Articles | Volume 28, issue 16
https://doi.org/10.5194/hess-28-3717-2024
https://doi.org/10.5194/hess-28-3717-2024
Research article
 | 
19 Aug 2024
Research article |  | 19 Aug 2024

Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields

Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero

Related authors

Real-time biological early-warning system based on freshwater mussels’ valvometry data
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024,https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017)
Daniele P. Viero
Hydrol. Earth Syst. Sci., 22, 171–177, https://doi.org/10.5194/hess-22-171-2018,https://doi.org/10.5194/hess-22-171-2018, 2018
A physically based approach for the estimation of root-zone soil moisture from surface measurements
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014,https://doi.org/10.5194/hess-18-1199-2014, 2014
Using globally available soil moisture indicators for flood modelling in Mediterranean catchments
C. Massari, L. Brocca, S. Barbetta, C. Papathanasiou, M. Mimikou, and T. Moramarco
Hydrol. Earth Syst. Sci., 18, 839–853, https://doi.org/10.5194/hess-18-839-2014,https://doi.org/10.5194/hess-18-839-2014, 2014
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013,https://doi.org/10.5194/hess-17-3159-2013, 2013

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2111,https://doi.org/10.5194/egusphere-2023-2111, 2023
Short summary
Understanding the compound flood risk along the coast of the contiguous United States
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023,https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary

Cited articles

Abdolvandi, A. F., Ziaei, A. N., Moramarco, T., and Singh, V. P.: New approach to computing mean velocity and discharge, Hydrolog. Sci. J., 66, 347–353, https://doi.org/10.1080/02626667.2020.1859115, 2021. 
Ammari, A., Bahmanpouri, F., Khelfi, M. E. A., and Moramarco, T.: The regionalizing of the entropy parameter over the north Algerian watersheds: a discharge measurement approach for ungauged river sites, Hydrolog. Sci. J., 67, 1640–1655, https://doi.org/10.1080/02626667.2022.2099744, 2022. 
Ataie-Ashtiani, B. and Aslani-Kordkandi, A.: Flow field around side-by-side piers with and without a scour hole, Eur. J. Mech. B, 36, 152–166, https://doi.org/10.1016/j.euromechflu.2012.03.007, 2012. 
Bahmanpouri, F., Eltner, A., Barbetta, S., Bertalan, L., and Moramarco, T.: Estimating the Average River Cross-Section Velocity by Observing Only One Surface Velocity Value and Calibrating the Entropic Parameter, Water Resour. Res., 58, e2021WR031821, https://doi.org/10.1029/2021WR031821, 2022a. 
Bahmanpouri, F., Barbetta, S., Gualtieri, C., Ianniruberto, M., Filizola, N., Termini, D., and Moramarco, T.: Prediction of river discharges at confluences based on Entropy theory and surface-velocity measurements, J. Hydrol., 606, 127404, https://doi.org/10.1016/j.jhydrol.2021.127404, 2022b. 
Download
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.