Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2591-2023
https://doi.org/10.5194/hess-27-2591-2023
Technical note
 | 
18 Jul 2023
Technical note |  | 18 Jul 2023

Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems

Uwe Ehret and Pankaj Dey

Related authors

Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-3355,https://doi.org/10.5194/egusphere-2024-3355, 2024
Short summary
Model calibration and streamflow simulations for the extreme drought event of 2018 on the Rhine River Basin using WRF-Hydro 5.2.0
Andrea L. Campoverde, Uwe Ehret, Patrick Ludwig, and Joaquim G. Pinto
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-134,https://doi.org/10.5194/gmd-2024-134, 2024
Revised manuscript not accepted
Short summary
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147,https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary
Is drought protection possible without compromising flood protection? Estimating the maximum dual-use benefit of small flood reservoirs in Southern Germany
Sarah Quỳnh Giang Ho and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2167,https://doi.org/10.5194/egusphere-2024-2167, 2024
Short summary
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
How much water vapour does the Tibetan Plateau release into the atmosphere?
Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans
Hydrol. Earth Syst. Sci., 29, 485–506, https://doi.org/10.5194/hess-29-485-2025,https://doi.org/10.5194/hess-29-485-2025, 2025
Short summary
On the importance of discharge observation uncertainty when interpreting hydrological model performance
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024,https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024,https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. 
Azmi, E., Ehret, U., Weijs, S. V., Ruddell, B. L., and Perdigão, R. A. P.: Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance, Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, 2021. 
Bossel, H.: Dynamics of forest dieback: Systems analysis and simulation, Ecol. Model., 34, 259–288, https://doi.org/10.1016/0304-3800(86)90008-6, 1986. 
Bossel, H.: Systems and Models. Complexity, Dynamics, Evolution, Sustainability, Books on Demand GmbH, Norderstedt, Germany, 372 pp., ISBN 978-3-8334-8121-5, 2007. 
Download
Short summary
We propose the c-u-curve method to characterize dynamical (time-variable) systems of all kinds. U is for uncertainty and expresses how well a system can be predicted in a given period of time. C is for complexity and expresses how predictability differs between different periods, i.e. how well predictability itself can be predicted. The method helps to better classify and compare dynamical systems across a wide range of disciplines, thus facilitating scientific collaboration.
Share