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Abstract. Actual evapotranspiration (ET) is the key link be-
tween water and energy cycles. However, accurate evapo-
ration estimation in alpine barren areas remains understud-
ied. In this study, we aimed to improve the satellite-driven
Process-based Land Surface ET/Heat fluxes algorithm (P-
LSH) for better satellite retrieval of ET on the Tibetan
Plateau by introducing two effective soil moisture constraint
schemes in which normalized surface soil moisture and the
ratio of cumulative antecedent precipitation to cumulative
antecedent equilibrium evaporation are used to represent soil
water stress, respectively, based on the intercomparison and
knowledge-learning of the existing schemes. We first con-
ducted intercomparison of six existing soil evaporation al-
gorithms and sorted out the two most effective soil mois-
ture constraint schemes. We then introduced the modified
versions of the two constraint schemes into the P-LSH al-
gorithm and further optimized the parameters using the dif-
ferential evolution method. As a result, it formed two im-
proved P-LSH algorithms. We systematically assessed the
performances of the two improved P-LSH algorithms and
six existing remote sensing ET retrieval algorithms on two
barren-dominated basins of the Tibetan Plateau using recon-
structed ET estimates derived from the terrestrial water bal-
ance method as a benchmark. The two moisture constraint
schemes largely improved the performance of the P-LSH al-
gorithm and showed better performance in both basins (root
mean square error (RMSE) = 7.36 and 7.76 mm per month;

R2
= 0.86 and 0.87), resulting in a higher simulation accu-

racy than all six existing algorithms. We used five soil mois-
ture datasets and five precipitation datasets to further investi-
gate the impact of moisture constraint uncertainty on the im-
proved P-LSH algorithm. The ET estimates of the improved
P-LSH algorithm, driven by the GLDAS_Noah soil mois-
ture, performed best compared with those driven by other
soil moisture and precipitation datasets, while ET estimates
driven by various precipitation datasets generally showed a
high and stable accuracy. These results suggest that high-
quality soil moisture can optimally express moisture supply
to ET, and that more accessible precipitation data can serve
as a substitute for soil moisture as an indicator of moisture
status for its robust performance in barren evaporation.

1 Introduction

As a key link between the water and energy cycles, ac-
tual evapotranspiration (ET) is critical for assessing regional
water and energy balances (Zhang et al., 2011). Oki and
Kanae (2006) reported that approximately 60 % of precipi-
tation returns to the atmosphere in the form of ET, whereas
the proportion can reach more than 90 % in arid and semi-
arid regions (Glenn et al., 2007; Morillas et al., 2013). Hence,
accurate ET estimation is extremely important for irrigation

Published by Copernicus Publications on behalf of the European Geosciences Union.



364 J. Feng et al.: Improved soil evaporation remote sensing retrieval algorithms on the Tibetan Plateau

planning, watershed management, and meteorology and cli-
mate change studies in arid and semi-arid regions.

Satellite remote sensing is an important means of estimat-
ing regional and global ET. A series of ET estimation algo-
rithms have been developed over the past decade, includ-
ing remote-sensing-based physical models, process-based
land surface models, and vegetation-index-based empirical
algorithms. In remote-sensing-based physical models, the
Penman–Monteith (PM) method (Monteith, 1965; Cleugh
et al., 2007; Mu et al., 2011; K. Zhang et al., 2010) and
Priestley–Taylor (PT) method (Fisher et al., 2008; Martens
et al., 2017; Priestley and Taylor, 1972; Yao et al., 2013)
are the main representative methods for estimating ET. Sev-
eral studies have combined these two methods to calculate
canopy transpiration and soil evaporation (Leuning et al.,
2008; Wang et al., 2018; Y. Zhang et al., 2019). The PT
equation simplifies the PM equation and avoids the difficulty
of quantifying aerodynamic and surface conductance. How-
ever, the PT equation simplifies the physical process, lead-
ing to a weaker physical basis than that of the PM equa-
tion. Land surface models reflect interactions and feedback
between physical, biological, and biogeochemical processes
in a predictive manner (Jiménez et al., 2011). These meth-
ods do not require remote sensing data; however, different
parameterization schemes in land surface models for various
physiological processes lead to considerable uncertainty in
ET estimation (Famiglietti and Wood, 1991; Pan et al., 2020;
Schwalm et al., 2013). In addition, ET has a close relation-
ship with the ecophysiological processes that can be repre-
sented by satellite spectral products such as the normalized
difference vegetation index (NDVI), leaf area index (LAI),
and land surface temperature (LST). As a result, a number of
vegetation-index-based empirical algorithms have been de-
veloped (Wang et al., 2006; Glenn et al., 2010). Subsequent
developments in machine learning have attracted further at-
tention in ET estimation because of their advantages in cap-
turing the complex and nonlinear relationship between ET
and its controlling environmental factors (Abdullah et al.,
2015; Bai et al., 2021; Jung et al., 2010).

Although considerable effort has been made to esti-
mate ET using the above methods, there are still significant
uncertainties in quantifying the temporal and spatial charac-
teristics and components of regional ET, especially in arid
and semi-arid regions (Miralles et al., 2016; Pan et al., 2020).
ET in these regions is dominated by water supply and cli-
matic water deficits, whereas in humid regions it is domi-
nated by available energy (Vinukollu et al., 2011; Zhang et
al., 2016; Ma and Zhang, 2022). It is worth studying how
to accurately reflect the influences of water supply and cli-
matic water deficits. In remote-sensing-based physical mod-
els, both the PM and PT equations use the moisture con-
straint f to downscale the equilibrium (i.e., potential) evap-
oration at the soil surface to actual soil evaporation. Based
on the hypothesis that surface moisture status is related to
the adjacent atmospheric humidity (Bouchet, 1963), Fisher

et al. (2008) used relative humidity (RH) and vapor pres-
sure deficit (VPD) to reflect soil moisture supply and atmo-
spheric water deficit and applied this method to a wide vari-
ety of ecosystems, vegetation types, footprints, and climatic
regimes. Y. Zhang et al. (2019) selected the cumulative pre-
cipitation and cumulative equilibrium evaporation rates over
the past 32 d to estimate f , based on which a continuous
ET dataset was generated. Morillas et al. (2013) improved the
method proposed by Y. Zhang et al. (2010) by adding a soil
drying simulation factor after rainfall events and compared
the uncertainties between three different methods in semi-
arid and sub-humid flux towers in the Mediterranean. Mi-
ralles et al. (2011) also identified environmental factors that
constrain potential evaporation by the moisture constraint f ,
parameterized for tall canopies, short vegetation, and barren
areas. For barrens with sparse vegetation, the f estimates
are based only on surface soil moisture (θ) conditions (Mi-
ralles et al., 2011; Martens et al., 2017), and soil moisture is
normalized by the wilting point and critical moisture level,
with an exponential (subsequently simplified to linear) form
to estimate f . However, this method relies heavily on soil
properties. Yao et al. (2013) incorporated diurnal tempera-
ture changes into apparent thermal inertia (ATI) estimation
to calculate the moisture constraint f . This method was then
compared with the relative extractable water (REW) of 16
flux towers in China and showed good agreement. García
et al. (2013) also expressed the moisture constraint f us-
ing ATI, which was calculated using LST and albedo from
the Meteosate Second Generation-Spinning Enhanced Visi-
ble and InfraRed Imager (MSG-SEVIRI) satellite. Their re-
sults showed that ET estimates derived from both towers
and satellites performed better than the two-source model
or the Penman–Monteith–Leuning model in the African Sa-
helian savanna and Mediterranean grasslands. However, this
ATI-based method requires fine spatial and temporal reso-
lutions of LST. Brust et al. (2021) calculated REW as mois-
ture control directly, using soil moisture data from the NASA
Soil Moisture Active Passive (SMAP) mission. Their results
showed that the accuracy of the method with soil moisture
control was better than that of the baseline MOD16. In sum-
mary, the f estimations proposed above performed well in
their respective studies, but their applicability has not been
sufficiently tested on barrens with sparse vegetation in arid or
semi-arid basins, such as those found on the Tibetan Plateau.

Known as the “Asian Water Tower”, the Tibetan
Plateau (TP) is crucial to the development of the Asian mon-
soon and water and energy cycles (Yao et al., 2012). Al-
though great efforts have been made to evaluate ET in the
sub-basin of the TP over the past few years (Xue et al., 2013;
Hu et al., 2018; Wang et al., 2018; Li et al., 2019; Xu et al.,
2018), most studies have focused on the headwaters of rivers
in eastern or southern TP and have ignored the central and
western inland arid and semi-arid regions. Ma et al. (2020)
provided some hourly land-atmosphere interaction observa-
tions of inner regions with sparse vegetation; however, ac-
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curate soil evaporation estimates involving barrens remain a
challenge. Li et al. (2014) reconstructed monthly ET esti-
mates using the water balance method to evaluate five exist-
ing global ET products. They found that existing ET products
were still not satisfactory for the Qaidam Basin and Qiang-
tang Plateau, two barrens-dominated sub-basins on the TP.
In brief, the surface energy balance and land–atmosphere in-
teraction mechanisms in alpine barren areas have not been
explicitly revealed.

Therefore, we aim to discover the best mathematical repre-
sentation of water supply, namely soil moisture, constraint to
soil evaporation by learning from the existing schemes and
further improve the satellite retrieval of soil evaporation in
arid and semi-arid regions, especially in these understudied
barren areas of the Tibetan Plateau. The specific objectives
are: (1) to investigate the differences between the six existing
soil evaporation algorithms and their applicability to alpine
barren areas; (2) to improve the P-LSH algorithm by in-
troducing two schemes for quantifying moisture constraints
to ET in terms of surface soil moisture and precipitation, re-
spectively; and (3) to test the applicability of satellite soil
moisture and precipitation data for improving ET retrieval
and analyze the influence of soil moisture and precipitation
uncertainties on ET estimation on alpine barren areas.

2 Materials and study area

2.1 Study area

The Qaidam Basin is located in the northeastern TP
(35◦55′–39◦10′ N, 90◦00′–98◦20′ E) and occupies an area of
257 768 km2. The elevation of the Qaidam Basin is between
2676 and 6860 m, and the annual average temperature ranges
from−6.4 to 14.5 ◦C. Saline lakes and deserts cover approx-
imately one-quarter and one-third of the Qaidam Basin, re-
spectively. The Qaidam Basin has a typical continental cli-
mate with an average annual precipitation ranging from 29 to
387 mm, with approximately 80 % of the precipitation occur-
ring in summer. Its drought conditions, high salinity, large
diurnal and seasonal temperature ranges, and high ultraviolet
radiation make the basin unsuitable for living. According to
the MODIS IGBP classification (Friedl et al., 2010), 79.1 %
of the Qaidam Basin is barren, 20.2 % is grassland, and other
land uses/land cover types represent less than 1 %. Grassland
is concentrated at the edge of the eastern and southern basins,
whereas barren land is widely distributed across the remain-
ing basins (Fig. 1a).

The Qiangtang Plateau is located in the central hinterland
of the TP, close to the Qaidam Basin. It forms the main fea-
ture of the TP with an area of 700 000 km2. The average
annual precipitation on the Qiangtang Plateau ranges from
50 to 300 mm in solid forms, such as snow, graupel, and hail,
with precipitation being concentrated in the summer. The
high altitude and inland surrounding high mountains make

the Qiangtang Plateau a uniquely cold and arid region with
widely distributed permafrost. Similar to the Qaidam Basin,
barrens account for the largest proportion of the Qiangtang
Plateau, reaching 55.7 %, whereas grassland and open wa-
ter account for the second and third proportions, with val-
ues reaching 39.7 % and 3.0 %, respectively (Fig. 1b). The
lakes on the Qiangtang Plateau cover an area of 21 400 km2,
accounting for approximately a quarter of all lake areas in
China. The unique geographical structure makes the Qiang-
tang Plateau an endorheic area, which is also true of the
Qaidam Basin, where water is retained and no outflow to
other external rivers or oceans occurs. In an endorheic basin,
drainage converges into inner lakes or swamps and equili-
brates through evaporation.

2.2 Satellite and meteorological inputs

Table 1 summarizes the datasets used in this study. All in-
put datasets were resampled from the original spatial reso-
lution to a common 1/12◦ grid with a temporal resolution
on a daily scale using the bilinear interpolation method. The
daily meteorological inputs required by remote sensing al-
gorithms are derived from the China Meteorological Forc-
ing Dataset (CMFD) (He et al., 2020), including air tem-
perature (T ), specific humidity (q), air pressure (Pair), wind
speed (um), and precipitation (P ). The dataset incorporates
existing reanalysis datasets and in situ observations, and
shows better accuracy than existing reanalysis datasets (Yang
et al., 2010; He et al., 2020). Radiation inputs come from
the Clouds and the Earth’s Radiant Energy System (CERES)
SYN1deg radiative fluxes (Wielicki et al., 1996), which have
provided continuous products since March 2000 with a res-
olution of 1◦ globally. In this study, we used all-sky incom-
ing shortwave radiation and net radiation. The NDVI product
used in this study is from the MODIS MOD13Q1 Version 6
(https://lpdaac.usgs.gov, last access: 7 January 2023).

In our algorithm, the surface soil moisture and precipita-
tion were used to restrain soil evaporation. We selected var-
ious surface soil moisture and precipitation datasets from
satellites, microwave assimilation, machine-learning meth-
ods, and reanalysis. The surface soil moisture comes from
five datasets including the following: (i) the soil mois-
ture dataset of China based on microwave data assimilation
(Yang et al., 2020) (denoted as θYang in this study); (ii) the
land surface soil moisture dataset of SMAP time-expanded
daily 0.25◦×0.25◦ over the Qinghai–Tibet Plateau Area (Qu
et al., 2019) (denoted as θQu); (iii) the combined product
from the European Space Agency’s Climate Change Initia-
tive (ESA CCI) Soil Moisture Version 06.1 (Gruber et al.,
2019) (denoted as θESA CCI); (iv) Global Land Data Assim-
ilation System (GLDAS) Noah Land Surface version 2.1
(Rodell et al., 2004) (denoted as θGLDAS Noah); and (v) the
second Modern-Era Retrospective Analysis for Research and
Applications (MERRA) version 2 (Molod et al., 2015) (de-
noted as θMERRA). The precipitation comes from five datasets
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Figure 1. Locations and land cover/land use of (a) the Qaidam Basin and (b) the Qiangtang Plateau within China (OSH: open shrublands;
GRA: grasslands; WET: wetlands; CRO: croplands; URB: urban and built-up lands; SNO: snow and ice; BAR: barren; WAT: water bodies).

including the following: (i) CMFD (denoted as PCMFD);
(ii) Global Precipitation Measurement (GPM) IMERG Fi-
nal Precipitation L3 Version 06 (Hou et al., 2014) (denoted
as PGPM); (iii) Multi-Source Weighted-Ensemble Precipi-
tation (MSWEP) version 2.8 (Beck et al., 2019) (denoted
as PMSWEP); (iv) GLDAS Noah (denoted as PGLDAS Noah);
and (v) MERRA (denoted as PMERRA). All of the above
soil moisture and precipitation sequences were resampled to
1/12◦.

Our algorithm adopts different parameterization schemes
according to pixelated land cover, which comes from the
MODIS Land Cover Type Yearly L3 Global 500 m SIN
Grid (MCD12Q1) (Friedl et al., 2010). The MCD12Q1 prod-
uct provides land cover properties, which come from obser-
vations spanning 1 year from the Terra and Aqua satellites.
Here, we used data from 2003 and regarded them as static
values. We calculated the percentage of various land cov-
ers for each pixel (1/12◦), estimated the ET of various land
covers, and then weighted each pixel by the percentage. Soil
properties, including residual soil moisture and saturated wa-
ter content, were obtained from the China Dataset of Soil Hy-
draulic Parameters Pedotransfer Functions for Land Surface
Modeling (Dai et al., 2013). We aggregated the dataset from

the original 30′′ resolution to 1/12◦ using the arithmetic av-
eraging method.

To evaluate the robustness and uncertainty of various
remote-sensing algorithms, this study used reconstructed
ET estimates derived from the terrestrial water balance
method (ETrecon) as a benchmark. For endorheic basins, river
discharge is zero, and ET is equal to the residue between pre-
cipitation and change in terrestrial water storage (1S). Based
on this method, Li et al. (2014) established a monthly ETrecon
for the Qaidam Basin and Qiangtang Plateau from 2003
to 2012. The gridded precipitation data for this study were
obtained from the National Meteorological Information Cen-
ter of the China Meteorological Administration (CMA), and
1S was obtained from Gravity Recovery and Climate Exper-
iment (GRACE) land data.

3 Methodology

3.1 Description of the baseline algorithm: P-LSH

The Process-based Land Surface Evapotranspiration/Heat
Fluxes (P-LSH) algorithm (K. Zhang et al., 2009, 2010) is
an ET algorithm evolved from the PM equation, in which
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Table 1. List of the forcing datasets used in this study with their original resolutions and references.

Variable Datasets Temporal Spatial References
resolution resolution

Air temperature

CMFD 3 h 0.1◦ He et al. (2020)
Humidity
Air pressure
Wind speed

Radiation CERES SYN1deg Hourly 1◦ Doelling et al. (2013)

NDVI MOD13Q1 16 d 250 m Didan (2015)

The Soil Moisture Dataset of
Daily 0.25◦ Yang et al. (2020)China Based on Microwave Data

Assimilation (θYang)

Land Surface Soil Moisture

Daily 0.25◦ Qu et al. (2019)
Dataset of SMAP Time-Expanded

Surface soil Daily 0.25◦× 0.25◦ over Qinghai-
moisture Tibet Plateau Area (θQu)

ESA CCI (θESA CCI) Daily 0.25◦ Gruber et al. (2019)

GLDAS Noah (θGLDAS Noah) 3 h 0.25◦ Rodell et al. (2004)

MERRA (θMERRA) Hourly 0.5◦× 0.625◦ Molod et al. (2015)

Precipitation

CMFD (PCMFD) 3 h 0.1◦ He et al. (2020)
GPM (PGPM) Half-hourly 0.1◦ Hou et al. (2014)
MSWEP (PMSWEP) 3 h 0.1◦ Beck et al. (2019)
GLDAS Noah (PGLDAS Noah) 3 h 0.25◦ Rodell et al. (2004)
MERRA (PMERRA) Hourly 0.5◦× 0.625◦ Molod et al. (2015)

Land cover MCD12Q1 Yearly 500 m Friedl et al. (2010)

Soil properties
A China Dataset of Soil Hydraulic

Static 30′′ Dai et al. (2013)Parameters Pedotransfer Functions
for Land Surface Modeling

Reconstructed
– Monthly Basin scale Li et al. (2014)

ET

canopy conductance comes from the Jarvis–Stewart formula
(Jarvis, 1976; Stewart, 1988) and an empirical g0-NDVI
equation (K. Zhang et al., 2009, 2010). The P-LSH algorithm
distinguishes between open water and vegetation pixels using
land cover classification. Vegetation pixels include canopy
transpiration and soil evaporation, whereas open water pix-
els only contain water evaporation.

(1) Canopy transpiration

The P-LSH algorithm calculates canopy transpira-
tion (Ec: mm) by a modified PM equation,

λEc =
1Ac+ ρCpVPDga_c

1+ γ
(
1+ ga_c/gc

) , (1)

where λ (J kg−1) is the latent heat of vaporization,
1 (Pa K−1) is the slope of the curve relating saturated water
vapor pressure to air temperature, VPD (Pa) is the vapor pres-

sure deficit, ρ (kg m−3) is the air density, Cp (J kg−1 K−1)
is the specific heat capacity of air, γ (–) is the psychro-
metric constant, Ac (W m−2) is the available energy compo-
nent allocated to the canopy based on fractional vegetation
cover, and ga_c (m s−1) is the aerodynamic conductance of
the canopy. Based on various vegetation types, K. Zhang et
al. (2010) established an empirical relationship between the
maximum canopy conductance (g0: m s−1) and NDVI based
on observations from flux towers and reduced conductance
from the maximum (g0: m s−1) to the actual value (gc: m s−1)
through restraints from T (◦C, VPD (Pa), and CO2 (ppm).
Feng et al. (2022) added incoming shortwave radiation and
surface soil moisture to strengthen restraints on gc over three
TP grasslands. More details regarding canopy transpiration
are available in Feng et al. (2022) and Zhang et al. (2015).
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(2) Soil evaporation

The P-LSH algorithm combines the modified PM equation
and complementary relationship hypothesis to quantify soil
evaporation (Es: mm) (Bouchet, 1963; Fisher et al., 2008),
which can be expressed as

Es = fEeqs, (2)

λEeqs =
1As+ ρCpVPDga_s

1+ γ ga_s/gtotc
, (3)

f = RH
VPD
k , (4)

where f (–) is the moisture constraint, RH (–) is the relative
humidity, k (Pa) is a parameter to fit the complementary rela-
tionship, Eeqs (mm) is the equilibrium (i.e., potential) evap-
oration, As (W m−2) is the available energy component al-
located to the soil surface, and gtotc (m s−1) is the corrected
value of gtot (m s−1) based on the standard temperature and
pressure. In this study, the gtot term was expressed in the form
of resistance rtot (rtot = 1/gtot: s m−1) and ga_s (m s−1) is the
aerodynamic conductance of the soil surface. More details
regarding soil evaporation are available in Mu et al. (2007)
and K. Zhang et al. (2010).

(3) Open water

For open water pixels, the P-LSH algorithm uses the Pen-
man equation rewritten by Shuttleworth (1993) to quantify
the effects of the surface wind speed on open water evapora-
tion (Ew: mm). The surface resistance rs (s m−1) is assumed
to be zero on the open water surface; therefore, the PM equa-
tion is revised as

λEw =
1A+ ρCpVPDga_w

1+ γ
, (5)

whereA (W m−2) is the available energy component for open
water, following K. Zhang et al. (2010). The ga_w (m s−1)
term is the aerodynamic conductance of the open water and
is estimated by the wind speed,

ga_w =
1+ 0.536U2

4.72
[
ln(zm/z0)

]2 , (6)

where U2 (m s−1) is the 2 m height wind speed calculated
from the reanalysis data and the vertical wind speed func-
tion, zm (m) is the wind measurement height, and z0 (m) is
the aerodynamic roughness of the water surface, which is set
to 0.00137.

3.2 Five existing soil evaporation algorithms

In this study, we further selected the soil evaporation
schemes from five existing ET algorithms, including the
Penman–Monteith–Leuning (PML) algorithm (Y. Zhang et
al., 2010, 2019), Global Land Evaporation Amsterdam

Model (GLEAM) algorithm (Martens et al., 2017), the
Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) algo-
rithm (Fisher et al., 2008), the Priestley Taylor-Yao (PT-Yao)
algorithm (Yao et al., 2013), and the Penman–Monteith–
Brust (PM-Brust) algorithm (Brust et al., 2021).

(1) PML soil evaporation algorithm

The PML algorithm quantifies soil evaporation using the
modified PT equation, which avoids the difficulty of param-
eterizing the resistances in the PM equation (Y. Zhang et al.,
2010, 2019),

Es = fEeqs,n, (7)

λEeqs,n =
1As

1+ γ
, (8)

whereAs (W m−2),1 (Pa K−1), and γ (–) represent the same
physical meanings as in Eq. (3). The moisture constraint f (–
) is estimated by the cumulative precipitation and equilibrium
evaporation in the previous periods, without any observation
of soil moisture as input,

f =min


N∑
n=1

Pn

N∑
n=1

Eeqs,n

,1

 , (9)

where Pn (mm) and Eeqs,n (mm) are the cumulative pre-
cipitation and equilibrium evaporation of the surface in the
nth period, respectively, and N is the number of periods.

(2) GLEAM soil evaporation algorithm

Similar to the PML algorithm, GLEAM takes the PT equa-
tion as the equilibrium soil evaporation and reduces it to
actual soil evaporation through the moisture constraint f
(Martens et al., 2017). The difference is that the GLEAM
algorithm estimates f for tall canopies, short vegetation, and
barren areas. For barren areas with sparse vegetation, the sur-
face soil moisture is linearized by the critical moisture level
and residual soil moisture, and is then used to estimate soil
evaporation, which is expressed as

Es = fEp, (10)

λEp = α
1

1+ γ
As, (11)

f = 1−
θc− θ

θc− θr
, (12)

where f (–) is the same as that in Eq. (9) to explain the re-
straints of the suboptimal environment on soil evaporation;
Ep (mm) is the potential soil evaporation; α (–) is the PT di-
mensionless coefficient, and 1.26 for barrens; θ (cm3 cm−3)
is the actual surface soil moisture; and θc (cm3 cm−3) is the
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critical moisture level and is set as θc = 0.75θs following Zhu
et al. (2013), where θs (cm3 cm−3) is the saturated water con-
tent and θr (cm3 cm−3) is the residual soil moisture.

(3) PT-JPL soil evaporation algorithm

The PT-JPL algorithm uses the same equilibrium soil evap-
oration as the GLEAM algorithm, with the difference being
in the f estimation (Fisher et al., 2008). In the PT-JPL al-
gorithm, f is constituted by fSM (–) and fwet (–), where
fSM comes from RH and VPD (the same as in the P-LSH
algorithm), whereas fwet is only determined by RH as fol-
lows:

fSM = RH
VPD
k , (13)

fwet = RH4, (14)
Es =

[
fwet+ fSM (1− fwet)

]
Ep, (15)

where k (Pa) is a parameter to fit the complementary rela-
tionship, which is calibrated using the bisection method in
this study since it is the only parameter in the algorithm and
lacks prior values for barren. The Ep (mm) is the equilibrium
soil evaporation calculated using Eq. (11).

(4) PT-Yao soil evaporation algorithm

Yao et al. (2013) used the diurnal land surface temperature
range (DTsR: ◦C) and air temperature range (DTaR: ◦C)
to simplify the calculation of the apparent thermal iner-
tia (ATI: ◦C−1) for fSM (–) estimation with equilibrium soil
evaporation using the PT equation, same as the GLEAM and
PT-JPL algorithms:

fSM = ATIk =
(

1
DT

)DT/DTmax

, (16)

where DTmax (◦C) is defined as the maximum daily tem-
perature range (DT: ◦C), which reflects the relative sensi-
tivity to changes in the daily temperature range and is set
as a constant (DTaRmax = 40 ◦C, DTsRmax = 60 ◦C). Yao et
al. (2013) showed that the performances of soil evaporation
from DTaR and DTsR are similar; therefore, in this study, we
only used DTaR for fSM estimation.

(5) PM-Brust soil evaporation algorithm

The PM-Brust algorithm (Brust et al., 2021) originated
from the MOD16 algorithm that is based on the PM equa-
tion (Mu et al., 2011). The equilibrium soil evaporation
in the PM-Brust algorithm is similar to Eq. (3), with
the resistance estimations slightly different from those of
the P-LSH algorithm. The PM-Brust algorithm assumes
that the boundary layer resistance is equal to the to-
tal aerodynamic resistance (rtot: s m−1), which is deter-
mined by VPD and four biome-specific constants, includ-
ing maximum resistance (rblmax: s m−1), minimum resis-
tance (rblmin: s m−1), VPD at which canopy stomata are

completely open (VPDopen: Pa), and VPD at which canopy
stomata are completely closed (VPDclose: Pa). In contrast,
the P-LSH algorithm assumes that the boundary layer re-
sistance and total aerodynamic resistance are biome-specific
constants. Brust et al. (2021) estimated fSM with a more di-
rect soil moisture control outline (i.e., REW):

fSM = REW=
θ − θmin

θmax− θmin
, (17)

λEeqs =
1As+ ρCp (1− fc)VPDga_s

1+ γ × ga_s/gtotc
, (18)

gtotc =
1

rtot× rcorr
, (19)

rtot =
rblmax VPD≤ VPDopen
rblmax−

(rblmax−rblmin)×(VPDclose−VPD)
VPDclose−VPDopen

rblmin VPD≥ VPDclose

VPDopen < VPD< VPDclose, (20)
Es =

[
fwet+ fSM (1− fwet)

]
Eeqs, (21)

where REW (–) is the relative extractable water,
θ (cm3 cm−3) is the surface soil moisture, θmin (cm3 cm−3)
and θmax (cm3 cm−3) are the minimum and maximum values
of θ for the period of record, respectively, and fc (–) is the
vegetation cover fraction. The ga_s (m s−1) is the aerody-
namic conductance of the soil surface and is the sum of the
conductance to radiative heat transfer, which is calculated
using the same method proposed by Choudhury and Di-
Girolamo (1998), and the conductance to convective heat
transfer, which is set equal to rtot following Mu et al. (2011).
The rcorr (–) is the correction coefficient of rtot following
Mu et al. (2011). In this study, the parameters rblmax and
rblmin are calibrated using the Differential Evolution method
(Storn and Price, 1997), while the parameters VPDopen
and VPDclose are set to 650 and 4200 Pa following Mu et
al. (2011) because they are relatively insensitive parameters
(K. Zhang et al., 2019; Feng et al., 2022).

3.3 Improvements in the P-LSH soil evaporation
algorithm

We attempted two strategies to improve soil evaporation in
the P-LSH algorithm. One strategy was to directly control f
through the surface soil moisture as follows:

λEs =

[
fwet+

θ − θmin

θmax− θmin
(1− fwet)

]
1As+ ρCpVPDga_s

1+ γ ga_s/gtotc
, (22)

where each item has the same meaning as that in Eqs. (3)
and (17). The only parameter rtot is calibrated using the bi-
section method.

The second strategy was to use the ratio of cumulative pre-
cipitation to equilibrium evaporation in the previous periods
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to quantify moisture constraint, with equilibrium evaporation
estimated by the modified PM equation as follows:

λEs =min


N∑
n=1

Pn

N∑
n=1

1As+ρCpVPDga_s
1+γ ga_s/gtotc

,1


1As+ ρCpVPDga_s

1+ γ ga_s/gtotc
, (23)

where each item has the same meaning as that in Eqs. (3)
and (9).

We combined the vegetation evapotranspiration (i.e., veg-
etation transpiration and vegetation surface evaporation) and
open water evaporation components with the new soil evap-
oration component based on the first strategy to form an im-
proved P-LSH algorithm, which is called P-LSHθ . Similarly,
we built the second improved P-LSH algorithm based on the
second strategy (hereafter called P-LSHP). By contrast, the
original P-LSH soil evaporation algorithm is called P-LSHori
in this study.

3.4 Evaluation of algorithm performance

Because we do not have direct observation of soil evapora-
tion, we have to rely on the ETrecon as the benchmark to as-
sess our improved soil evaporation algorithms and their as-
sociated ET retrieval algorithms. Therefore, we need to as-
semble the soil evaporation algorithm with the vegetation
evapotranspiration and water evaporation algorithms to form
a complete ET retrieval algorithm to estimate ET. To this
end, we coupled the vegetation evapotranspiration scheme
and water evaporation scheme of the P-LSH algorithm with
the six existing soil evaporation algorithms (namely, the soil
evaporation algorithms of the PML, GLEAM, PT-JPL, PT-
Yao, PM-Brust, and P-LSHori) to produce six ET retrieval al-
gorithms (i.e., A1–A6 of Table 2 and Fig. 2). Therefore, A1–
A6 are comparable to P-LSHθ and P-LSHP because the only
difference between these algorithms is their soil evaporation
component. We then compared the performances of A1–A6,
P-LSHθ , and P-LSHP for barren areas from January 2003 to
August 2011 using ETrecon as the benchmark.

The total ET in a pixel is expressed as

E =
∑
i

Eiai, (24)

where i represents the ith land cover in the basin. We ig-
nored land cover that accounted for less than 1 %, so there
were grasslands, barrens, and open water for the Qaidam
Basin and open shrublands, grasslands, barrens, and open
water for the Qiangtang Plateau. The Ei (mm) is the evap-
otranspiration estimated from the ith land cover, and ai (–)
is the proportion of the ith land cover in a pixel. The open
shrubland and open water pixels take the vegetation evapo-
transpiration scheme and water evaporation scheme from the

Table 2. Combinations of the six existing soil evaporation algo-
rithms with the P-LSH vegetation evapotranspiration and water
evaporation schemes.

Vegetation Barren Coupling ET
evapotranspiration evaporation algorithm estimation
and water algorithm
evaporation
algorithm

P-LSH

PML A1 ETA1
GLEAM A2 ETA2
PT-JPL A3 ETA3
PT-Yao A4 ETA4
PM-Brust A5 ETA5
P-LSH A6 ETA6

P-LSH algorithm following K. Zhang et al. (2010, 2015), and
the grassland pixels take the vegetation evapotranspiration
scheme from the revised P-LSH algorithm following Feng et
al. (2022). For barrens, we took the assumption that there was
no canopy transpiration, and the performance of the six exist-
ing and two improved soil evaporation algorithms were com-
pared. A flowchart of the total ET estimation for the basin is
shown in Fig. 2.

We chose the root mean square error (RMSE), coefficient
of determination (R2), deviation (bias), and Nash–Sutcliffe
efficiency coefficient (NSE) to quantify the performances of
remote sensing algorithms compared with the ETrecon as fol-
lows:

RMSE=

√√√√ 1
T

T∑
i=1

(Oi − Si)
2, (25)

R2
=


T∑
i=1

(
Oi −O

)(
Si − S

)
√

T∑
i=1

(
Oi −O

)2√ T∑
i=1

(
Si − S

)2


2

, (26)

Bias=
1
T

T∑
i=1

(Oi − Si) , (27)

NSE= 1−

T∑
i=1
(Oi − Si)

2

T∑
i=1

(
Oi −O

)2 , (28)

where T is the number of months in the period of record,
O is the reconstructed ET, S is the simulated ET, O is the
average of all reconstructed values Oi , and S is the average
of all simulated Si .
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Figure 2. Flowchart of the gridded evapotranspiration estimation for a basin used in this study.

4 Results

4.1 Performance of existing soil evaporation algorithms

We estimated the daily and 1/12◦ pixel ET in the Qaidam
Basin and Qiangtang Plateau from January 2003 to August
2011 using the six coupling algorithms listed in Table 2.
All daily and gridded estimates were aggregated to monthly
and basin scales to match ETrecon. Generally, the ET es-
timates derived from the six coupling algorithms showed
large differences. In the Qaidam Basin, the ET estimates
of the A1 algorithm (ETA1) and the A5 algorithm (ETA5)
demonstrated good consistency with the ETrecon, while the
ET estimates of the A3 algorithm (ETA3) and the A6 algo-
rithm (ETA6) matched the worst. The ETA1 estimates per-
formed best among all the existing algorithms (Fig. 3a), with
an RMSE of 4.06 mm per month, an NSE of 0.88, and an
R2 of 0.92. The ET estimates of the A2 algorithm (ETA2)
with a linear formula for f were well-simulated for low in-
tervals and were always underestimated for the middle and
high intervals (Figs. 3b and 4a). Parameter k in the PT-JPL
algorithm was a biome-specific constant and took the same
value for all barren pixels, set to 926 Pa, which was cali-
brated by the ETrecon. Although the parameter k has been
calibrated, ETA3 still could not accurately describe the sea-
sonal variability of ET (Figs. 3c and 4a), mainly because of
errors involving f estimates derived by RH and VPD. The
medium ET estimates of the A4 algorithm (ETA4) were al-
ways overestimated for the Qaidam Basin (Fig. 3d), which
specifically occurred in spring (Fig. 4a). In the PM-Brust
method, the biome-specific constants rblmax and rblmin for
the rtot estimation were calibrated as 500 and 200 s m−1, re-

spectively, for the Qaidam Basin. The ETA5 presented good
performance (Fig. 3e), with an RMSE of 4.36 mm per month,
an NSE of 0.87, and an R2 of 0.88. The ETA6 estimates used
RH and VPD to estimate f , with parameter k of 359.1 Pa
and rtot of 462.4 s m−1 following Feng et al. (2022). How-
ever, ETA6 could not adequately describe seasonal variabil-
ity (Figs. 3f and 4a) in the Qaidam Basin, and seasonal mean
values also varied by a large margin compared with ETrecon
(Fig. 4a).

On the Qiangtang Plateau, almost all algorithms overesti-
mated ET for barren areas in spring and winter and under-
estimated ET in summer and autumn (Fig. 4b). The multi-
year average ETrecon in spring and winter was 6.3 mm per
month, while the multi-year average ET derived from six
coupling remote sensing algorithms was 14.4± 6.8 mm per
month. The multi-year average ETrecon in summer and au-
tumn was 38.3 mm per month, and it was 28.2±12.1 mm per
month from six remote sensing algorithms. In the compari-
son of the six algorithms, the ETA1 estimates still performed
best among all algorithms, with an RMSE of 11.14 mm per
month, and ETA2 estimates performed the worst, with an
RMSE of 14.46 mm per month. The biome-specific con-
stant, k, in the PT-JPL algorithm was recalibrated to 566 Pa
using ETrecon for the Qiangtang Plateau. In the PT-JPL and
P-LSHori algorithms, unreasonable f estimates also led to
the homogenization of strong seasonal variability (Figs. 3c, f,
and 4b). Similar to the Qaidam Basin, the ETA4 estimates
showed moderate performance for the Qiangtang Plateau
(Fig. 3d), and the ETA5 estimates showed good performance
next to ETA1, with an RMSE of 11.42 mm per month, an
NSE of 0.72, and an R2 of 0.85.
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Figure 3. Simulated ET derived from the six existing coupling algorithms and the two improved algorithms versus the recon-
structed ET (ETrecon). The A1–A6, P-LSHθ , and P-LSHP are the coupling algorithms listed in Table 2. The blue dots represent results
for Qaidam Basin and the red for Qiangtang Plateau.

Figure 4. Seasonal average reconstructed ET (ETrecon) and ET estimates derived from six existing coupling algorithms and the two improved
algorithms for (a) the Qaidam Basin and (b) the Qiangtang Plateau. The A1– A6, P-LSHθ , and P-LSHP are the coupling algorithms listed in
Table 2.

We calculated the moisture constraint f in the soil evap-
oration of each pixel and used the same method as ET to
aggregate f at the monthly and basin scales. The f esti-
mates derived from various algorithms are shown in Fig. 5.
The f estimates of the PML algorithm (fPML) were high
in summer and low in winter, with distinct seasonality in
both basins, with small peaks occasionally appearing in win-
ter. The f estimates of the GLEAM algorithm (fGLEAM)
hardly showed seasonality and were always low in both

basins, which was the main reason for the poor performance
of ETA2. Compared with fPML and fGLEAM estimates, the
f estimates of the PT-Yao algorithm (fPT-Yao) were overesti-
mated in spring and winter, partly causing the overestimation
of ETA4, and this overestimation was larger than that of fPML
(Figs. 3d and 4). Considering the positive relationship be-
tween precipitation and soil moisture, the f estimates of the
PM-Brust algorithm (fPM-Brust) from soil moisture and the
fPML estimates from precipitation showed great consistency,

Hydrol. Earth Syst. Sci., 27, 363–383, 2023 https://doi.org/10.5194/hess-27-363-2023



J. Feng et al.: Improved soil evaporation remote sensing retrieval algorithms on the Tibetan Plateau 373

Figure 5. The monthly average f derived from the six existing soil evaporation algorithms for the Qaidam Basin and the Qiangtang Plateau.

with correlation coefficients of 0.86 and 0.85 (p < 0.001) for
the Qaidam Basin and Qiangtang Plateau, respectively. How-
ever, the fPM-Brust estimates were higher overall than fPML
in spring and winter, and hardly ever close to zero, indi-
cating that the soil moisture sequences over basins seldom
reached their minimum at the same time. In addition, com-
pared with fPML, the overestimation of fPM-Brust was also
a reason for the overestimation of ETA5 in spring and winter
(Figs. 4a and 5). The PT-JPL and P-LSHori algorithms shared
a similar f estimation and had the same temporal charac-
teristics, with high values in winter and low values in sum-
mer, which showed the opposite seasonal variability to soil
moisture (expressed in the form of fPM-Brust). Therefore, the
performances of ETA3 and ETA6 were unsatisfactory. This
is because the VPD sequence for both basins on the TP had
stronger seasonality (high in summer and low in winter) com-
pared with the milder RH. Although ET estimates derived
from the PT-JPL and P-LSHori algorithms have been well
validated in some flux towers (Fisher et al., 2008; K. Zhang
et al., 2010; Mu et al., 2011), this method is no longer appli-
cable because of the unique meteorology of the TP (mainly
manifested in the seasonality of RH and VPD) and the pos-
sible decoupling of VPD and soil moisture on a daily scale.

4.2 Performance of the two improved P-LSH
algorithms

Because of the good performance of surface soil moisture
and precipitation in moisture constraints of the land sur-
face, both were used to improve the P-LSH algorithm, called
P-LSHθ and P-LSHP. The soil moisture sequence was ob-

tained from the assimilation-based θYang, and the precipita-
tion sequence was obtained from the satellite-based PGPM.
In the original P-LSH algorithm, rtot was a biome-specific
constant sensitive to soil evaporation (Feng et al., 2022).
Therefore, we separately calibrated rtot for both basins in
the P-LSHθ algorithm using the bisection method, with the
RMSE as the objective function. The calibrated rtot values
were 575 and 290 s m−1 for the Qaidam Basin and the Qiang-
tang Plateau, respectively. The ET estimates derived from P-
LSHθ (ETP-LSH_θ ) matched well with the ETrecon and cap-
tured the strong seasonality of both basins (Fig. 6). The P-
LSHθ algorithm had advantages in normalized standard de-
viation and centered RMSE, with values of 0.80 and 0.40,
while they were 0.61±0.08 and 0.55±0.08 of existing cou-
pling algorithms in Sect. 4.1 (Fig. 7). The rtot value in the
P-LSHP algorithm for each basin was set the same as that in
the P-LSHθ algorithm. The ET estimates derived from the P-
LSHP (ETP-LSH¶) were similar to ETP-LSHtheta and showed
a better simulation of the Qaidam Basin, especially the sim-
ulations of low values in spring and winter (Fig. 6). How-
ever, the ETP-LSH_P estimates were always underestimated
on the Qiangtang Plateau, much lower than the ETrecon in
summer, which may have been caused by the error of the
GPM satellite precipitation on the Qiangtang Plateau (see
Sect. 4.3) (Li et al., 2020). Nevertheless, ETP-LSH_P estimates
still performed well, second only to ETP-LSH_θ among all al-
gorithms for both basins (Fig. 7). In summary, the P-LSHθ
and P-LSHP algorithms for both basins showed better per-
formance than the existing algorithms in Sect. 4.1.
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Figure 6. Comparisons of the monthly regional average ET estimates derived from two improved retrieval algorithms (P-LSHθ and P-LSHP)
with the ETrecon for (a) the Qaidam Basin and (b) the Qiangtang Plateau.

Figure 7. Taylor diagram comparing the retrieved ET by the six
existing coupling algorithms and the two improved retrieval algo-
rithms (P-LSHθ and P-LSHP) in the two basins. The green dashed
line represents the centered root mean square error.

The multi-year average annual ETP-LSH_θ and ETP-LSH_P
estimates for both basins are shown in Fig. 8. The esti-
mations of the two algorithms shared a similar spatial pat-
tern, with a decreasing trend from the southeastern to north-
western basins. From the perspective of the regional aver-
age, ETP-LSH_θ and ETP-LSH_P were 177 and 148 mm for
the Qaidam Basin, respectively, and 300 and 232 mm for

the Qiangtang Plateau, respectively. However, in the cen-
tral Qaidam Basin and northwest of the Qiangtang Plateau,
the ETP-LSH_P estimates were generally lower than those of
ETP-LSH_θ , and these underestimations existed in almost all
seasons (Fig. 9). This underestimation was little in winter be-
cause both precipitation and soil moisture in winter were low,
and the spatial differences between ETP-LSH_P and ETP-LSH_θ
almost disappeared.

Figure 9 shows the multi-year spring (March, April, and
May), summer (June, July, and August), autumn (Septem-
ber, October, and November), and winter (December, Jan-
uary, and February) ETP-LSH_θ and ETP-LSH_P in both basins.
The pattern of seasonal estimates was similar to that of the
annual values. Generally, the ET in autumn was higher than
that in spring, with 71 % of ETP-LSH_θ and 97 % of ETP-LSH_P
for the Qaidam Basin and 72 % of ETP-LSH_θ and 85 % of
ETP-LSH_P for the Qiangtang Plateau (percentage represents
the number of pixels accounting for the basin). The multi-
year seasonal ETP-LSH_θ and ETP-LSH_P averaged over the
Qaidam Basin were 36, 88, 40, and 13 mm, and 20, 87, 33,
and 8 mm, for spring, summer, autumn, and winter, respec-
tively. The multi-year seasonal ETP-LSH_θ and ETP-LSH_P av-
eraged over the Qiangtang Plateau were 61, 142, 68, and
29 mm, and 41, 114, 55, and 22 mm, for spring, summer, au-
tumn, and winter, respectively.

4.3 Uncertainty of soil moisture and precipitation
influence on soil evaporation

Two soil moisture constraint schemes based on the respec-
tive surface soil moisture and precipitation data were used to
improve the P-LSH algorithm (Sect. 4.2), leading to two im-
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Figure 8. The spatial distributions of multi-year (January 2003–August 2011) average annual ET derived from (a, b) the P-LSHθ and
(c, d) P-LSHP for (a, c) the Qaidam Basin and (b, d) the Qiangtang Plateau.

Figure 9. The spatial distributions of multi-year (January 2003–August 2011) seasonal ET derived from (a–d, i–l) P-LSHθ and (e–h, m–
p) P-LSHP for (a–h) the Qaidam Basin and (i–p) the Qiangtang Plateau.
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Figure 10. Maps of the coefficients of variation of monthly average soil evaporation from 2003 to 2011 for barrens estimated by (a, b) the
P-LSHθ algorithm driven by five soil moisture datasets and (c, d) the P-LSHP algorithm driven by five precipitation datasets in (a, c) the
Qaidam Basin and (b, d) the Qiangtang Plateau. The gray shading indicates the non-barren areas within the basin.

proved P-LSH algorithms, namely P-LSHθ and P-LSHP. Our
results show that both of the improved algorithms generally
performed well in the two study basins. However, the two im-
proved algorithms are highly dependent on high-quality grid-
ded data, so it is necessary to quantify the influence of uncer-
tainty in the soil moisture and precipitation data on ET esti-
mation. To this end, we selected five surface soil moisture
and five precipitation datasets to investigate the impact of
uncertainty in the moisture constraint quantification. To be
specific, we investigated the difference between ET estimates
derived from five surface soil moisture/precipitation datasets,
together with the difference among the five soil moisture/pre-
cipitation datasets. The daily and 1/12◦ pixel soil evapora-
tion estimates for both basins were estimated and aggregated
to monthly and basin scales. We calculated the coefficient
of variation (Cv, defined as the ratio of the standard devia-
tion to the mean) between five barren evaporation estimates
from the P-LSHθ and five barren evaporation estimates from
the P-LSHP algorithms, where the non-barren estimate was
masked (hereafterEs_P-LSH_θ andEs_P-LSH_P, where the sub-
script s denotes soil evaporation for barrens). In the following
part, we further discuss the impacts of temporal and spatial
uncertainties in soil moisture and precipitation on soil evap-
oration estimates.

To quantify the temporal uncertainties in soil moisture and
precipitation, and their resultant ET uncertainties, we cal-
culated the multi-monthly (i.e., monthly average from 2003
to 2011) values for every soil moisture and precipitation
dataset and its associated ET estimate on a grid-cell basis.
There was a clear spatial pattern of the Cv among multi-
monthly (i.e., monthly average from 2003 to 2011) average
Es_P-LSH_θ and Es_P-LSH_P from various datasets. The Cv of

Es_P-LSH_θ showed little variation in both basins (Fig. 10a
and b). The Cv of Es_P-LSH_θ on the Qaidam Basin ranged
from 0.05 to 0.65 with a mean of 0.29, and ranged from 0.03
to 0.71 with a mean value of 0.29 on the Qiangtang Plateau.
In contrast, the Cv of Es_P-LSH_P was not consistent in both
basins. In the Qaidam Basin, the Cv of Es_P-LSH_P was at a
lower level (Fig. 10c), with an average of 0.29, which was
comparable to that of Es_P-LSH_θ . On the Qiangtang Plateau,
the Cv of Es_P-LSH_P increased from the southeast to the
northwest of the basin (Fig. 10d), with an average of 0.46,
which was higher than that of Es_P-LSH_θ .

To further distinguish the impact of the datasets and
algorithm structure on barren evaporation estimates, we
compared the variation for various surface soil moisture
and precipitation datasets, as shown in Fig. 11. The sur-
face soil moisture had high uncertainty in the central and
northern Qaidam Basin and western Qiangtang Plateau
(Fig. 11a and b), but these uncertainties were not reflected
in Es_P-LSH_θ , indicating that the moisture constraint calcu-
lated by Eq. (20) reduced the uncertainty of soil moisture
and, instead, focused more on the relative changes in the soil
moisture of each dataset. The Cv of the precipitation showed
a similar spatial distribution to that of Es_P-LSH_P in both
basins, and their correlation coefficients were 0.93 and 0.98
(p < 0.001) for the Qaidam Basin and Qiangtang Plateau,
respectively, indicating that the characteristics of precipita-
tion were almost completely transferred to the Es_P-LSH_P
through Eq. (21). In contrast, the correlation coefficients
of the Cv of soil moisture and Es_P-LSH_θ were only 0.33
and 0.46 (p < 0.001) for the two basins.

From the perspective of the regional average, we used
Cv to express uncertainty, considering the magnitude be-
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Figure 11. Maps of the coefficients of variation of (a, b) five soil moisture datasets and (c, d) five precipitation datasets in (a, c) the Qaidam
Basin and (b, d) the Qiangtang Plateau. Each soil moisture or precipitation dataset is the monthly average value from 2003 to 2011. The gray
indicates the non-barren areas within the basin.

Table 3. RMSE (mm), Bias (mm), NSE, and R2 of the five ETP-LSH_θ and five ETP-LSH_P in comparison with the ETrecon for aggregation
of two basins.

Soil moisture ETP-LSH_θ Precipitation ETP-LSH_P

sources RMSE Bias NSE R2 sources RMSE Bias NSE R2

θQu 7.57 −2.88 0.82 0.86 PMSWEP 7.17 −0.82 0.84 0.86
θESA CCI 10.92 −7.07 0.63 0.81 PGPM 7.76 2.15 0.81 0.87
θGLDAS Noah 6.44 −1.97 0.87 0.89 PGLDAS Noah 8.22 −0.22 0.79 0.81
θMERRA 9.64 −7.09 0.71 0.87 PMERRA 8.05 1.86 0.80 0.86
θYang 7.36 −1.93 0.83 0.86 PCMFD 7.28 −2.26 0.83 0.85

tween soil moisture and precipitation. There were some un-
certainties in various soil moisture datasets, especially in
spring, autumn, and winter (Fig. 12a and b), with Cv of
0.41±0.07 and 0.41±0.08 for the Qaidam Basin and Qiang-
tang Plateau, respectively. The uncertainty of the peaks in
summer tended to be much lower and always at a lower level
of soil moisture values. The uncertainty among various pre-
cipitation datasets was comparable with soil moisture, with
Cv of 0.36± 0.20 and 0.55± 0.22 for the Qaidam Basin and
Qiangtang Plateau. The Cv of the precipitation had a sim-
ilar temporal pattern, similar to soil moisture, low in sum-
mer and high in other seasons (Fig. 12c and d). In terms of
Es_P-LSH_θ and Es_P-LSH_P, and considering the same object,
we used the interval length of various estimates to express
uncertainty. Overall, the uncertainty of Es_P-LSH_P was lower
than that of Es_P-LSH_θ , especially in spring and winter in
both basins (Fig. 12e and f). The interval length ofEs_P-LSH_P
were 4.94±3.63 and 14.61±10.45 mm per month, and were
11.41± 5.91 and 16.92± 7.01 mm per month in Es_P-LSH_θ
for the Qaidam Basin and Qiangtang Plateau, respectively.

On the Qiangtang Plateau, the higher uncertainty of the pre-
cipitation datasets led to a larger interval length in the esti-
mation of Es_P-LSH_P compared with the Qaidam Basin, yet
this uncertainty was still smaller than that of Es_P-LSH_θ .

From the perspective of simulation accuracy, the
ETP-LSH_θ driven by θGLDAS Noah performed best, outper-
forming estimates derived from any other soil moisture and
precipitation (Table 3). The satellite-based θESA CCI showed
poor performance, which may be attributed to missing data,
and simple temporal linear interpolation weakened the sea-
sonal variation in soil moisture. The ETP-LSH_θ estimates de-
rived from θQu and θYang performed well, where soil mois-
ture came from machine learning and model assimilation,
respectively. By contrast, the ETP-LSH_P estimates overall
had high and relatively stable precision, with an RMSE of
7.70± 0.46 mm per month, while it was 8.39± 1.08 mm per
month from five ETP-LSH_θ estimates.
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Figure 12. Monthly regional average (a, b) soil moisture datasets, (c, d) precipitation datasets, and (e, f) soil evaporation estimates, and their
coefficients of variation over barrens of the Qaidam Basin and the Qiangtang Plateau. The shaded areas indicate the range determined by five
datasets/estimates and solid lines represent the mean of them, depending on the left y axis. The light dashed lines represent coefficients of
variation of five datasets/estimates, depending on the right y axis. Blue represents results of soil moisture datasets or Es estimates derived
from soil moisture, and red represents results of precipitation datasets or Es estimates derived from precipitation.

5 Discussion and conclusion

This paper compared the applicability and effectiveness of
various soil moisture constraint schemes in the existing
ET algorithms in typical arid and semi-arid basins of the Ti-
betan Plateau and then proposed two improved P-LSH algo-
rithms, in which normalized surface soil moisture and the ra-
tio of cumulative antecedent precipitation to cumulative an-
tecedent equilibrium evaporation are used to represent soil
water stress, respectively. We further assessed the impacts of
uncertainty in the soil moisture and precipitation forcing data
on the soil evaporation retrievals. The first part of this study
investigated the applicability of six existing coupling algo-
rithms with ETrecon in two basins. The moisture constraints
and equilibrium equations for these algorithms were differ-
ent. The A1 algorithm, which considers cumulative precip-
itation and equilibrium evaporation in soil evaporation, has
the best performance on a monthly scale for both basins, with
an RMSE of 4.06 mm per month for the Qaidam Basin and
RMSE of 11.13 mm per month for the Qiangtang Plateau.
The A5 algorithm, which directly considers soil moisture as
a constraint, is second in performance, with an RMSE of
4.36 mm per month for the Qaidam Basin and an RMSE of
11.42 mm per month for the Qiangtang Plateau. The ET es-
timates from the A2 algorithm hardly match well for both
basins because they are significantly affected by high-quality
soil properties. The A4 algorithm uses the diurnal tempera-

ture range to reflect the apparent thermal inertia and humidity
constraints, with moderate performance in both basins. Both
algorithms, A3 and A6, use an RHVPD/k term to express the
sensitivity of the soil water deficit, and take the assumption
that the surface moisture status is reflected in the adjacent at-
mospheric moisture, specifically in the form of evaporative
demand of the atmosphere. This method has good applica-
bility for ET estimation (Fisher et al., 2008; K. Zhang et al.,
2010; Mu et al., 2011), which may be because it pays more
attention to total ET rather than soil evaporation. On the bar-
rens of the TP, vegetation is sparse, and only soil evaporation
exists; therefore, defects involving this method are exposed.
On the TP, RH has weak seasonality, whereas VPD is high
in summer and low in winter, with strong seasonal variabil-
ity. These phenomena result in RHVPD/k being high in winter
and low in summer, which is contrary to actual soil moisture.
In addition, the relationship between VPD and soil moisture
may be decoupled on a daily scale (Purdy et al., 2018; Brust
et al., 2021), which will eventually lead to model structural
errors involving the A3 and A6 algorithms.

The second part of this study improved the P-LSH algo-
rithm by introducing two schemes for quantifying moisture
constraints to ET in terms of surface soil moisture and pre-
cipitation. From the perspective of the regional average, the
two improved algorithms significantly improved the perfor-
mance of the P-LSH algorithm, and the simulation accuracy
was higher than that of the six existing coupling algorithms.
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The P-LSHθ algorithm showed the best performance among
all algorithms, indicating that direct soil moisture can ade-
quately express the moisture supply in evaporation estimates
for barrens. As a surrogate for moisture supply, precipitation
can better express the constraints in barrens evaporation than
RH, VPD, ATI, etc. However, the two estimates show some
uncertainty in the Qiangtang Plateau, which requires more
soil evaporation observations or other means to further esti-
mate their reliability.

The last part of this study tested the applicability of satel-
lite soil moisture and precipitation data for improving ET re-
trieval and analyzing the influence of soil moisture and pre-
cipitation uncertainties on ET estimation on alpine barren
areas. In the spatial pattern, the uncertainty of Es_P-LSH_θ
was lower because the model structure flattened the magni-
tude difference in soil moisture. On the Qiangtang Plateau,
the uncertainty of Es_P-LSH_P is larger, with 47.4 % of the
Cv higher than 0.5, which is mainly due to the underestima-
tion of precipitation by the GPM and MERRA in the north-
western basin. From the perspective of the regional average,
the uncertainty of soil moisture is comparable to that of pre-
cipitation, yet the uncertainty of Es_P-LSH_θ is higher than
that of Es_P-LSH_P. The ETP-LSH_θ derived from θGLDAS Noah
performs better than those from any other soil moisture and
precipitation datasets, and the ETP-LSH_P from all precipita-
tion datasets generally showed high and stable accuracy, sug-
gesting that high-quality soil moisture can optimally express
moisture supply to ET, and that more accessible precipitation
data can serve as a substitute of soil moisture as an indicator
of moisture status for its robust performance in barren evap-
oration.

There were some uncertainties in this study. Because the
revisit rates of various satellites are usually 2–3 d, it is dif-
ficult to obtain full daily soil moisture coverage of basins,
and the satellite-based θESA CCI faces the risk of spatial or
temporal discontinuity. Simple temporal linear interpolation
was used in our study, which weakened the seasonality of
soil moisture. Although differences in various soil moisture
datasets were discussed in this study, more spatially and
temporally continuous satellite-based soil moisture datasets
would be of significant interest. Considering the coarse spa-
tial resolution, uncertainties in the GRACE data are gener-
ally much greater; therefore, the ETrecon estimates derived
from it also have a coarse temporal and spatial resolution
(monthly and basin scale) and high uncertainty. We matched
the pixel-scale and daily remote sensing algorithm outputs
with the ETrecon, which may cause errors offset in the algo-
rithms to a certain extent. In addition, various processes for
GRACE products are sources of uncertainty in 1S, which in
turn affects the accuracy of the ETrecon. Despite the above
uncertainties, the water balance method is still an effective
means of providing a benchmark for remote sensing algo-
rithm outputs at a basin scale and is recognized in most stud-
ies (Zeng et al., 2012; Long et al., 2014; Hui et al., 2020;
Chao et al., 2021; Zhang et al., 2020). In terms of results, al-

most all algorithms had high uncertainty in the simulation of
soil evaporation on the Qiangtang Plateau, especially in the
summer of 2006 and subsequent years. Zhang et al. (2017)
reported that inland lakes on the Qiangtang Plateau have ex-
panded since the 1990s, whereas static land cover was used
in this study. In the future, a dynamic dataset will be nec-
essary to reflect the characteristics of the ground surface for
ET estimation.

Code and data availability. The code of the original and im-
proved P-LSH algorithms used in this study are available from
the corresponding author (kzhang@hhu.edu.cn). All data for
this paper are properly cited and referred to in Table 1. Specif-
ically, the meteorological data from CMFD are available at
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
(Yang and He, 2019); the radiation data
from CERES SYN1deg are available at
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
(NASA/LARC/SD/ASDC, 2017); the NDVI data from MODIS
are available at https://doi.org/10.5067/MODIS/MOD13Q1.006
(Didan, 2015); the soil moisture data from The Soil Moisture
Dataset of China Based on Microwave Data Assimilation and
Land Surface Soil Moisture Dataset of SMAP Time-Expanded
Daily 0.25× 0.25◦ over Qinghai-Tibet Plateau Area are available
at https://doi.org/10.11888/AtmosphericPhysics.tpe.249448.file
(Yang, 2018) and https://doi.org/10.11888/Soil.tpdc.270948
(Chai et al., 2020); the soil moisture data from ESA CCI are
available at https://esa-soilmoisture-cci.org/ (ESA CCI SM,
2023); the precipitation data from GPM are available at
https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (Huffman
et al., 2019); the precipitation data from MSWEP are available at
http://www.gloh2o.org/mswep/ (MSWEP, 2023); GLDAS Noah
data are available at https://doi.org/10.5067/E7TYRXPJKWOQ
(Beaudoing and Rodell, 2020); MERRA data are avail-
able at https://doi.org/10.5067/9SC1VNTWGWV3 (GMAO,
2015); the land cover data from MCD12Q1 are available
at https://doi.org/10.5067/MODIS/MCD12Q1.006 (Friedl
and Sulla-Menashe, 2019); the soil properties from A
China Dataset of Soil Hydraulic Parameters Pedotrans-
fer Functions for Land Surface Modeling are available at
https://doi.org/10.11888/Soil.tpdc.270606 (Shangguan and Dai,
2013); and the reconstructed ET estimates of Qaidam Basin and
Qiangtang Plateau are available in Li et al. (2014).
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