Articles | Volume 28, issue 5
https://doi.org/10.5194/hess-28-1107-2024
https://doi.org/10.5194/hess-28-1107-2024
Research article
 | 
04 Mar 2024
Research article |  | 04 Mar 2024

Flood risk assessment for Indian sub-continental river basins

Urmin Vegad, Yadu Pokhrel, and Vimal Mishra

Related authors

Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022,https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Potential for historically unprecedented Australian droughts from natural variability and climate change
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024,https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024,https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024,https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024,https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary

Cited articles

Acreman, M.: Managed Flood Releases from Reservoirs: Issues and Guidance, Centre for Ecology and Hydrology, Wallingford, UK, https://sswm.info/sites/default/files/reference_attachments/ACREMAN 2000 Managed Flood Releases from Reservoirs.pdf (last access: 2 December 2023), 2000. 
Agarwal, A. and Narain, S.: Floods, flood plains and environmental myths, Centre for Science and Environment, https://cdn.downtoearth.org.in/dte/userfiles/images/soe3_20130618.pdf (last access: 2 December 2023) 1991. 
Alfieri, L., Dottori, F., Betts, R., Salamon, P., and Feyen, L.: Multi-Model Projections of River Flood Risk in Europe under Global Warming, Climate, 6, 6, https://doi.org/10.3390/CLI6010006, 2018. 
Ali, H., Modi, P., and Mishra, V.: Increased flood risk in Indian sub-continent under the warming climate, Weather Clim. Extrem., 25, 100212, https://doi.org/10.1016/J.WACE.2019.100212, 2019. 
Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., and Kumari, A.: Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats, Nat. Hazards, 84, 1741–1763, https://doi.org/10.1007/s11069-016-2511-x, 2016. 
Download
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.