Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Department of Hydrology, Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark
Rasmus Fensholt
Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
Simon Stisen
Department of Hydrology, Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark
Julian Koch
Department of Hydrology, Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark
Related authors
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Hyojin Kim, Julian Koch, Birgitte Hansen, and Rasmus Jakobsen
Biogeosciences, 22, 4387–4403, https://doi.org/10.5194/bg-22-4387-2025, https://doi.org/10.5194/bg-22-4387-2025, 2025
Short summary
Short summary
Nitrate pollution from farming is a global problem. A natural process called denitrification helps remove nitrate but also releases CO2, which contributes to climate change. Our study shows that CO2 from this process in Danish groundwater may be a major overlooked source – similar to other known agricultural CO2 emissions. This highlights the need to update greenhouse gas reporting to better reflect farming’s full climate impact.
Tanja Denager, Jesper Riis Christiansen, Raphael Johannes Maria Schneider, Peter L. Langen, Thea Quistgaard, and Simon Stisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2503, https://doi.org/10.5194/egusphere-2025-2503, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study demonstrates that incorporating both temperature and temporal variability in water level in emission models significantly influences CO2 emission from peat soil. Especially the co-occurrence of elevated air temperature and low groundwater table significantly influence CO2 emissions under scenarios of rewetting and climate change.
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025, https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
Short summary
We developed a CAMELS-style dataset in Denmark, which contains hydrometeorological time series and landscape attributes for 3330 catchments (304 gauged). Many catchments in CAMELS-DK are small and at low elevations. The dataset provides information on groundwater characteristics and dynamics, as well as quantities related to the human impact on the hydrological system in Denmark. The dataset is especially relevant for developing data-driven and hybrid physically informed modeling frameworks.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Short summary
We developed hybrid schemes to enhance national-scale streamflow predictions, combining long short-term memory (LSTM) with a physically based hydrological model (PBM). A comprehensive evaluation of hybrid setups across Denmark indicates that LSTM models forced by climate data and catchment attributes perform well in many regions but face challenges in groundwater-dependent basins. The hybrid schemes supported by PBMs perform better in reproducing long-term streamflow behavior and extreme events.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872, https://doi.org/10.5194/egusphere-2023-1872, 2023
Preprint withdrawn
Short summary
Short summary
Temporal drain flow dynamics and understanding of their underlying controlling factors are important for water resource management in tile-drained agricultural areas. This study examine whether simpler, more efficient machine learning (ML) models can provide acceptable solutions compared to traditional physics based models. We predicted drain flow time series in multiple catchments subject to a range of climatic and landscape conditions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
M. C. A. Picoli, J. Radoux, X. Tong, A. Bey, P. Rufin, M. Brandt, R. Fensholt, and P. Meyfroidt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 975–981, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, 2022
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Cited articles
Ahmad, M.-u-D., Peña-Arancibia, J. L., Stewart, J. P., and Kirby, J. M.:
Water balance trends in irrigated canal commands and its implications for
sustainable water management in Pakistan: Evidence from 1981 to 2012, Agr.
Water Manage., 245, 106648, https://doi.org/10.1016/j.agwat.2020.106648, 2021.
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050,
ESA Working paper No. 12-03, FAO, Rome, ISBN 9781844070077, 2012.
Allen, R. G., Jensen, M. E., Wright, J. L., and Burman, R. D.: Operational
Estimates of Reference Evapotranspiration, Agron. J., 81, 650–662,
https://doi.org/10.2134/agronj1989.00021962008100040019x, 1989.
Asadzadeh, M. and Tolson, B. A.: A new multi-objective algorithm, pareto
archived DDS, Association for Computing Machinery
New York, NY, United States, 1963–1966, https://doi.org/10.1145/1570256, 2009.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Bazzi, H., Baghdadi, N., Amin, G., Fayad, I., Zribi, M., Demarez, V., and
Belhouchette, H.: An operational framework for mapping irrigated areas at
plot scale using sentinel-1 and sentinel-2 data, Remote Sens., 13, 2584,
https://doi.org/10.3390/rs13132584, 2021.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWep v2 Global 3-hourly
0.1∘ precipitation: Methodology and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., and Fernández-Prieto, D.: How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products, Int. J. Appl. Earth Obs. Geoinf., 73, 752–766,
https://doi.org/10.1016/j.jag.2018.08.023, 2018.
Cai, X., Sharma, B. R., Matin, M. A., Sharma, D., and Gunasinghe, S.:
An Assessment of Crop Water Productivity in the Indus and Ganges River Basins: Current Status and Scope for
Improvement, Colombo, Sri
Lanka: International Water Management Institute, IWMI Research Report, 140, 30 pp., https://doi.org/10.5337/2010.232, 2010.
Dari, J., Brocca, L., Quintana-Seguí, P., Escorihuela, M. J., Stefan, V., and Morbidelli, R.: Exploiting high-resolution remote sensing soil moisture to estimate irrigation water amounts over a Mediterranean region, Remote Sens., 12, 2593, https://doi.org/10.3390/RS12162593, 2020.
Dari, J., Quintana-Seguí, P., Escorihuela, M. J., Stefan, V., Brocca, L., and Morbidelli, R.: Detecting and mapping irrigated areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model, J. Hydrol., 596, 126129, https://doi.org/10.1016/j.jhydrol.2021.126129, 2021.
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., and Stisen,
S.: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.
Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J.
H., Rockel, B., Jacob, D., Kjellström, E., De Castro, M., and Van Den
Hurk, B.: An intercomparison of regional climate simulations for Europe:
Assessing uncertainties in model projections, Climatic Change, 81, 53–70,
https://doi.org/10.1007/s10584-006-9228-x, 2007.
ECMWF: IFS Documentation CY45R1 – Part IV: Physical processes, 1–227, https://doi.org/10.21957/4whwo8jw0, 2018.
Feddes, R. A., Kowalik, P., Kolinska-Malinka, K., and Zaradny, H.: Simulation
of field water uptake by plants using a soil water dependent root extraction
function, J. Hydrol., 31, 13–26, https://doi.org/10.1016/0022-1694(76)90017-2, 1976.
Frenken, K. and Gillet, V.: Irrigation water requirement and water
withdrawal by country, http://www.fao.org/nr/water/aquastat/water_use_agr/index.stm (last access: 5 January 2022), 2012.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – A new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55, 2007.
Jain, M., Fishman, R., Mondal, P., Galford, G. L., Bhattarai, N., Naeem, S.,
Lall, U., Balwinder-Singh, and DeFries, R. S.: Groundwater depletion will reduce cropping intensity in India, Sci. Adv., 7, eabd2849, https://doi.org/10.1126/sciadv.abd2849, 2021.
Jalilvand, E., Tajrishy, M., Ghazi Zadeh Hashemi, S. A., and Brocca, L.:
Quantification of irrigation water using remote sensing of soil moisture in
a semi-arid region, Remote Sens. Environ., 231(15), 111226,
https://doi.org/10.1016/j.rse.2019.111226, 2019.
Jalilvand, E., Abolafia-Rosenzweig, R., Tajrishy, M., and Das, N.: Evaluation
of SMAP/Sentinel 1 High-Resolution Soil Moisture Data to Detect Irrigation
over Agricultural Domain, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens.,
14, 10733–10747, https://doi.org/10.1109/JSTARS.2021.3119228, 2021.
Jarvis, A. H. I., Reuter, A., Nelson, A., and Guevara, E.: Hole-filled SRTM
for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database,
CGIAR CSI Consort. Spat. Inf. [data set], http://srtm.csi.cgiar.org (last access: 2 February 2021), 2016.
Jensen, M. E. and Allen, R. G.: Evaporation, evapotranspiration, and irrigation water requirements, 2nd edn., American Society of Civil Engineers, 744 pp., ISBN 978-0-7844-1405-7, 2016.
Jin, Q. and Wang, C.: A revival of Indian summer monsoon rainfall since
2002, Nat. Clim. Chang., 7, 587–594, https://doi.org/10.1038/NCLIMATE3348, 2017.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Karimi, P., Bastiaanssen, W. G. M., Molden, D., and Cheema, M. J. M.:
Basin-wide water accounting based on remote sensing data: An application for
the Indus Basin, Hydrol. Earth Syst. Sci., 17, 2473–2486,
https://doi.org/10.5194/hess-17-2473-2013, 2013.
Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., and Jensen, K. H.: Combined effects of climate models, hydrological model structures and land use
scenarios on hydrological impacts of climate change, J. Hydrol., 535,
301–317, https://doi.org/10.1016/j.jhydrol.2016.01.069, 2016.
Katzenberger, A., Schewe, J., Pongratz, J., and Levermann, A.: Robust increase of Indian monsoon rainfall and its variability under future warming
in CMIP6 models, Earth Syst. Dynam., 12, 367–386,
https://doi.org/10.5194/esd-12-367-2021, 2021.
Koch, J., Demirel, M. C., and Stisen, S.: The SPAtial EFficiency metric
(SPAEF): Multiple-component evaluation of spatial patterns for optimization
of hydrological models, Geosci. Model Dev., 11, 1873–1886,
https://doi.org/10.5194/gmd-11-1873-2018, 2018.
Koch, J., Zhang, W., Martinsen, G., He, X., and Stisen, S.: Estimating Net
Irrigation Across the North China Plain Through Dual Modeling of
Evapotranspiration, Water Resour. Res., 56, e2020WR027413, https://doi.org/10.1029/2020WR027413, 2020.
Kragh, S.: Net irrigation, Indus and Ganges Basins, V1, GEUS Dataverse [data set], https://doi.org/10.22008/FK2/TCIJMI, 2023.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed
hydrologic model parameterization on water fluxes at multiple scales and
locations, Water Resour. Res., 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013.
Kushwaha, A. P., Tiwari, A. D., Dangar, S., Shah, H., Mahto, S. S., and Mishra, V.: Multimodel assessment of water budget in Indian sub-continental
river basins, J. Hydrol., 603, 126977, https://doi.org/10.1016/j.jhydrol.2021.126977,
2021.
Lawston, P. M., Santanello, J. A., and Kumar, S. V.: Irrigation Signals
Detected From SMAP Soil Moisture Retrievals, Geophys. Res. Lett., 44,
11860–11867, https://doi.org/10.1002/2017GL075733, 2017.
Logah, F. Y., Adjei, K. A., Obuobie, E., Gyamfi, C., and Odai, S. N.:
Evaluation and Comparison of Satellite Rainfall Products in the Black Volta
Basin, Environ. Process., 8, 119–137, https://doi.org/10.1007/s40710-020-00465-0, 2021.
Malakar, P., Mukherjee, A., Bhanja, S. N., Ganguly, A. R., Ray, R. K., Zahid, A., Sarkar, S., Saha, D., and Chattopadhyay, S.: Three decades of depth-dependent groundwater response to climate variability and human regime
in the transboundary Indus-Ganges-Brahmaputra-Meghna mega river basin aquifers, Adv. Water Resour., 149, 103856, https://doi.org/10.1016/j.advwatres.2021.103856, 2021.
Matott, L.: OSTRICH: An Optimization Software Tool, Documentation and User's Guide, Version 17.12.19, University at Buffalo, Center for Computational Research, Buffalo, NY, USA [code], http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html (last access: 10 April 2021), 2017.
Mishra, V., Ambika, A. K., Asoka, A., Aadhar, S., Buzan, J., Kumar, R., and
Huber, M.: Moist heat stress extremes in India enhanced by irrigation, Nat.
Geosci., 13, 722–728, https://doi.org/10.1038/s41561-020-00650-8, 2020.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Clim. Chang. Serv. Clim. Data Store [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates
of groundwater depletion in India, Nature, 460, 999–1002,
https://doi.org/10.1038/nature08238, 2009.
Romaguera, M., Salama, M. S., Krol, M. S., Hoekstra, A. Y., and Su, Z.: Towards the improvement of blue water evapotranspiration estimates by combining remote sensing and model simulation, Remote Sens., 6, 7026–7049, https://doi.org/10.3390/rs6087026, 2014.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523 https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N.,
Eisner, S., Müller Schmied, H., Sutanudjaja, E., Warrach-Sagi, K., and
Attinger, S.: Toward seamless hydrologic predictions across spatial scales,
Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017,
2017.
Samaniego, L., Brenner, J., Craven, J., Cuntz, M., Dalmasso, G., Demirel, M. C., Jing, M., Kaluza, M., Kumar, R., Langenberg, B., Mai, J., Müller, S.,
Musuuza, J., Prykhodko, V., Rakovec, O., Schäfer, D., Schneider, C.,
Schrön, M., Schüler, L., Schweppe, R., Shrestha, P. K., Spieler, D.,
Stisen, S., Thober, S., Zink, M., and Attinger, S.: mesoscale Hydrologic
Model – mHM v5.11.1, Zenodo [code], https://doi.org/10.5281/ZENODO.4462822, 2021.
Schwartz, F. W., Liu, G., and Yu, Z.: HESS Opinions: The myth of groundwater
sustainability in Asia, Hydrol. Earth Syst. Sci., 24, 489–500,
https://doi.org/10.5194/hess-24-489-2020, 2020.
Shah, D., Shah, H. L., Dave, H. M., and Mishra, V.: Contrasting influence of
human activities on agricultural and hydrological droughts in India, Sci.
Total Environ., 744, 144959, https://doi.org/10.1016/j.scitotenv.2021.144959, 2021.
Shah, H. L., Zhou, T., Sun, N., Huang, M., and Mishra, V.: Roles of Irrigation and Reservoir Operations in Modulating Terrestrial Water and
Energy Budgets in the Indian Subcontinental River Basins, J. Geophys. Res.-Atmos., 124, 12915–12936, https://doi.org/10.1029/2019JD031059, 2019a.
Shah, H. L., Zhou, T., Huang, M., and Mishra, V.: Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Basins, J. Geophys. Res.-Atmos., 124, 1449–1462,
https://doi.org/10.1029/2018JD029132, 2019b.
Shah, T., Singh, O. P., and Mukherji, A.: Some aspects of South Asia's
groundwater irrigation economy: Analyses from a survey in India, Pakistan,
Nepal Terai and Bangladesh, Hydrogeol. J., 14, 286–309,
https://doi.org/10.1007/s10040-005-0004-1, 2006.
Sharma, A. K., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Moger, H., Bandyopadhyay, S., and Corgne, S.: Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images,
Remote Sens., 13, 1960, https://doi.org/10.3390/rs13101960, 2021.
Sharma, B., Amarasinghe, U., Xueliang, C., de Condappa, D., Shah, T., Mukherji, A., Bharati, L., Ambili, G., Qureshi, A., Pant, D., Xenarios, S.,
Singh, R., and Smakhtin, V.: The indus and the ganges: River basins under
extreme pressure, Water Int., 35, 493–521, https://doi.org/10.1080/02508060.2010.512996, 2010.
Shekhar, S., Kumar, S., Densmore, A. L., van Dijk, W. M., Sinha, R., Kumar,
M., Joshi, S. K., Rai, S. P., and Kumar, D.: Modelling water levels of
northwestern India in response to improved irrigation use efficiency, Sci.
Rep., 10, 13452–13452, https://doi.org/10.1038/s41598-020-70416-0, 2020.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll,
P., and Portmann, F. T.: Groundwater use for irrigation - A global inventory,
Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010,
2010.
Siebert, S., Henrich, V., Frenken, K., and Burke, J.: Global Map of Irrigation Areas version 5. Rheinische Friedrich-Wilhelms-University, Bonn, Germany/Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm (last access: 1 January 2021), 2013.
Simons, G. W. H., Bastiaanssen, W. G. M., Cheema, M. J. M., Ahmad, B., and
Immerzeel, W. W.: A novel method to quantify consumed fractions and
non-consumptive use of irrigation water: Application to the indus Basin irrigation system of Pakistan, Agr. Water Manage., 236, 106174,
https://doi.org/10.1016/j.agwat.2020.106174, 2020.
Soni, A. and Syed, T. H.: Analysis of variations and controls of evapotranspiration over major Indian River Basins (1982–2014), Sci. Total
Environ., 754, 141892–141892, https://doi.org/10.1016/j.scitotenv.2020.141892, 2021.
Spinoni, J.: Global Precipitation Climatology Centre and Potential
Evapotranspiration Data from the Climate Research Unit of the University of
East Anglia (CRUTSv3.20), WAD3-JRC [data set], https://wad.jrc.ec.europa.eu/patternsaridity (last access: 1 May 2021), 2015.
Stisen, S., Soltani, M., Mendiguren, G., Langkilde, H., Garcia, M., and Koch,
J.: Spatial patterns in actual evapotranspiration climatologies for europe,
Remote Sens., 13, 2410, https://doi.org/10.3390/rs13122410, 2021.
Thiery, W., Visser, A. J., Fischer, E. M., Hauser, M., Hirsch, A. L., Lawrence, D. M., Lejeune, Q., Davin, E. L., and Seneviratne, S. I.: Warming of hot extremes alleviated by expanding irrigation, Nat. Commun., 11, 290, https://doi.org/10.1038/s41467-019-14075-4, 2020.
Thober, S., Cuntz, M., Kelbling, M., Kumar, R., Mai, J., and Samaniego, L.:
The multiscale routing model mRM v1.0: Simple river routing at resolutions
from 1 to 50 km, Geosci. Model Dev., 12, 2501–2521,
https://doi.org/10.5194/gmd-12-2501-2019, 2019.
Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., and Van Griensven, A.:
Can we trust remote sensing evapotranspiration products over Africa, Hydrol.
Earth Syst. Sci., 24, 1565–1586, https://doi.org/10.5194/hess-24-1565-2020, 2020.
Yang, Y. and Luo, Y.: Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of
northwest China, Theor. Appl. Climatol., 118, 429–445, https://doi.org/10.1007/s00704-013-1072-0, 2014.
Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., and
Brocca, L.: Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data, Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, 2019.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous
satellite-derived global record of land surface evapotranspiration from 1983
to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800, 2010.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zohaib, M. and Choi, M.: Satellite-based global-scale irrigation water use
and its contemporary trends, Sci. Total Environ., 714, 136719,
https://doi.org/10.1016/j.scitotenv.2020.136719, 2020.
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
This study investigates the precision of irrigation estimates from a global hotspot of...