Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-363-2023
https://doi.org/10.5194/hess-27-363-2023
Research article
 | 
19 Jan 2023
Research article |  | 19 Jan 2023

Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau

Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao

Related authors

P-LSHv2: a multi-decadal global daily land surface actual evapotranspiration dataset enhanced with explicit soil moisture constraints in remote sensing retrieval
Jin Feng, Ke Zhang, Lijun Chao, Huijie Zhan, and Yunping Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-137,https://doi.org/10.5194/essd-2025-137, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., and Yap, K. S.: Extreme Learning Machines: A new approach for prediction of reference evapotranspiration, J. Hydrol., 527, 184–195, https://doi.org/10.1016/j.jhydrol.2015.04.073, 2015. 
Bai, Y., Zhang, S., Bhattarai, N., Mallick, K., Liu, Q., Tang, L., Im, J., Guo, L., and Zhang, J.: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient, Agr. Forest Meteorol., 298–299, 108308, https://doi.org/10.1016/j.agrformet.2020.108308, 2021. 
Beaudoing, H. and Rodell, M.: NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25×0.25 degree V2.1, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020. 
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019. 
Bouchet, R. J.: Evapotranspiration réelle et potentielle, signification climatique, IAHS Publ., 62, 134–142, 1963. 
Download
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Share