Articles | Volume 27, issue 20
https://doi.org/10.5194/hess-27-3783-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3783-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
Xiong Xiao
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Xinping Zhang
CORRESPONDING AUTHOR
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Key Laboratory of Geospatial Big Data Mining and Applications in Hunan Province, Hunan Normal University, Changsha 410081, China
Zhuoyong Xiao
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Zhiguo Rao
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Xinguang He
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Key Laboratory of Geospatial Big Data Mining and Applications in Hunan Province, Hunan Normal University, Changsha 410081, China
Cicheng Zhang
College of Geographic Science, Hunan Normal University, Changsha 410081, China
Related authors
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhongli Liu, Dizhou Wang, Cicheng Zhang, Zhiguo Rao, Xinguang He, and Huade Guan
Atmos. Chem. Phys., 25, 6475–6496, https://doi.org/10.5194/acp-25-6475-2025, https://doi.org/10.5194/acp-25-6475-2025, 2025
Short summary
Short summary
Our study reveals how water vapor, directed by seasonal winds, shapes precipitation isotopes in China's Dongting Lake basin. We traced water vapor paths, showing their impact on water supply and climate. This insight is key for predicting future water resources and climate patterns, offering a clearer understanding of our interconnected environmental systems.
Liyan Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Ye’ai Zou, Buqing Wang, Zhitao Huo, Cicheng Zhang, Changhui Peng, and Andrew Macrae
EGUsphere, https://doi.org/10.5194/egusphere-2025-2972, https://doi.org/10.5194/egusphere-2025-2972, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We employed stable isotope and ¹³C nuclear magnetic resonance spectroscopy analyses to characterize soil organic carbon sources and stability in Dongting Lake wetlands. Our results revealed vegetation elevated soil organic carbon (Miscanthus: 13.76; Carex: 12.98 g kg-1 > mudflat: 6.88 g kg-1), with plant-derived carbon dominating (47.5–53.3 %). Miscanthus exhibited lower soil organic carbon stability (high O-alkyl C), suggesting a higher risk of organic carbon loss in its floodplain ecosystems.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhongli Liu, Dizhou Wang, Cicheng Zhang, Zhiguo Rao, Xinguang He, and Huade Guan
Atmos. Chem. Phys., 25, 6475–6496, https://doi.org/10.5194/acp-25-6475-2025, https://doi.org/10.5194/acp-25-6475-2025, 2025
Short summary
Short summary
Our study reveals how water vapor, directed by seasonal winds, shapes precipitation isotopes in China's Dongting Lake basin. We traced water vapor paths, showing their impact on water supply and climate. This insight is key for predicting future water resources and climate patterns, offering a clearer understanding of our interconnected environmental systems.
Cited articles
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of convective and stratiform precipitation revealed in water isotope ratios, Nat. Geosci., 9, 624–629, https://doi.org/10.1038/ngeo2739, 2016.
Allen, R. G., Pereira, L. S., Smith, M., Raes, D., and Wright, J. L.: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions, J. Irrig. Drain. Eng., 131, 2–13, https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2), 2005.
Blöschl, G.: Hydrologic synthesis: Across processes, places, and scales, Water Resour. Res., 42, 1–3, https://doi.org/10.1029/2005WR004319, 2006.
Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., and Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy), Reg. Environ. Change, 23, 1–6, https://doi.org/10.1007/s10113-022-02004-z, 2023.
Boral, S., Sen, I. S., Ghosal, D., Peucker-Ehrenbrink, B., and Hemingway, J. D.: Stable water isotope modeling reveals spatio-temporal variability of glacier meltwater contributions to Ganges River headwaters, J. Hydrol., 577, 123983, https://doi.org/10.1016/j.jhydrol.2019.123983, 2019.
Boutt, D. F., Mabee, S. B., and Yu, Q.: Multiyear increase in the stable isotopic composition of stream water from groundwater recharge due to extreme precipitation, Geophys. Res. Lett., 46, 5323–5330, https://doi.org/10.1029/2019GL082828, 2019.
Cardoso Pereira, S., Marta-Almeida, M., Carvalho, A. C., and Rocha, A.: Extreme precipitation events under climate change in the Iberian Peninsula, Int. J. Climatol., 40, 1255–1278, https://doi.org/10.1002/joc.6269, 2020.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and drought: From past to future, Curr. Clim. Change Rep., 4, 164–179, https://doi.org/10.1007/s40641-018-0093-2, 2018.
Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3465.1702, 1961.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Das, S. and Rai, S. K.: Stable isotopic variations (δD and δ18O) in a mountainous river with rapidly changing altitude: Insight into the hydrological processes and rainout in the basin, Hydrol. Process., 36, e14547, https://doi.org/10.1002/hyp.14547, 2022.
Devia, G. K., Ganasri, B. P., and Dwarakish, G. S.: A review on hydrological models, Aquat. Pr., 4, 1001–1007, https://doi.org/10.1016/j.aqpro.2015.02.126, 2015.
Emmanouilidis, A., Katrantsiotis, C., Dotsika, E., Kokkalas, S., Unkel, I., and Avramidis, P.: Holocene paleoclimate variability in the eastern Mediterranean, inferred from the multi-proxy record of Lake Vouliagmeni, Greece, Palaeogeogr. Palaeocl., 595, 110964, https://doi.org/10.1016/j.palaeo.2022.110964, 2022.
Gibson, J. J., Birks, S. J., and Yi, Y.: Stable isotope mass balance of lakes: a contemporary perspective, Quaternary Sci. Rev., 131, 316–328, https://doi.org/10.1016/j.quascirev.2015.04.013, 2016.
Grillakis, M. G.: Increase in severe and extreme soil moisture droughts for Europe under climate change, Sci. Total Environ., 660, 1245–1255, https://doi.org/10.1016/j.scitotenv.2019.01.001, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hua, M., Zhang, X., Yao, T., Luo, Z., Zhou, H., Rao, Z., and He, X.: Dual effects of precipitation and evaporation on lake water stable isotope composition in the monsoon region, Hydrol. Process., 33, 2192–2205, https://doi.org/10.1002/hyp.13462, 2019.
Huang, R., Xu, L., Yuan, X., Lu, R., Sung-Euii, M., and Ung-Jun, K.: Seasonal prediction experiments of the summer droughts and floods during the early 1990's in East Asia with numerical models, Adv. Atmos. Sci., 15, 433–446, https://doi.org/10.1007/s00376-998-0025-5, 1998.
Jiang, D., Li, Z., Luo, Y., and Xia, Y.: River damming and drought affect water cycle dynamics in an ephemeral river based on stable isotopes: The Dagu River of North China, Sci. Total Environ., 758, 143682, https://doi.org/10.1016/j.scitotenv.2020.143682, 2021.
Jiménez-Iñiguez, A., Ampuero, A., Valencia, B. G., Mayta, V. C., Cruz, F. W., Vuille, M., Novello, V. F., Misailidis, S. N., Aranda, N., and Conicelli, B.: Stable isotope variability of precipitation and cave drip-water at Jumandy cave, western Amazon River basin (Ecuador), J. Hydrol., 610, 127848, https://doi.org/10.1016/j.jhydrol.2022.127848, 2022.
Jones, M. D., Cuthbert, M. O., Leng, M. J., McGowan, S., Mariethoz, G., Arrowsmith, C., Sloane, H. J., Humphrey, K. K., and Cross, I.: Comparisons of observed and modelled lake δ18O variability, Quaternary Sci. Rev., 131, 329–340, https://doi.org/10.1016/j.quascirev.2015.09.012, 2016.
Kendall, C. and Coplen, T. B.: Distribution of oxygen-18 and deuterium in river waters across the United States, Hydrol. Process., 15, 1363–1393, https://doi.org/10.1002/hyp.217, 2001.
Lis, G., Wassenaar, L. I., and Hendry, M. J.: High-precision laser spectroscopy and measurements of microliter natural water samples, Anal. Chem., 80, 287–293, https://doi.org/10.1021/ac701716q, 2008.
Liu, Z., Zhang, X., Xiao, Z., He, X., Rao, Z., and Guan, H.: The relations between summer droughts/floods and oxygen isotope composition of precipitation in the Dongting Lake basin, Int. J. Climatol., 43, 3590–3604, https://doi.org/10.1002/joc.8047, 2023.
Ma, M., Qu, Y., Lyu, J., Zhang, X., Su, Z., Gao, H., Yang, X., Chen, X., Jiang, T., Zhang, J., Shen, M., and Wang, Z.: The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies, River, 1, 162–171, https://doi.org/10.1002/rvr2.23, 2022.
Marengo, J. A., Alves, L. M., Ambrizzi, T., Young, A., Barreto, N. J., and Ramos, A. M.: Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review, Ann. N. Y. Acad. Sci., 1472, 5–20, https://doi.org/10.1111/nyas.14307, 2020.
Ministry of Water Resources of the People's Republic of China: Code for liquid flow measurement in open channels GB 50179-93, China Planning Press, Beijing, ISBN 9788005887000, 1993 (in Chinese).
Muñoz-Villers, L. E. and McDonnell, J. J.: Land use change effects on runoff generation in a humid tropical montane cloud forest region, Hydrol. Earth Syst. Sci., 17, 3543–3560, https://doi.org/10.5194/hess-17-3543-2013, 2013.
Nan, Y., Tian, F., Hu, H., Wang, L., and Zhao, S.: Stable isotope composition of river waters across the world, Water, 11, 1760, https://doi.org/10.3390/w11091760, 2019.
Nkemelang, T., New, M., and Zaroug, M.: Temperature and precipitation extremes under current, 1.5 ∘C and 2.0 ∘C global warming above pre-industrial levels over Botswana, and implications for climate change vulnerability, Environ. Res. Lett., 13, 065016, https://doi.org/10.1088/1748-9326/aac2f8, 2018.
Pechlivanidis, I. G., Jackson, B. M., Mcintyre, N. R., and Wheater, H. S.: Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications, Global NEST J., 13, 193–214, https://doi.org/10.1007/s10393-012-0741-2, 2011.
Qin, S. H., Li, X. D., and Hu, D. S.: Hydrogeology of Hunan Province, Hunan hydrology and water resources Survey Bureau, China Water and Power Press, Beijing, 42–50, ISBN 9787508440637, 2006 (in Chinese).
Ren, W., Tian, L., and Shao, L.: Temperature and precipitation control the seasonal patterns of discharge and water isotopic signals of the Nyang River on the southeastern Tibetan Plateau, J. Hydrol., 617, 129064, https://doi.org/10.1016/j.jhydrol.2023.129064, 2023.
Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J., Kirchner, J. W., Arhonditsis, G. B., Jordan, P., Kronvang, B., Halliday, S. J., Skeffington, R. A., Rozemeijer, J. C., Aubert, A. H., Rinke, K., and Jomaa, S.: Sensors in the stream: the high-frequency wave of the present, Environ. Sci. Technol., 50, 10297–10307, https://doi.org/10.1021/acs.est.6b02155, 2016.
Saranya, P., Krishnakumar, A., Kumar, S., and Krishnan, K. A.: Isotopic study on the effect of reservoirs and drought on water cycle dynamics in the tropical Periyar basin draining the slopes of Western Ghats, J. Hydrol., 581, 124421, https://doi.org/10.1016/j.jhydrol.2019.124421, 2020.
Scholl, M., Shanley, J., Murphy, S., Willenbring, J., Occhi, M., and González, G.: Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico, Appl. Geochem., 63, 484–497, https://doi.org/10.1016/j.apgeochem.2015.03.008, 2015.
Seyfried, M. S. and Wilcox, B. P.: Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling, Water Resour. Res., 31, 173–184, https://doi.org/10.1029/94WR02025, 1995.
Sinha, N. and Chakraborty, S.: Isotopic interaction and source moisture control on the isotopic composition of rainfall over the Bay of Bengal, Atmos. Res., 235, 104760, https://doi.org/10.1016/j.atmosres.2019.104760, 2020.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J. J., and Grierson, P. F.: Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator, J. Hydrol., 523, 781–789, https://doi.org/10.1016/j.jhydrol.2015.02.010, 2015.
Sprenger, M., Llorens, P., Gallart, F., Benettin, P., Allen, S. T., and Latron, J.: Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data, Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, 2022.
Steinman, B. A. and Abbott, M. B.: Isotopic and hydrologic responses of small, closed lakes to climate variability: Hydroclimate reconstructions from lake sediment oxygen isotope records and mass balance models, Geochim. Cosmochim. Ac., 105, 342–359, https://doi.org/10.1016/j.gca.2012.11.027, 2013.
Steinman, B. A., Rosenmeier, M. F., Abbott, M. B., and Bain, D. J.: The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: Application to paleoclimate studies in the upper Columbia River basin, Limnol. Oceanogr., 55, 2231–2245, https://doi.org/10.4319/lo.2010.55.6.2231, 2010.
Streletskiy, D. A., Tananaev, N. I., Opel, T., Shiklomanov, N. I., Nyland, K. E., Streletskaya, I. D., and Shiklomanov, A. I.: Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost, Environ. Res. Lett., 10, 095003, https://doi.org/10.1088/1748-9326/10/9/095003, 2015.
Sun, Z., Zhu, G., Zhang, Z., Xu, Y., Yong, L., Wan, Q., Ma, H., Sang, L., and Liu, Y.: Identifying surface water evaporation loss of inland river basin based on evaporation enrichment model, Hydrol. Process., 35, e14093, https://doi.org/10.1002/hyp.14093, 2021.
Uchiyama, R., Okochi, H., Ogata, H., Katsumi, N., Asai, D., and Nakano, T.: H and O isotopic differences in typhon and urban-induced heavy rain in Tokyo, Environ. Chem. Lett., 15, 739–745, https://doi.org/10.1007/s10311-017-0652-0, 2017.
von Freyberg, J., Studer, B., and Kirchner, J. W.: A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation, Hydrol. Earth Syst. Sci., 21, 1721–1739, https://doi.org/10.5194/hess-21-1721-2017, 2017.
von Freyberg, J., Rücker, A., Zappa, M., Schlumpf, A., Studer, B., and Kirchner, J. W.: Four years of daily stable water isotope data in stream water and precipitation from three Swiss catchments, Sci. Data, 9, 46, https://doi.org/10.1038/s41597-022-01148-1, 2022.
Wang, L., Dong, Y., Xie, Y., and Chen, M.: Hydrological processes and water quality in arid regions of Central Asia: insights from stable isotopes and hydrochemistry of precipitation, river water, and groundwater, Hydrogeol. J., 23, 1–17, https://doi.org/10.1007/s10040-023-02654-1, 2023.
Wang, Q., Huang, G., Wang, L., Piao, J., Ma, T., Hu, P., Chotamonsak, C., and Limsakul, A.: Mechanism of the summer rainfall variation in Transitional Climate Zone in East Asia from the perspective of moisture supply during 1979–2010 based on the Lagrangian method, Clim. Dynam., 60, 1225–1238, https://doi.org/10.1007/s00382-022-06344-8, 2023.
Wu, H., Huang, Q., Fu, C., Song, F., Liu, J., and Li, J.: Stable isotope signatures of river and lake water from Poyang Lake, China: Implications for river–lake interactions, J. Hydrol., 592, 125619, https://doi.org/10.1016/j.jhydrol.2020.125619, 2021.
Xiao, X., Zhang, F., Che, T., Shi, X., Zeng, C., and Wang, G.: Changes in plot-scale runoff generation processes from the spring–summer transition period to the summer months in a permafrost-dominated catchment, J. Hydrol., 587, 124966, https://doi.org/10.1016/j.jhydrol.2020.124966, 2020.
Xiao, X., Zhang, C., He, X., and Zhang, X.: Simulating the water δ18O of a small open lake in the East Asian monsoon region based on hydrologic and isotope mass-balance models, J. Hydrol., 612, 128223, https://doi.org/10.1016/j.jhydrol.2022.128223, 2022a.
Xiao, X., Zhang, X., Wu, H., Zhang, C., and Han, L.: Stable isotopes of surface water and groundwater in a typical subtropical basin in south-central China: Insights into the young water fraction and its seasonal origin, Hydrol. Process., 36, e14574, https://doi.org/10.1002/hyp.14574, 2022b.
Xiao, Z., Zhang, X., Xiao, X., Chang, X., He, X., and Zhang, C.: Comparisons of precipitation isotopic effects on daily, monthly and annual time scales – a case study in the subtropical monsoon region of eastern China, Water, 15, 438, https://doi.org/10.3390/w15030438, 2023.
Yang, J., Dudley, B. D., Montgomery, K., and Hodgetts, W.: Characterizing spatial and temporal variation in 18O and 2H content of New Zealand river water for better understanding of hydrologic processes, Hydrol. Process., 34, 5474–5488, https://doi.org/10.1002/hyp.13962, 2020.
Yao, T., Zhang, X., Li, G., Huang, H., Wu, H., Huang, Y., and Zhang, W.: Characteristics of the stable isotopes in different water bodies and their relationships in surrounding areas of Yuelu Mountain in the Xiangjiang River basin, J. Nat. Resour., 31, 1198, https://doi.org/10.11849/zrzyxb.20150810, 2016 (in Chinese).
Zhan, L., Chen, J., Zhang, S., Huang, D., and Li, L.: Relationship between Dongting Lake and surrounding rivers under the operation of the Three Gorges Reservoir, China, Isot. Environ. Healt. S., 51, 255–270, https://doi.org/10.1080/10256016.2015.1020306, 2015.
Zhang, X. P., Guan, H. D., Zhang, X. Z., Wu, H. W., Li, G., and Huang, Y. M.: Simulation of stable water isotopic composition in the atmosphere using an isotopic Atmospheric Water Balance Model, Int. J. Climatol., 35, 846–859, https://doi.org/10.1002/joc.4019, 2015.
Zhiña, D. X., Mosquera, G. M., Esquivel-Hernández, G., Córdova, M., Sánchez-Murillo, R., Orellana-Alvear, J., and Crespo, P.: Hydrometeorological factors controlling the stable isotopic composition of precipitation in the highlands of south Ecuador, J. Hydrometeorol., 23, 1059–1074, https://doi.org/10.1175/JHM-D-21-0180.1, 2022.
Zhou, H., Zhang, X., Yao, T., Hua, M., Wang, X., Rao, Z., and He, X.: Variation of δ18O in precipitation and its response to upstream atmospheric convection and rainout: A case study of Changsha station, south-central China, Sci. Total Environ., 659, 1199–1208, https://doi.org/10.1016/j.scitotenv.2018.12.396, 2019.
Zhou, J., Wan, R. R., Li, B., and Dai, X.: Assessing the impact of climate change and human activities on runoff in the Dongting Lake basin of China, Appl. Ecol. Env. Res., 17, 1–16, https://doi.org/10.15666/aeer/1703_57975812, 2019.
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
With the aim of improving the understanding of seasonal variations in water stable isotopes and...