Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
Jin Feng
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, and College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, 210098, China
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, and College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, 210098, China
Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of
Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Huijie Zhan
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, and College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Lijun Chao
State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, and College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, 210098, China
Related authors
Jin Feng, Ke Zhang, Lijun Chao, Huijie Zhan, and Yunping Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-137, https://doi.org/10.5194/essd-2025-137, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Understanding how soil moisture affects evapotranspiration (ET) is essential for improving ET estimates. However, many global ET datasets overlook soil moisture constraints, causing large uncertainties. In this study, we developed an improved model that better captures the influence of soil moisture on vegetation and soil evaporation. Our model significantly improves ET estimation accuracy and provides a new long-term global ET dataset to support water cycle and climate research.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025, https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
Short summary
This study enhanced a popular water flow model by adding two components: one for snow melting and another for frozen ground cycles. Tested with satellite data and streamflow, the updated model improved accuracy, especially in winter. Frozen ground delays soil drainage, boosting spring runoff by 39 %–77 % and cutting evaporation by 85 %. These findings reveal that frozen ground drives seasonal water patterns.
Jin Feng, Ke Zhang, Lijun Chao, Huijie Zhan, and Yunping Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-137, https://doi.org/10.5194/essd-2025-137, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Understanding how soil moisture affects evapotranspiration (ET) is essential for improving ET estimates. However, many global ET datasets overlook soil moisture constraints, causing large uncertainties. In this study, we developed an improved model that better captures the influence of soil moisture on vegetation and soil evaporation. Our model significantly improves ET estimation accuracy and provides a new long-term global ET dataset to support water cycle and climate research.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-401, https://doi.org/10.5194/hess-2024-401, 2025
Preprint under review for HESS
Short summary
Short summary
This study explores how snow dynamics and hydropower reservoirs shape monthly runoff in the Yalong River basin, China. Using 15 years of data and a extended Budyko framework, we found that snow accumulation and melt dominate runoff in high-altitude areas, while reservoirs increasingly influence lower elevations. These factors reduce runoff seasonality at the basin outlet, emphasizing how climate change and human activity alter water availability in cold, mountainous regions.
Jiefan Niu, Ke Zhang, Xi Li, and Hongjun Bao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-304, https://doi.org/10.5194/hess-2024-304, 2024
Preprint under review for HESS
Short summary
Short summary
This study developed a new method for classifying catchments, combining machine learning techniques with climate and landscape data. By analyzing catchments across China, we identified six climate regions and 35 unique catchment types, each with distinct streamflow patterns. This classification method improves hydrological predictions, especially in areas lacking direct data.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Cited articles
Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., and Yap, K. S.:
Extreme Learning Machines: A new approach for prediction of reference
evapotranspiration, J. Hydrol., 527, 184–195, https://doi.org/10.1016/j.jhydrol.2015.04.073, 2015.
Bai, Y., Zhang, S., Bhattarai, N., Mallick, K., Liu, Q., Tang, L., Im, J.,
Guo, L., and Zhang, J.: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a
wide environmental gradient, Agr. Forest Meteorol., 298–299, 108308, https://doi.org/10.1016/j.agrformet.2020.108308, 2021.
Beaudoing, H. and Rodell, M.: NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25×0.25 degree V2.1, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk,
A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Bouchet, R. J.: Evapotranspiration réelle et potentielle, signification
climatique, IAHS Publ., 62, 134–142, 1963.
Brust, C., Kimball, J. S., Maneta, M. P., Jencso, K., He, M., and Reichle,
R. H.: Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA, Remote Sens. Environ., 255, 112277, https://doi.org/10.1016/j.rse.2020.112277, 2021.
Chai, L., Zhu, Z., and Liu, S.: Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily over Qinghai-Tibet Plateau Area (SMsmapTE, V1), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Soil.tpdc.270948, 2020.
Chao, L., Zhang, K., Wang, J., Feng, J., and Zhang, M.: A comprehensive
evaluation of five evapotranspiration datasets based on ground and grace
satellite observations: Implications for improvement of evapotranspiration
retrieval algorithm, Remote Sens., 13, 2414, https://doi.org/10.3390/rs13122414, 2021.
Choudhury, B. J. and DiGirolamo, N. E.: A biophysical process-based estimate
of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations, J. Hydrol., 205, 164–185, https://doi.org/10.1016/S0022-1694(97)00147-9, 1998.
Cleugh, H. A., Leuning, R., Mu, Q. Z., and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285–304, https://doi.org/10.1016/j.rse.2006.07.007, 2007.
Dai, Y., Shangguan, W., Duan, Q., Liu, B., Fu, S., and Niu, G.: Development
of a China dataset of soil hydraulic parameters using pedotransfer functions
for land surface modeling, J. Hydrometeorol., 14, 869–887,
https://doi.org/10.1175/JHM-D-12-0149.1, 2013.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013.
ESA CCI SM: European Space Agency's Climate Change Initiative, https://esa-soilmoisture-cci.org/, last access: 7 January 2023.
Famiglietti, J. S. and Wood, E. F.: Evapotranspiration and runoff from large
land areas: Land surface hydrology for atmospheric general circulation models, Surv. Geophys., 12, 179–204, https://doi.org/10.1007/BF01903418, 1991.
Feng, J., Zhang, K., Chao, L., and Liu, L.: An improved process-based
evapotranspiration/heat fluxes remote sensing algorithm based on the Bayesian and Sobol' uncertainty analysis framework using eddy covariance observations of Tibetan grasslands, J. Hydrol., 613, 128384, https://doi.org/10.1016/j.jhydrol.2022.128384, 2022.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919,
https://doi.org/10.1016/j.rse.2007.06.025, 2008.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
García, M., Sandholt, I., Ceccato, P., Ridler, M., Mougin, E., Kergoat,
L., Morillas, L., Timouk, F., Fensholt, R., and Domingo, F.: Actual
evapotranspiration in drylands derived from in-situ and satellite data:
Assessing biophysical constraints, Remote Sens. Environ., 131, 103–118, https://doi.org/10.1016/j.rse.2012.12.016, 2013.
Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K., and Brown, P.: Integrating remote sensing and ground methods to estimate evapotranspiration, Crit. Rev. Plant Sci., 26, 139–168, https://doi.org/10.1080/07352680701402503, 2007.
Glenn, E. P., Nagler, P. L., and Huete, A. R.: Vegetation index methods for
estimating evapotranspiration by remote sensing, Surv. Geophys., 31, 531–555, https://doi.org/10.1007/s10712-010-9102-2, 2010.
GMAO – Global Modeling and Assimilation Office: MERRA-2 statD_2d_slv_Nx: 2d, Daily, Aggregated Statistics, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/9SC1VNTWGWV3, 2015.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.:
Evolution of the ESA CCI Soil Moisture climate data records and their
underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739,
https://doi.org/10.5194/essd-11-717-2019, 2019.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Scient. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, B. Am. Meteorol. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Hu, Z., Wang, G., Sun, X., Zhu, M., Song, C., Huang, K., and Chen, X.:
Spatial-temporal patterns of evapotranspiration along an elevation gradient
on Mount Gongga, Southwest China, Water Resour. Res., 54, 4180–4192,
https://doi.org/10.1029/2018WR022645, 2018.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree V06, edited by: Savtchenko, A., Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERGDF/DAY/06, 2019.
Hui, J., Wu, Y., Zhao, F., Lei, X., Sun, P., Singh, S. K., Liao, W., Qiu, L., and Li, J.: Parameter Optimization for Uncertainty Reduction and Simulation Improvement of Hydrological Modeling, Remote Sens., 12, 4069, https://doi.org/10.3390/rs12244069, 2020.
Jarvis, P. G.: The interpretation of the variations in leaf water potential
and stomatal conductance found in canopies in the field, Philos. T. Roy. Soc. Lond. B, 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J., Tu, K., and Wang, K.: Global intercomparison of
12 land surface heat flux estimates, J. Geophys. Res.-Atmos., 116, D02102, https://doi.org/10.1029/2010JD014545, 2011.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A.
J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,
J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., and Tu, K.: A simple
surface conductance model to estimate regional evaporation using MODIS leaf
area index and the Penman-Monteith equation, Water Resour. Res., 44, W10419, https://doi.org/10.1029/2007WR006562, 2008.
Li, Q., Wei, J., Yin, J., Qiao, Z., Peng, W., and Peng, H.: Multiscale
Comparative Evaluation of the GPM and TRMM Precipitation Products Against
Ground Precipitation Observations Over Chinese Tibetan Plateau, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 14, 2295–2313, https://doi.org/10.1109/JSTARS.2020.3047897, 2020.
Li, X., Wang, L., Chen, D., Yang, K., and Wang, A.: Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan
Plateau, J. Geophys. Res.-Atmos., 119, 13079–13095, https://doi.org/10.1002/2014JD022380, 2014.
Li, X., Long, D., Han, Z., Scanlon, B. R., Sun, Z., Han, P., and Hou, A.:
Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint
terrestrial and atmospheric water balances and multisource remote sensing,
Water Resour. Res., 55, 8608–8630, https://doi.org/10.1029/2019WR025196, 2019.
Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in
evapotranspiration from land surface modeling, remote sensing, and GRACE
satellites, Water Resour. Res., 50, 1131–1151, https://doi.org/10.1002/2013WR014581, 2014.
Ma, N. and Zhang, Y.: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation, Agr. Forest Meteorol., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887, 2022.
Ma, Y., Hu, Z., Xie, Z., Ma, W., Wang, B., Chen, X., Li, M., Zhong, L., Sun,
F., and Gu, L.: A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau, Earth
Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, 2020.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R.
A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest,
N. E.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters,
A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated
from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe,
M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q.,
Seneviratne, S. I., Wood, E. F., and Fernandez-Prieto, D.: The WACMOS-ET
project – Part 2: Evaluation of global terrestrial evaporation data sets,
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the
GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosc. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Monteith, J. L.: Evaporation and environment, in: Symposia of the Society for
Experimental Biology, Cambridge, UK, 205–234, 1965.
Morillas, L., Leuning, R., Villagarcía, L., García, M., Serrano-Ortiz, P., and Domingo, F.: Improving evapotranspiration estimates
in Mediterranean drylands: The role of soil evaporation, Water Resour. Res., 49, 6572–6586, https://doi.org/10.1002/wrcr.20468, 2013.
MSWEP: Multi-Source Weighted-Ensemble Precipitation, http://www.gloh2o.org/mswep/, last access: 7 January 2023.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition 4A, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3., 2017.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora,
V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D.,
Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S.
W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land
surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509,
https://doi.org/10.5194/hess-24-1485-2020, 2020.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Purdy, A. J., Fisher, J. B., Goulden, M. L., Colliander, A., Halverson, G.,
Tu, K., and Famiglietti, J. S.: SMAP soil moisture improves global
evapotranspiration, Remote Sens. Environ., 219, 1–14, https://doi.org/10.1016/j.rse.2018.09.023, 2018.
Qu, Y., Zhu, Z., Chai, L., Liu, S., Montzka, C., Liu, J., Yang, X., Lu, Z.,
Jin, R., and Li, X.: Rebuilding a microwave soil moisture product using random forest adopting AMSR-E/AMSR2 brightness temperature and SMAP over the
Qinghai-Tibet Plateau, China, Remote Sens., 11, 683, https://doi.org/10.3390/rs11060683, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Schwalm, C. R., Huntinzger, D. N., Michalak, A. M., Fisher, J. B., Kimball,
J. S., Mueller, B., Zhang, K., and Zhang, Y.: Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration, Environ. Res. Lett., 8, 024028,
https://doi.org/10.1088/1748-9326/8/2/024028, 2013.
Shangguan, W. and Dai, Y.: A China Dataset of soil hydraulic parameters pedotransfer functions for land surface modeling (1980), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Soil.tpdc.270606, 2013.
Shuttleworth, W.: Evaporation, in: Handbook of hydrology, edited by: Maidment, D. R., McGraw-Hill Education, ISBN 10 0070397325, ISBN 13 9780070397323, 1993.
Stewart, J. B.: Modelling surface conductance of pine forest, Agr. Forest Meteorol., 43, 19–35, https://doi.org/10.1016/0168-1923(88)90003-2, 1988.
Storn, R. and Price, K.: Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces, J. Global Optimiz., 11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global
estimates of evapotranspiration for climate studies using multi-sensor
remote sensing data: Evaluation of three process-based approaches, Remote
Sens. Enviro., 115, 801–823, https://doi.org/10.1016/j.rse.2010.11.006, 2011.
Wang, K., Li, Z., and Cribb, M.: Estimation of evaporative fraction from a
combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter, Remote Sens. Environ., 102, 293–305, https://doi.org/10.1016/j.rse.2006.02.007, 2006.
Wang, W., Li, J., Yu, Z., Ding, Y., Xing, W., and Lu, W.: Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying, J. Hydrol., 559, 471–485, https://doi.org/10.1016/j.jhydrol.2018.02.065, 2018.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee III, R. B., Louis
Smith, G., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment, B. Am. Meteorol. Soc., 77, 853–868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2, 1996.
Xu, S., Yu, Z., Yang, C., Ji, X., and Zhang, K.: Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin, Agr. Forest Meteorol., 263, 118–129,
https://doi.org/10.1016/j.agrformet.2018.08.010, 2018.
Xue, B.-L., Wang, L., Li, X., Yang, K., Chen, D., and Sun, L.: Evaluation of
evapotranspiration estimates for two river basins on the Tibetan Plateau by
a water balance method, J. Hydrol., 492, 290–297, https://doi.org/10.1016/j.jhydrol.2013.04.005, 2013.
Yang, K.: The soil moisture dataset of China based on microwave data assimilation (2002–2011), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/AtmosphericPhysics.tpe.249448.file, 2018.
Yang, K. and He, J.: China meteorological forcing dataset (1979–2018), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yang, K., He, J., Tang, W., Qin, J., and Cheng, C. C. K.: On downward shortwave and longwave radiations over high altitude regions: Observation
and modeling in the Tibetan Plateau, Agr. Forest Meteorol., 150, 38–46, https://doi.org/10.1016/j.agrformet.2009.08.004, 2010.
Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng, D., and Li, X.: Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland, Sci. China Earth Sci., 63, 1113–1125,
https://doi.org/10.1007/s11430-019-9588-5, 2020.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., and Xu, B.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2,
663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K.,
Zhao, X., Qin, Q., and Zhao, B.: MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm,
Agr. Forest Meteorol., 171–172, 187–202, https://doi.org/10.1016/j.agrformet.2012.11.016, 2013.
Zeng, Z., Piao, S., Lin, X., Yin, G., Peng, S., Ciais, P., and Myneni, R. B.: Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models, Environ. Res. Lett., 7, 014026, https://doi.org/10.1088/1748-9326/7/1/014026, 2012.
Zhang, G., Yao, T., Shum, C. K., Yi, S., Yang, K., Xie, H., Feng, W., Bolch,
T., Wang, L., Behrangi, A., Zhang, H., Wang, W., Xiang, Y., and Yu, J.: Lake
volume and groundwater storage variations in Tibetan Plateau's endorheic
basin, Geophys. Res. Lett., 44, 5550–5560, https://doi.org/10.1002/2017GL073773, 2017.
Zhang, K., Kimball, J. S., Mu, Q., Jones, L. A., Goetz, S. J., and Running,
S. W.: Satellite based analysis of northern ET trends and associated changes
in the regional water balance from 1983 to 2005, J. Hydrol., 379, 92–110, https://doi.org/10.1016/j.jhydrol.2009.09.047, 2009.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous
satellite-derived global record of land surface evapotranspiration from 1983
to 2006, Water Resou. Res., 46, W09522, https://doi.org/10.1029/2009WR008800, 2010.
Zhang, K., Kimball, J. S., Kim, Y., and McDonald, K. C.: Changing freeze-thaw seasons in northern high latitudes and associated influences on evapotranspiration, Hydrol. Process., 25, 4142–4151, https://doi.org/10.1002/hyp.8350, 2011.
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley,
J. J., and Yu, Z.: Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration, Scient. Rep., 5, 15956, https://doi.org/10.1038/srep15956, 2015.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing
based actual evapotranspiration estimation, Wiley Interdisciplin. Rev.: Water, 3, 834–853, https://doi.org/10.1002/wat2.1168, 2016.
Zhang, K., Zhu, G., Ma, J., Yang, Y., Shang, S., and Gu, C.: Parameter Analysis and Estimates for the MODIS Evapotranspiration Algorithm and Multiscale Verification, Water Resour. Res., 55, 2211–2231,
https://doi.org/10.1029/2018WR023485, 2019.
Zhang, K., Ju, Y., and Li, Z.: Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the
Jinshajiang basin, China, Adv. Water Sci., 32, 182–191,
https://doi.org/10.14042/j.cnki.32.1309.2021.02.003, 2020.
Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., and Walker,
J. P.: Using long-term water balances to parameterize surface conductances
and calculate evaporation at 0.05∘ spatial resolution, Water Resour. Res., 46, W05512, https://doi.org/10.1029/2009WR008716, 2010.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhu, G., Su, Y., Li, X., Zhang, K., and Li, C.: Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using
a two-source model and parameter uncertainty analysis by Bayesian approach,
J. Hydrol., 476, 42–51, https://doi.org/10.1016/j.jhydrol.2012.10.006, 2013.
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions...