Yang et al., 2022). Moreover, our results also sup-
port the viewpoint that there is a positive correlation between
WUE andm (Fang et al., 2020). Previous studies have shown
that WUE is closely related to precipitation, vapor pressure
deficit, temperature, wind speed, humidity, et cetera (F. Li et
al., 2023; Lin et al., 2020; Liu et al., 2020; Yang et al., 2022).
This study employed the Penman–Monteith equation to cal-
culate PET, incorporating the aforementioned factors; hence,
P and the calculated PET can be selected as the climatic at-
tribution factors for WUE.

To further elucidate the attribution results shown in
Fig. 7b, we plotted the relative changes in WUE, GPP, and
ET across different CO2 sensitivity experiments (Fig. 9).
Over the same time span, the spatial distribution pattern of
relative changes in WUE, GPP, and ET within the 1ptCO2
scenario aligns substantially with that of the SSP585 sce-
nario. In the 1ptCO2-rad experiment, WUE showed a declin-
ing trend in the peripheral areas of the YRB but an increase
in the central region, thus presenting a slight negative contri-
bution overall (−1.3 %) as depicted in Fig. 7b. Conversely,
in the 1ptCO2-bgc experiment, WUE exhibited a compre-
hensive upward trend across the basin, serving as the pri-
mary driving factor for the increase in WUE observed in
the comprehensive experiment (1ptCO2) (100.6 %). To ex-
plain the difference in WUE performance, we further an-
alyzed the relative changes in GPP and ET across differ-
ent CO2 sensitivity experiments. In the 1ptCO2-rad exper-
iment, due to the absence of CO2’s direct biogeochemical
effect on plants, the change in GPP was not as sharp as that
in the 1ptCO2-bgc. Moreover, the radiative effects of CO2
increase atmospheric evaporative demand, i.e., PET (Milly
and Dunne, 2016, 2017), which is the most likely reason
for the widespread increase in ET and the broad decline

in WUE within the YRB. However, combining the analysis
with Fig. 7b, such changes encompass CO2’s direct impact
on climate and the indirect feedback from the underlying sur-
face, with the latter possibly exerting a greater influence on
ET and GPP variations. However, due to the minimal numer-
ical changes in variables in 1ptCO2-rad, the uncertainty is
also higher. Under the 1ptCO2-bgc experiment conditions,
owing to the fertilization effect of CO2, plant growth was
stimulated (He et al., 2023; Zhao et al., 2022a), resulting in
a significant widespread increase in GPP across the basin.
The increased plant biomass also led to a rise in ET (Mankin
et al., 2019; Piao et al., 2007; Zhan et al., 2022), while the
elevated CO2 concentrations further reduced plant stomatal
conductance, potentially diminishing transpiration (Guerri-
eri et al., 2019; F. Li et al., 2023; Mathias and Thomas, 2021;
Zhang et al., 2022). We found that with the combined effects
of these factors, changes in ET within the YRB are minimal,
generally ranging between −5 % and 5 % in 1ptCO2-bgc ex-
periment. Consequently, in 1ptCO2-bgc, WUE across vari-
ous regions of the basin exhibits varying degrees of increase.

5.3 Two-stage response pattern of WUE to drought

WUE can reflect the impacts of local water availability on the
ecosystem’s carbon sequestration capacity to a certain extent
and can serve as one of the reference indicators for mea-
suring ecosystem resilience (Ponce-Campos et al., 2013).
Therefore, we considered the response of WUE in the YRB
to drought stress. Many scholars have suggested that WUE
will continue to increase or decrease under drought condi-
tions in most regions of the world (Liu et al., 2023; Ponce-
Campos et al., 2013; Xie et al., 2016). However, these stud-
ies have not considered the differential responses of WUE to
various drought intensities. Our results (Fig. 8) illustrate that
WUE exhibits a two-stage response pattern during drought;
i.e., it increases in moderate–severe drought but begins to
decrease as the drought intensifies. This finding is simi-
lar to the phenomenon observed by Lu and Zhuang (2010)
over most of the US. This means that under the moderate–
severe drought condition, plants physiologically adapt to wa-
ter stress, thereby maintaining a certain level of GPP un-
der limited water conditions (Vicente-Serrano et al., 2010).
However, as drought intensifies, plant physiology is dam-
aged, thereby reducing WUE, which is consistent with find-
ings by Yang et al. (2021) in semi-arid/semi-humid regions of
the world. As mentioned before, the increase in atmospheric
CO2 concentration directly leads to a reduction in plant leaf
stomatal conductance. In Table 3, it is evident that although
different GCMs employ various models for stomatal conduc-
tance, the physical implications across these models consis-
tently align with this principle. It is the change in stomatal
conductance that is suggested to help alleviate the stress of
drought on plants (De Kauwe et al., 2021; Leakey et al.,
2006; Swann, 2018). Additionally, we note that with the in-
tensification of carbon emission scenarios (from SSP126 to
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Figure 9. Spatial distribution of the relative changes in WUE (the first column), GPP (the second column), and ET (the third column) across
different CO2 sensitivity experiments.

Table 3. Model parameter settings for simulating stomatal conductance in the GCMs.

GCM Land surface model Stomatal conductance Reference

CanESM5 CLASS-CTEM gs = g0+
g1A

(1+D/D0)(cs−τ)j
Leuning (1995)

CESM2 CLM5 gs = g0+
1+g1

√
D

ca
A Lawrence et al. (2019)

CMCC-ESM2 CLM4.5 gs =m
Ahr

cs/Patm
+βg0 Oleson et al. (2013)

CNRM-ESM2-1 SURFEXv8.0 gs =
1.6A
cs−ci

Jacobs et al. (1996); Séférian et al. (2019)

IPSL-CM6A-LR ORCHIDEE gs = n
Ahr
ca
+ b Krinner et al. (2005)

NorESM2-LM CLM5 gs = g0+
1+g1

√
D

ca
A Lawrence et al. (2019)

CLASS-CTEM: coupled Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model. CLM5: Community Land Model version 5.
CLM4.5: Community Land Model version 4.5. SURFEXv8.0: Surface Externalisée version 8.0. ORCHIDEE: Organizing Carbon and Hydrology in
Dynamic Ecosystems Land Surface Model. gs is the stomatal conductance; g0 is the minimum stomatal conductance as assimilation rate reaches zero; g1,
D0, b, m, n, and β are the empirical coefficients; A is the net photosynthesis rate; D is the humidity deficit; cs is the CO2 concentration at the leaf surface;
τ is the CO2 compensation point; ca is the atmospheric CO2 concentration; hr is the relative air humidity; Patm is the atmospheric pressure; and ci is the
CO2 concentration in the intercellular spaces.

SSP585), the future response of WUE in the basin to drought
becomes more positive, indicating an enhanced adaptability
of plants to water stress. The results also indirectly prove that
plants are more likely to benefit from drought stress in the fu-
ture (De Kauwe et al., 2021).

6 Conclusion

WUE, due to its unique connotation, has become an im-
portant indicator for ecosystem health, reflecting the trade-
off between regional carbon assimilation and water loss. In
this study, after applying trend-preserving bias correction
to CMIP6 data informed by satellite-monitored reanalysis
datasets, we investigated spatiotemporal variations in WUE,

GPP, and ET spanning from 1985 to 2100. Our construc-
tion of a Budyko model, underpinned by GCMs, offers a ro-
bust framework for dissecting the intricacies of WUE evo-
lution, revealing a predominantly climate-driven narrative,
albeit with an escalating influence from underlying surface
modifications under severe carbon emission trajectories.

The spatial dynamics of WUE across the YRB have histor-
ically been characterized by higher values in the east and the
south contrasted with lower values in the west and the north.
Looking forward, our analysis projects a universal uptick in
WUE under varying future climate scenarios, with increases
ranging from 0.36 to 0.84 gC kg−1 H2O across SSP126 to
SSP585. The constructed Budyko model displays strong per-
formance in different periods and under different scenarios
(R2
= 0.60–0.73). The land–atmosphere attribution frame-
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work underscores the pivotal role of climate change as the
primary driver of WUE alterations, overshadowing under-
lying surface changes. Nevertheless, the impact of biogeo-
chemical CO2 effects emerges as a dominant force, illustrat-
ing the complex interplay of carbon dioxide in shaping WUE
trajectories. Besides, our findings delineate a distinctive two-
stage response pattern of WUE to drought conditions in the
YRB and forecast enhanced ecosystem resilience to drought
stress in future scenarios, particularly under heightened car-
bon emissions.

While this study advances our understanding of ecohydro-
logical processes in the YRB, it is not without its constraints.
The reliance on reanalysis datasets, despite their robust per-
formance, introduces a layer of uncertainty when compared
against actual measurements. Moreover, the complexity of
vegetation responses to elevated CO2 levels coupled with the
variability in dynamic global vegetation models (DGVMs)
across different GCMs calls for a deeper exploration into the
quantification and assessment of uncertainties surrounding
CO2’s impact on WUE.

By charting the interdependencies of CO2 dynamics, cli-
mate change, and land surface alterations, this study concerns
the future of ecohydrological sustainability in the YRB, invit-
ing further inquiry into the resilience of terrestrial ecosys-
tems under anthropogenic stress.

Data availability. The precipitation and potential evapotranspira-
tion dataset are available at https://doi.org/10.5281/zenodo.3114194
(Peng, 2019) and https://www.tpdc.ac.cn/en/data/
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(Ma et al., 2019b). The GPP dataset is available
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(Wang and Zhang, 2020). The LAI data are avail-
able in Cao et al. (2023b). The NDVI data are avail-
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zon et al., 2013). The TWSA data are available at
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