Articles | Volume 28, issue 16
https://doi.org/10.5194/hess-28-3717-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3717-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri
Research Institute for Geo-Hydrological Protection, National Research Council (CNR), 06128 Perugia, Italy
Tommaso Lazzarin
Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padua, Italy
Silvia Barbetta
Research Institute for Geo-Hydrological Protection, National Research Council (CNR), 06128 Perugia, Italy
Tommaso Moramarco
Research Institute for Geo-Hydrological Protection, National Research Council (CNR), 06128 Perugia, Italy
Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padua, Italy
Related authors
Domenico De Santis, Silvia Barbetta, Sumit Sen, Viviana Maggioni, Farhad Bahmanpouri, Ashutosh Sharma, Ankit Agarwal, Sagar Gupta, Francesco Avanzi, and Christian Massari
EGUsphere, https://doi.org/10.5194/egusphere-2025-4933, https://doi.org/10.5194/egusphere-2025-4933, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
A conceptual, semi-distributed hydrological model was tailored to simulate high flows in monsoon-dominated, glacier-influenced and flood-prone Himalayan basins. Multi-data calibration using satellite-based glacier mass loss and evapotranspiration estimates improved process realism in data-scarce environments. The proposed modelling approach captured key streamflow features despite significant input uncertainties, proving to be a useful tool for exploring the local hydrological response dynamics.
Domenico De Santis, Silvia Barbetta, Sumit Sen, Viviana Maggioni, Farhad Bahmanpouri, Ashutosh Sharma, Ankit Agarwal, Sagar Gupta, Francesco Avanzi, and Christian Massari
EGUsphere, https://doi.org/10.5194/egusphere-2025-4933, https://doi.org/10.5194/egusphere-2025-4933, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
A conceptual, semi-distributed hydrological model was tailored to simulate high flows in monsoon-dominated, glacier-influenced and flood-prone Himalayan basins. Multi-data calibration using satellite-based glacier mass loss and evapotranspiration estimates improved process realism in data-scarce environments. The proposed modelling approach captured key streamflow features despite significant input uncertainties, proving to be a useful tool for exploring the local hydrological response dynamics.
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Short summary
This study investigates the impact of floods on the aquatic ecosystem using freshwater mussels instrumented with sensors to monitor the opening of their valves. Signal analysis techniques were used to gain insight into their responses in terms of changes in the intensity and frequency of valve opening. The approach used in the study enables the development of real-time monitoring systems for ecological purposes and provides a pathway for practical biological early-warning systems.
Cited articles
Abdolvandi, A. F., Ziaei, A. N., Moramarco, T., and Singh, V. P.: New approach to computing mean velocity and discharge, Hydrolog. Sci. J., 66, 347–353, https://doi.org/10.1080/02626667.2020.1859115, 2021.
Ammari, A., Bahmanpouri, F., Khelfi, M. E. A., and Moramarco, T.: The regionalizing of the entropy parameter over the north Algerian watersheds: a discharge measurement approach for ungauged river sites, Hydrolog. Sci. J., 67, 1640–1655, https://doi.org/10.1080/02626667.2022.2099744, 2022.
Ataie-Ashtiani, B. and Aslani-Kordkandi, A.: Flow field around side-by-side piers with and without a scour hole, Eur. J. Mech. B, 36, 152–166, https://doi.org/10.1016/j.euromechflu.2012.03.007, 2012.
Bahmanpouri, F., Eltner, A., Barbetta, S., Bertalan, L., and Moramarco, T.: Estimating the Average River Cross-Section Velocity by Observing Only One Surface Velocity Value and Calibrating the Entropic Parameter, Water Resour. Res., 58, e2021WR031821, https://doi.org/10.1029/2021WR031821, 2022a.
Bahmanpouri, F., Barbetta, S., Gualtieri, C., Ianniruberto, M., Filizola, N., Termini, D., and Moramarco, T.: Prediction of river discharges at confluences based on Entropy theory and surface-velocity measurements, J. Hydrol., 606, 127404, https://doi.org/10.1016/j.jhydrol.2021.127404, 2022b.
Baldasso, F., Tognin, D., Lazzarin, T., and Viero, D. P.: The role of morphodynamic processes on the Po river conveyance downstream of Pontelagoscuro: a numerical analysis, L'Acqua, 4/2023, https://www.idrotecnicaitaliana.it/ (last access: 8 August 2024), 2023.
Bandini, F., Sunding, T. P., Linde, J., Smith, O., Jensen, I. K., Köppl, C. J., Butts, M., and Bauer-Gottwein, P.: Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques, Remote Sens. Environ., 237, 111487, https://doi.org/10.1016/j.rse.2019.111487, 2020.
Bandini, F., Lüthi, B., Peña-Haro, S., Borst, C., Liu, J., Karagkiolidou, S., Hu, X., Lemaire, G. G., Bjerg, P. L., and Bauer-Gottwein, P.: A Drone-Borne Method to Jointly Estimate Discharge and Manning's Roughness of Natural Streams, Water Resour. Res., 57, e2020WR028266, https://doi.org/10.1029/2020WR028266, 2021.
Barbetta, S., Camici, S., and Moramarco, T.: A reappraisal of bridge piers scour vulnerability: a case study in the Upper Tiber River basin (central Italy), J. Flood Risk Manage., 10, 283–300, https://doi.org/10.1111/jfr3.12130, 2017.
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M.-C., and Braun, J.-J.: Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué, Remote Sens., 10, 350, https://doi.org/10.3390/rs10020350, 2018.
Bonakdari, H., Larrarte, F., Lassabatere, L., and Joannis, C.: Turbulent velocity profile in fully-developed open channel flows, Environ. Fluid Mech., 8, 1–17, https://doi.org/10.1007/s10652-007-9051-6, 2008.
Bonakdari, H., Sheikh, Z., and Tooshmalani, M.: Comparison between Shannon and Tsallis entropies for prediction of shear stress distribution in open channels, Stoch. Environ. Res. Risk A., 29, 1–11, https://doi.org/10.1007/s00477-014-0959-3, 2015.
Briaud, J. L., Chen, H. C., Chang, K. A., Oh, S. J., and Chen, X.: Abutment scour in cohesive materials, NCHRP Report 24-15(2), Transportation Research Board, National Research Council, Washington, D.C., USA, https://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP24-15(2)_FR.pdf (last access: 8 August 2024), 2009.
Carniello, L., Defina, A., and D'Alpaos, L.: Modeling sand-mud transport induced by tidal currents and wind waves in shallow microtidal basins: Application to the Venice Lagoon (Italy), Estuar. Coast. Shelf Sci., 102–103, 105–115, https://doi.org/10.1016/j.ecss.2012.03.016, 2012.
Chahrour, N., Castaings, W., and Barthélemy, E.: Image-based river discharge estimation by merging heterogeneous data with information entropy theory, Flow Meas. Instrum., 81, 102039, https://doi.org/10.1016/j.flowmeasinst.2021.102039, 2021.
Chang, W.-Y., Constantinescu, G., Lien, H.-C., Tsai, W.-F., Lai, J.-S., and Loh, C.-H.: Flow Structure around Bridge Piers of Varying Geometrical Complexity, J. Hydraul. Eng.-ASCE, 139, 812–826, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000742, 2013.
Cheng, Z., Koken, M., and Constantinescu, G.: Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour, Adv. Water Resour., 120, 65–82, https://doi.org/10.1016/j.advwatres.2017.05.019, 2018.
Chiu, C.-L.: Entropy and Probability Concepts in Hydraulics, J. Hydraul. Eng.-ASCE, 113, 583–599, https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583), 1987.
Chiu, C.-L.: Entropy and 2-D Velocity Distribution in Open Channels, J. Hydraul. Eng.-ASCE, 114, 738–756, https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738), 1988.
Chiu, C.-L.: Velocity Distribution in Open Channel Flow, J. Hydraul. Eng.-ASCE, 115, 576–594, https://doi.org/10.1061/(ASCE)0733-9429(1989)115:5(576), 1989.
Chiu, C.-L.: Application of Entropy Concept in Open-Channel Flow Study, J. Hydraul. Eng.-ASCE, 117, 615–628, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(615), 1991.
Chiu, C.-L. and Murray, D. W.: Variation of Velocity Distribution along Nonuniform Open-Channel Flow, J. Hydraul. Eng.-ASCE, 118, 989–1001, https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(989), 1992.
Chiu, C.-L. and Said, C. A. A.: Maximum and Mean Velocities and Entropy in Open-Channel Flow, J. Hydraul. Eng.-ASCE, 121, 26–35, https://doi.org/10.1061/(ASCE)0733-9429(1995)121:1(26), 1995.
Chiu, C.-L., Hsu, S.-M., and Tung, N.-C.: Efficient methods of discharge measurements in rivers and streams based on the probability concept, Hydrol. Process., 19, 3935–3946, https://doi.org/10.1002/hyp.5857, 2005.
Constantinescu, G., Koken, M., and Zeng, J.: The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation, Water Resour. Res., 47, W05515, https://doi.org/10.1029/2010WR010114, 2011.
Constantinescu, G., Kashyap, S., Tokyay, T., Rennie, C. D., and Townsend, R. D.: Hydrodynamic processes and sediment erosion mechanisms in an open channel bend of strong curvature with deformed bathymetry, J. Geophys. Res.-Earth, 118, 480–496, https://doi.org/10.1002/jgrf.20042, 2013.
D'Alpaos, L. and Defina, A.: Mathematical modeling of tidal hydrodynamics in shallow lagoons: A review of open issues and applications to the Venice lagoon, Comput. Geosci., 33, 476–496, https://doi.org/10.1016/j.cageo.2006.07.009, 2007.
Defina, A.: Two-dimensional shallow flow equations for partially dry areas, Water Resour. Res., 36, 3251–3264, https://doi.org/10.1029/2000WR900167, 2000.
Defina, A.: Numerical experiments on bar growth, Water Resour. Res., 39, 1092, https://doi.org/10.1029/2002WR001455, 2003.
Depetris, P. J.: The Importance of Monitoring River Water Discharge, Front. Water, 3, 745912, https://doi.org/10.3389/frwa.2021.745912, 2021.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Dominguez Ruben, L., Szupiany, R. N., Tassi, P., and Vionnet, C. A.: Large meandering bends with high width-to-depth ratios: Insights from hydro-sedimentological processes, Geomorphology, 374, 107521, https://doi.org/10.1016/j.geomorph.2020.107521, 2021.
Dottori, F., Di Baldassarre, G., and Todini, E.: Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling, Water Resour. Res., 49, 6079–6085, https://doi.org/10.1002/wrcr.20406, 2013.
Ebtehaj, I., Bonakdari, H., Moradi, F., Gharabaghi, B., and Khozani, Z. S.: An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition, Coast. Eng., 135, 1–15, https://doi.org/10.1016/j.coastaleng.2017.12.012, 2018.
Eltner, A., Sardemann, H., and Grundmann, J.: Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery, Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, 2020.
Federico, F., Silvagni, G., and Volpi, F.: Scour Vulnerability of River Bridge Piers, J. Geotech. Geoenviron. Eng., 129, 890–899, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(890), 2003.
Fekete, B. M. and Vörösmarty, C. J.: The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements, Brasilia, 20–22 November 2002, 309, 129–136, 2002.
Fekete, B. M., Looser, U., Pietroniro, A., and Robarts, R. D.: Rationale for Monitoring Discharge on the Ground, J. Hydrometeorol., 13, 1977–1986, https://doi.org/10.1175/JHM-D-11-0126.1, 2012.
Ferro, V.: ADV measurements of velocity distributions in a gravel-bed flume, Earth Surf. Proc. Land., 28, 707–722, https://doi.org/10.1002/esp.467, 2003.
Franca, M. J., Ferreira, R. M. L., and Lemmin, U.: Parameterization of the logarithmic layer of double-averaged streamwise velocity profiles in gravel-bed river flows, Adv. Water Resour., 31, 915–925, https://doi.org/10.1016/j.advwatres.2008.03.001, 2008.
Fujita, I., Watanabe, H., and Tsubaki, R.: Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV), Int. J. River Basin Manage., 5, 105–114, https://doi.org/10.1080/15715124.2007.9635310, 2007.
Fujita, I., Notoya, Y., Tani, K., and Tateguchi, S.: Efficient and accurate estimation of water surface velocity in STIV, Environ. Fluid Mech., 19, 1363–1378, https://doi.org/10.1007/s10652-018-9651-3, 2019.
Fulton, J. and Ostrowski, J.: Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept, J. Hydrol., 357, 1–10, https://doi.org/10.1016/j.jhydrol.2008.03.028, 2008.
Giraldo, F. X.: Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations, Comput. Math. Appl., 45, 97–121, https://doi.org/10.1016/S0898-1221(03)80010-X, 2003.
Gore, J. A. and Banning, J.: Chapter 3 – Discharge Measurements and Streamflow Analysis, in: Methods in Stream Ecology, Volume 1, 3rd Edn., edited by: Hauer, F. R. and Lamberti, G. A., Academic Press, Boston, 49–70, https://doi.org/10.1016/B978-0-12-416558-8.00003-2, 2017.
Guo, J.: Modified log-wake-law for smooth rectangular open channel flow, J. Hydraul. Res., 52, 121–128, https://doi.org/10.1080/00221686.2013.818584, 2014.
Herschy, R. W.: Streamflow Measurement, in: 3rd Edn., CRC Press, https://doi.org/10.1201/9781482265880, 2009.
Hirt, C. W. and Nichols, B. D.: Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201–225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
Horna-Munoz, D. and Constantinescu, G.: A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures, Adv. Water Resour., 122, 148–165, https://doi.org/10.1016/j.advwatres.2018.10.014, 2018.
Jodeau, M., Hauet, A., Paquier, A., Le Coz, J., and Dramais, G.: Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions, Flow Meas. Instrum., 19, 117–127, https://doi.org/10.1016/j.flowmeasinst.2007.11.004, 2008.
Kästner, K., Hoitink, A. J. F., Torfs, P. J. J. F., Vermeulen, B., Ningsih, N. S., and Pramulya, M.: Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements, Water Resour. Res., 54, 1058–1076, https://doi.org/10.1002/2017WR020990, 2018.
Khosronejad, A., Kang, S., and Sotiropoulos, F.: Experimental and computational investigation of local scour around bridge piers, Adv. Water Resour., 37, 73–85, https://doi.org/10.1016/j.advwatres.2011.09.013, 2012.
Kirkil, G. and Constantinescu, G.: Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder, Phys. Fluids, 27, 075102, https://doi.org/10.1063/1.4923063, 2015.
Kirkil, G., Constantinescu, G., and Ettema, R.: Detached Eddy Simulation Investigation of Turbulence at a Circular Pier with Scour Hole, J. Hydraul. Eng.-ASCE, 135, 888–901, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000101, 2009.
Koken, M., Constantinescu, G., and Blanckaert, K.: Hydrodynamic processes, sediment erosion mechanisms, and Reynolds-number-induced scale effects in an open channel bend of strong curvature with flat bathymetry, J. Geophys. Res.-Earth, 118, 2308–2324, https://doi.org/10.1002/2013JF002760, 2013.
Kundu, S. and Ghoshal, K.: An Entropy Based Model for Velocity-Dip-Position, J. Environ. Inform., 33, 113–128, 2018.
Laursen, E. M.: Scour at Bridge Crossings, J. Hydraul. Div., 86, 39–54, https://doi.org/10.1061/JYCEAJ.0000426, 1960.
Laursen, E. M.: An Analysis of Relief Bridge Scour, J. Hydraul. Div., 89, 93–118, https://doi.org/10.1061/JYCEAJ.0000896, 1963.
Lazzarin, T. and Viero, D. P.: Curvature-induced secondary flow in 2D depth-averaged hydro-morphodynamic models: An assessment of different approaches and key factors, Adv. Water Resour., 171, 104355, https://doi.org/10.1016/j.advwatres.2022.104355, 2023.
Lazzarin, T., Defina, A., and Viero, D. P.: Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning, Geosciences, 13, 112, https://doi.org/10.3390/geosciences13040112, 2023a.
Lazzarin, T., Viero, D. P., Defina, A., and Cozzolino, L.: Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions, Phys. Fluids, 35, 024114, https://doi.org/10.1063/5.0131953, 2023b.
Lazzarin, T., Constantinescu, G., Di Micco, L., Wu, H., Lavignani, F., Lo Brutto, M., Termini, D., and Viero, D. P.: Influence of bed roughness on flow and turbulence structure around a partially-buried, isolated freshwater mussel, Water Resour. Res., 59, e2022WR034151, https://doi.org/10.1029/2022WR034151, 2023c.
Lazzarin, T., Constantinescu, G., and Viero, D. P.: A numerical investigation of flow field and bed stresses at a river bridge: the effects of piers and of pressure-flow with deck overtopping, J. Hydraul. Eng., under review, 2024a.
Lazzarin, T., Constantinescu, G., Wu, H., and Viero, D. P.: Fully Developed Open Channel Flow over Clusters of Freshwater Mussels Partially Buried in a Gravel Bed, Water Resour. Res., 60, e2023WR035594, https://doi.org/10.1029/2023WR035594, 2024b.
Lazzarin, T., Chen, A. S., and Viero, D. P.: Beyond flood hazard. Mapping the loss probability of pedestrians to improve risk estimation and communication, Sci. Total Environ., 912, 168718, https://doi.org/10.1016/j.scitotenv.2023.168718, 2024c.
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B.: Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers, J. Hydrol., 394, 42–52, https://doi.org/10.1016/j.jhydrol.2010.05.049, 2010.
Li, B. and Zhang, X.: Evolution of outer bank cell in open-channel bends, Environ. Fluid Mech., 22, 715–742, https://doi.org/10.1007/s10652-022-09865-2, 2022.
Lu, B., Petukhov, V., Zhang, M., Wang, X., Yue, S., Zhou, H., Kholodov, A., and Yu, G.: Prediction of flow-induced local scour depth at the uniform bridge pier using masked attention neural network, Ocean Eng., 266, 113018, https://doi.org/10.1016/j.oceaneng.2022.113018, 2022.
Luo, H., Fytanidis, D. K., Schmidt, A. R., and García, M. H.: Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses, Adv. Water Resour., 117, 120–139, https://doi.org/10.1016/j.advwatres.2018.05.012, 2018.
Marini, G. and Fontana, N.: Mean Velocity and Entropy in Wide Channel Flows, J. Hydrol. Eng.-ASCE, 25, 06019009, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001870, 2020.
Martini, P., Carniello, L., and Avanzi, C.: Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy), Nat. Hazards Earth Syst. Sci., 4, 165–181, https://doi.org/10.5194/nhess-4-165-2004, 2004.
Meals, D. W. and Dressing, S. A.: Surface water flow measurement for water quality monitoring projects, Tech Notes 3, March 2008. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA, 16 p. https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpointsource-monitoring-technical-notes (last access: 8 August 2024), 2008.
Mel, R. A., Viero, D. P., Carniello, L., and D'Alpaos, L.: Multipurpose Use of Artificial Channel Networks for Flood Risk Reduction: The Case of the Waterway Padova–Venice (Italy), Water, 12, 1609, https://doi.org/10.3390/w12061609, 2020a.
Mel, R. A., Viero, D. P., Carniello, L., and D'Alpaos, L.: Optimal floodgate operation for river flood management: The case study of Padova (Italy), J. Hydrol.: Reg. Stud., 30, 100702, https://doi.org/10.1016/j.ejrh.2020.100702, 2020b.
Moramarco, T. and Singh, V. P.: Formulation of the Entropy Parameter Based on Hydraulic and Geometric Characteristics of River Cross Sections, J. Hydrol. Eng.-ASCE, 15, 852–858, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000255, 2010.
Moramarco, T., Saltalippi, C., and Singh, V. P.: Estimation of Mean Velocity in Natural Channels Based on Chiu's Velocity Distribution Equation, J. Hydrol. Eng.-ASCE, 9, 42–50, https://doi.org/10.1061/(ASCE)1084-0699(2004)9:1(42), 2004.
Moramarco, T., Barbetta, S., and Tarpanelli, A.: From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory, Water, 9, 120, https://doi.org/10.3390/w9020120, 2017.
Moramarco, T., Barbetta, S., Bjerklie, D. M., Fulton, J. W., and Tarpanelli, A.: River Bathymetry Estimate and Discharge Assessment from Remote Sensing, Water Resour. Res., 55, 6692–6711, https://doi.org/10.1029/2018WR024220, 2019.
Muste, M., Ho, H.-C., and Kim, D.: Considerations on direct stream flow measurements using video imagery: Outlook and research needs, J. Hydro-Environ. Res., 5, 289–300, https://doi.org/10.1016/j.jher.2010.11.002, 2011.
Muste, M., Hauet, A., Fujita, I., Legout, C., and Ho, H.-C.: Capabilities of Large-scale Particle Image Velocimetry to characterize shallow free-surface flows, Adv. Water Resour., 70, 160–171, https://doi.org/10.1016/j.advwatres.2014.04.004, 2014.
Nezu, I. and Nakagawa, H.: Turbulence in Open Channel Flows, Balkema, Rotterdam, the Netherlands, https://doi.org/10.1201/9780203734902, 1993.
Nikora, V. and Roy, A. G.: Secondary Flows in Rivers: Theoretical Framework, Recent Advances, and Current Challenges, in: Gravel-Bed Rivers, John Wiley & Sons, Ltd, 1–22, https://doi.org/10.1002/9781119952497.ch1, 2011.
Pilbala, A., Riccardi, N., Benistati, N., Modesto, V., Termini, D., Manca, D., Benigni, A., Corradini, C., Lazzarin, T., Moramarco, T., Fraccarollo, L., and Piccolroaz, S.: Real-time biological early-warning system based on freshwater mussels' valvometry data, Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, 2024.
Pivato, M., Carniello, L., Viero, D. P., Soranzo, C., Defina, A., and Silvestri, S.: Remote Sensing for Optimal Estimation of Water Temperature Dynamics in Shallow Tidal Environments, Remote Sens., 12, 51, https://doi.org/10.3390/rs12010051, 2020.
Proust, S. and Nikora, V. I.: Compound open-channel flows: effects of transverse currents on the flow structure, J. Fluid Mech., 885, A24, https://doi.org/10.1017/jfm.2019.973, 2020.
Salaheldin, T. M., Imran, J., and Chaudhry, M. H.: Numerical Modeling of Three-Dimensional Flow Field Around Circular Piers, J. Hydraul. Eng.-ASCE, 130, 91–100, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91), 2004.
Schweitzer, S. A. and Cowen, E. A.: Instantaneous River-Wide Water Surface Velocity Field Measurements at Centimeter Scales Using Infrared Quantitative Image Velocimetry, Water Resour. Res., 57, e2020WR029279, https://doi.org/10.1029/2020WR029279, 2021.
Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., and Zhu, J.: A new k–ϵ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids, 24, 227–238, https://doi.org/10.1016/0045-7930(94)00032-T, 1995.
Singh, V. P., Sivakumar, B., and Cui, H.: Tsallis Entropy Theory for Modeling in Water Engineering: A Review, Entropy, 19, 641, https://doi.org/10.3390/e19120641, 2017.
Spada, E., Sinagra, M., Tucciarelli, T., and Biondi, D.: Unsteady State Water Level Analysis for Discharge Hydrograph Estimation in Rivers with Torrential Regime: The Case Study of the February 2016 Flood Event in the Crati River, South Italy, Water, 9, 288, https://doi.org/10.3390/w9040288, 2017.
Sterling, M. and Knight, D.: An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow, Stoch. Environ. Res. Risk A., 16, 127–142, https://doi.org/10.1007/s00477-002-0088-2, 2002.
Sumer, B. M., Christiansen, N., and Fredsøe, J.: The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves, J. Fluid Mech., 332, 41–70, https://doi.org/10.1017/S0022112096003898, 1997.
Termini, D. and Moramarco, T.: Application of entropic approach to estimate the mean flow velocity and Manning roughness coefficient in a high-curvature flume, Hydrol. Res., 48, 634–645, https://doi.org/10.2166/nh.2016.106, 2017.
Termini, D. and Moramarco, T.: Entropic model application to identify cross-sectional flow effect on velocity distribution in a large amplitude meandering channel, Adv. Water Resour., 143, 103678, https://doi.org/10.1016/j.advwatres.2020.103678, 2020.
Thorne, C. R., Zevenbergen, L. W., Pitlick, J. C., Rais, S., Bradley, J. B., and Julien, P. Y.: Direct measurements of secondary currents in a meandering sand-bed river, Nature, 315, 746–747, https://doi.org/10.1038/315746a0, 1985.
Tognin, D., Finotello, A., D'Alpaos, A., Viero, D. P., Pivato, M., Mel, R. A., Defina, A., Bertuzzo, E., Marani, M., and Carniello, L.: Loss of geomorphic diversity in shallow tidal embayments promoted by storm-surge barriers, Sci. Adv., 8, eabm8446, https://doi.org/10.1126/sciadv.abm8446, 2022.
Vandaele, R., Dance, S. L., and Ojha, V.: Calibrated river-level estimation from river cameras using convolutional neural networks, Environ. Data Sci., 2, e11, https://doi.org/10.1017/eds.2023.6, 2023.
van Rijn, L. C.: Equivalent Roughness of Alluvial Bed, J. Hydraul. Div., 108, 1215–1218, https://doi.org/10.1061/JYCEAJ.0005917, 1982.
Viero, D. P.: Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model, J. Hydrol., 568, 247–259, https://doi.org/10.1016/j.jhydrol.2018.10.055, 2019.
Viero, D. P. and Defina, A.: Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow, J. Mar. Syst., 156, 16–29, https://doi.org/10.1016/j.jmarsys.2015.11.006, 2016.
Viero, D. P., D'Alpaos, A., Carniello, L., and Defina, A.: Mathematical modeling of flooding due to river bank failure, Adv. Water Resour., 59, 82–94, https://doi.org/10.1016/j.advwatres.2013.05.011, 2013.
Viero, D. P., Peruzzo, P., Carniello, L., and Defina, A.: Integrated mathematical modeling of hydrological and hydrodynamic response to rainfall events in rural lowland catchments, Water Resour. Res., 50, 5941–5957, https://doi.org/10.1002/2013WR014293, 2014.
Viero, D. P., Roder, G., Matticchio, B., Defina, A., and Tarolli, P.: Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: The Polesine (northern Italy) case study, Sci. Total Environ., 651, 1435–1450, https://doi.org/10.1016/j.scitotenv.2018.09.121, 2019.
Vyas, J. K., Perumal, M., and Moramarco, T.: Entropy Based River Discharge Estimation Using One-Point Velocity Measurement at 0.6D, Water Resour. Res., 57, e2021WR029825, https://doi.org/10.1029/2021WR029825, 2021.
Walters, R. A. and Casulli, V.: A robust, finite element model for hydrostatic surface water flows, Commun. Numer. Meth. Eng., 14, 931–940, https://doi.org/10.1002/(SICI)1099-0887(1998100)14:10<931::AID-CNM199>3.0.CO;2-X, 1998.
Yang, S.-Q., Tan, S.-K., and Lim, S.-Y.: Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Channel Flows, J. Hydraul. Eng.-ASCE, 130, 1179–1186, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:12(1179), 2004.
Yang, S.-Q., Tan, S. K., and Wang, X.-K.: Mechanism of secondary currents in open channel flows, J. Geophys. Res.-Earth, 117, F04014, https://doi.org/10.1029/2012JF002510, 2012.
Yang, Y., Xiong, X., Melville, B. W., and Sturm, T. W.: Flow Redistribution at Bridge Contractions in Compound Channel for Extreme Hydrological Events and Implications for Sediment Scour, J. Hydraul. Eng.-ASCE, 147, 04021005, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001861, 2021.
Yoshimura, H. and Fujita, I.: Investigation of free-surface dynamics in an open-channel flow, J. Hydraul. Res., 58, 231–247, https://doi.org/10.1080/00221686.2018.1561531, 2020.
Zhang, Z., Zhou, Y., Liu, H., and Gao, H.: In-situ water level measurement using NIR-imaging video camera, Flow Meas. Instrum., 67, 95–106, https://doi.org/10.1016/j.flowmeasinst.2019.04.004, 2019.
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level...