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Abstract. Even though irrigation is the largest direct anthro-
pogenic interference in the natural terrestrial water cycle,
limited knowledge of the amount of water applied for irri-
gation exists. Quantification of irrigation via evapotranspira-
tion (ET) or soil moisture residuals between remote-sensing
models and hydrological models, with the latter acting as
baselines without the influence of irrigation, have success-
fully been applied in various regions. Here, we implement
a novel ensemble methodology to estimate the precision of
ET-based net irrigation quantification by combining differ-
ent ET and precipitation products in the Indus and Ganges
basins. A multi-model calibration of 15 models indepen-
dently calibrated to simulate rainfed ET was conducted be-
fore the irrigation quantification. Based on the ensemble av-
erage, the 2003–2013 net irrigation amounts to 233 mm yr−1

(74 km3 yr−1) and 101 mm yr−1 (67 km3 yr−1) in the Indus
and Ganges basins, respectively. Net irrigation in the Indus
Basin is evenly split between dry and wet periods, whereas
70 % of net irrigation occurs during the dry period in the
Ganges Basin. We found that, although annual ET from
remote-sensing models varied by 91.5 mm yr−1, net irriga-
tion precision was within 25 mm per season during the dry
period for the entire study area, which emphasizes the robust-
ness of the applied multi-model calibration approach. Net ir-
rigation variance was found to decrease as ET uncertainty de-
creased, which is related to the climatic conditions, i.e., high
uncertainty under arid conditions. A variance decomposition
analysis showed that ET uncertainty accounted for 73 % of
the overall net irrigation variance and that the influence of
precipitation uncertainty was seasonally dependent, i.e., with
an increase during the monsoon season. The results under-

line the robustness of the framework to support large-scale
sustainable water resource management of irrigated land.

1 Introduction

A total of 40 % of global irrigated cropland is sustained
by groundwater abstraction (Siebert et al., 2010); this has
caused regional groundwater levels to decline, as abstrac-
tion rates have exceeded the annual recharge (Ahmad et al.,
2021; Malakar et al., 2021; Rodell et al., 2009; Shekhar et al.,
2020). By 2050, global food production will have to increase
by 60 % to meet global food demand, and 90 % of this in-
crease in food production is projected to take place in devel-
oping countries (Alexandratos and Bruinsma, 2012). Thus,
water scarcity is likely to intensify and threaten the liveli-
hood of millions of people living in the affected areas as well
as global food security (Jain et al., 2021).

Despite this, our knowledge of the extent of irrigated areas
and irrigated water use is limited. In recent years, mapping
of irrigated areas from microwave and/or optical satellite data
has advanced (Bazzi et al., 2021; Dari et al., 2021; Lawston
et al., 2017; Sharma et al., 2021), and scientific advances
have aimed at estimating irrigation water use by isolating
satellite-based ET or soil moisture as a non-precipitation
source (Brocca et al., 2018; Jalilvand et al., 2019, 2021;
Koch et al., 2020; Zaussinger et al., 2019; Zohaib and Choi,
2020). Knowledge of irrigated water use is important for
correct modeling of the water balance (Shah et al., 2021,
2019a, b; Soni and Syed, 2021) and modeling of regional
climate, which can be significantly modulated by irrigation
(Mishra et al., 2020; Thiery et al., 2020). Ultimately, such
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improved knowledge will support policymakers with respect
to reaching valid and timely decisions on water management
(Schwartz et al., 2020).

Soil-moisture-based irrigation estimates have been found
to yield irrigation approximations with satisfactory accuracy
(Brocca et al., 2018; Dari et al., 2020; Zaussinger et al.,
2019). However, the advantages of using ET over soil mois-
ture are as follows: (1) ET is directly linked to plant transpi-
ration reacting to irrigation, whereas soil moisture produces
an indirect estimate, especially as many remote-sensing sys-
tems only penetrate the topsoil (a few centimeters); (2) the
spatial resolution of readily available ET datasets (e.g., de-
rived from optical and thermal MODIS data) is higher. In
contrast, the disadvantage of using ET to estimate irrigation
is as follows: the magnitude of the rainfed component of the
products can vary substantially, which can, in theory, lead
to diverging irrigation estimates when comparing across ET
products. Also, cloud cover is a limitation, as it can affect the
temporal resolution of the ET-based approach; we addressed
this by aggregating the original datasets into monthly esti-
mates. Similar to Koch et al. (2020), we used a hydrological
model calibrated for rainfed conditions to simulate a rainfed
baseline and, thus, accommodate for the differences between
ET products.

Less attention has been paid to quantifying the uncertainty
of ET-based irrigation estimates. Uncertainties can be ex-
pressed twofold: accuracy and precision. Accuracy captures
how close the estimates are to observations, whereas preci-
sion investigates how close or dispersed estimates are with
respect to each other. The accuracy of irrigation estimates
can only be assessed by observations, which are commonly
absent at the larger scale. In this study, we focus on precision,
which can be addressed using an ensemble approach, utiliz-
ing multiple models, i.e., with different hydrometeorological
datasets.

Although remote-sensing-based hydrometeorological data
have the advantage of high spatial coverage, the inherent un-
certainty in ET and precipitation products may arise from a
variety of potential errors (e.g., different revisit times from
satellite sensors and the model approach). The evaluation
of evapotranspiration products by the water balance ET and
Budyko ET approach in Africa and Europe have shown that
ET remote-sensing products may differ substantially when
comparing magnitude and/or spatial patterns (Stisen et al.,
2021; Weerasinghe et al., 2020). The evaluation of precipita-
tion products has, analogous to the ET products, shown that
large differences in magnitude and spatial patterns are evi-
dent. For example, Yang and Luo (2014) evaluated the per-
formance of three precipitation products over an arid region
in China and found that corrections were necessary as the
products yielded very different magnitudes and spatial pat-
terns. Logah et al. (2021) found that the precipitation prod-
ucts generally performed better during the dry period and that
the products had difficulties simulating high-intensity rainfall
in the Black Volta Basin.

The current study area covers the Indus and Ganges basins,
shared between more than a billion people in India, Pakistan,
Nepal, Bangladesh, China, and Afghanistan. Large govern-
ment investments in India in the 1960s have led the region,
and mainly the state of Punjab, to be the largest area heav-
ily equipped for irrigation at the global scale, through the
construction of the Indus Basin and Bhakra irrigation sys-
tems, providing food security beyond its borders (Sharma et
al., 2010). A rapidly growing population, combined with de-
creasing investment in irrigation infrastructure, has increased
unsustainable groundwater use and resulted in a regional de-
cline in the groundwater level (Rodell et al., 2009). A re-
gional survey indicated that irrigation from groundwater was
more widespread than first assumed, as only 5 % of surveyed
villages consider their agricultural practice to be totally rain-
fed (Shah et al., 2006).

This study applies, for the first time, an ensemble approach
to investigate the robustness of ET-based estimates of irri-
gation at a regional scale for a global hotspot of irrigation-
induced groundwater overexploitation. In this way, previous
work (Koch et al., 2020; Romaguera et al., 2014) is expanded
by using different ET and precipitation products to quan-
tify irrigation water use and precision of an ET-based frame-
work. The three main objectives of this paper are as follows:
(1) selecting and analyzing a suitable global ET and precipi-
tation dataset for irrigation quantification over the Indus and
Ganges basins, (2) building a hydrological model to simulate
rainfed ET at a 5 km spatial resolution via a state-of-the-art
calibration tool, and (3) evaluating the precision and influ-
ence of ET and precipitation uncertainties in the estimation
of irrigation.

2 Study area

The Indus and Ganges basins extend over an area of 2.2×
106 km2 (Fig. 1). The region can be subdivided into four
geographical regions: (1) the Himalayan mountains along
the northern boundary; (2) the Indo-Gangetic outwash plain;
(3) the Thar Desert separating the two basins; and (4) the
peninsular plateau south of the Indo-Gangetic Plain, char-
acterized by highlands, valleys, and rounded hills. The cli-
mate is monsoon dominated and varies from a tropical hu-
mid zone in the eastern Ganges Basin and along the moun-
tain range to an arid climate in the lower Indus Basin (see
Fig. 1). Most precipitation occurs from July to September
during the monsoon season and varies on average between
200 and 1200 mm yr−1 (2000–2019) across the basins.

Agriculture accounts for 70 % of land cover in the basins.
Summer rice and winter wheat rotation is the most common
cropping system in the Indo-Gangetic Plain, mixed with cot-
ton and sugarcane outside of the plain (Cai et al., 2010). Sum-
mer rice water requirements are generally met by precipita-
tion during the wet period (May–November), except in the
lower Indus Basin, which has precipitation rates of less than

Hydrol. Earth Syst. Sci., 27, 2463–2478, 2023 https://doi.org/10.5194/hess-27-2463-2023



S. J. Kragh et al.: The precision of satellite-based net irrigation quantification in the Indus and Ganges basins 2465

Figure 1. Map of climate zones from the Joint Research Center of the European Commission (Spinoni, 2015) and the area equipped for
irrigation as a percentage of the total area (Siebert et al., 2013). The inset shows the location of the Indus and Ganges basins and rivers.

50 mm per month, where extensive irrigation also takes place
during the monsoon months. However, winter wheat heavily
depends on irrigation across the entire region, as the average
precipitation rate is less than 25 mm per month during the dry
period (December–April).

3 Method and data

3.1 Hydrological model

This study applies the grid-based mesoscale Hydrological
Model (mHM; Kumar et al., 2013; Samaniego et al., 2010;
Thober et al., 2019), version 5.11.0 (Samaniego et al., 2021).
mHM uses a multiscale parameter regionalization technique
that links spatial distributions of model parameters at an
intermediate scale, representing hydrological processes, to
finer-scale variability in soil texture, topography, and vege-
tation via nonlinear transfer functions. The transfer functions
have a limited number of global parameters that enable ef-
ficient calibration (Samaniego et al., 2017, 2021). The hy-
drological models set up for this study used 10 km gridded
metrological forcing and 1 km morphological data, and they
were calibrated and executed at a 5 km spatial resolution to
simulate rainfed ET baselines, i.e., representing a purely rain-
fed hydrological system without the presence of irrigation.

For our model setup, actual ET is calculated by reducing
potential ET using the Feddes soil water stress factor (Feddes
et al., 1976) in combination with a root fraction distribution
over the defined number of soil layers. mHM offers an option
for dynamic downscaling of potential ET from the metro-
logical resolution to the model resolution by incorporating
vegetation dynamics from a monthly leaf area index (LAI)
climatology (Demirel et al., 2018). To set up mHM to simu-
late rainfed ET, Koch et al. (2020) modified the LAI clima-
tologies by removing the imprint of irrigation on vegetation
dynamics by substituting the original LAI climatologies in
irrigated areas with a mean LAI climatology from rainfed ar-
eas to simulate the rainfed ET baseline as a natural scenario.
In this study, we used the original LAI climatologies with-
out modifications to simulate the rainfed ET baselines under
a managed scenario, as modification of LAI climatologies to
natural conditions potentially overestimates net irrigation by
underestimating rainfed ET over irrigated areas.

In this study, different precipitation products were used as
forcing (as described in Sect. 3.3), the daily average air tem-
perature was acquired from ERA-Land, and potential ET was
calculated by using the FAO 56 Penman–Monteith equation
with ECMWF reanalysis fifth-generation – enhanced reso-
lution (ERA5-Land) variables (Muñoz Sabater, 2019). We
chose the FAO 56 Penman–Monteith (PM) equation based
on its documented ability to estimate potential ET used in
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irrigation management and comparative studies evaluating
FAO 56 PM against other potential ET estimation methods
(Allen et al., 1989; Jensen and Allen, 2016) The digital el-
evation model (DEM) was obtained from NASA’s Shuttle
Radar Topography Mission data (Jarvis et al., 2016). Soil
texture information was processed for six horizons from
the SoilGridsTM database and resampled to 1 km using the
mean function. LAI and land cover data were collected
from MODIS MCD15A2H.v006 and MCD12Q1.v006, re-
spectively.

3.2 Calibration and validation strategy

The calibration framework is designed to obtain hydrologi-
cal models that simulate baselines of rainfed ET. The hydro-
logical models used in this study were calibrated using the
Pareto archived dynamically dimensioned search (PADDS)
algorithm (Asadzadeh and Tolson, 2009) implemented in the
OSTRICH Optimization Software Toolkit (Matott, 2017).
The calibration was performed with 600 iterations and a per-
turbation size of 0.2. We calibrated 12 parameters that were
identified based on a prior sensitivity analysis perturbing 1
parameter at a time and recording the change in the objec-
tive function. The OSTRICH algorithm provides the modeler
with a Pareto front of dominant solutions, which enables the
modeler to select the solutions that mark the most acceptable
trade-off between multiple objective functions.

OSTRICH was used to minimize two objective functions
that address the magnitude and seasonal spatial pattern of
ET over rainfed cropland and naturally vegetated areas for
the calibration period from 2003 to 2007. First, the monthly
mean absolute error (MAE) is used to target the magnitude
of ET over rainfed cropland.

MAE=
∑n
i=1 |xi − yi |

n
, (1)

where xi and yi represent the respective observed and sim-
ulated ET at cell i, and n is the number of cells. MAE has
an optimal value of zero and varies from zero to positive in-
finity. Second, optimization of the spatial ET pattern was tar-
geted by applying the spatial efficiency (SPAEF) metric on
ET in rainfed cropland and naturally vegetated areas for the
mean dry and wet periods. SPAEF is a multicomponent bias-
insensitive spatial pattern metric that evaluates the ability of
the model to simulate the observed correlation, variance, and
histogram (Demirel et al., 2018; Koch et al., 2018).

SPAEF= 1−
√
(α− 1)2+ (β − 1)2+ (γ − 1)2, (2)

α = ρ(x,y) , β =

(
σx

µx

)
/

(
σy

µy

)
, and

γ =

∑n
j=1min(Kj ,Lj )∑n

j=1Kj
.

Here, x and y denote observed and simulated data, respec-
tively; α is the Pearson correlation coefficient; β is the spa-

tial variability, calculated as a fraction of observed and simu-
lated coefficient of variation; and γ is the agreement between
the observed (K) and simulated (L) histograms with n bins.
SPAEF has an optimal value of one and varies from one to
negative infinity. For OSTRICH to minimize the SPAEF ob-
jective function, we calculated the sum of squared residuals
for dry and wet periods. Model validation is split into a tem-
poral validation for each model based on observations from
2008 to 2012 and a spatial validation by transferring param-
eters calibrated against rainfed areas to irrigated areas using
an observational dataset that does not incorporate irrigation.

To select the best parametrizations after having obtained
the full Pareto front from OSTRICH, we normalized each
dominant solution in the Pareto front by the best performance
with respect to the MAE and SPAEF. The solution with the
lowest sum was then selected for each Pareto front as the best
parametrization. Because the ranges in the MAE are larger
than the ranges in the SPAEF, the MAE dimension was trun-
cated by the minimum dominant MAE plus 1 mm per month.

3.3 Evapotranspiration and precipitation data

We compared seasonal and annual differences and normal-
ized spatial patterns among 10 ET products and 8 precipita-
tion products to identify the most suitable datasets for our
modeling study. The precipitation data were used as forc-
ing to the developed hydrological models. The ET data were
used twofold: first, as a calibration target over the rainfed ar-
eas and, second, as a reference in the subsequent irrigation
quantification. An initial comparison revealed large differ-
ences across the ET products that coincided, to a large de-
gree, with climate zones. In contrast, differences were small
among precipitation products. The final selection of ET prod-
ucts was based on two criteria: (1) capturing dry-period irri-
gation resulting in high ET during the months (December–
April) and (2) realistic annual estimates (no references sev-
eral orders of magnitude higher or lower than annual pre-
cipitation) with reasonable inter-annual variation (no sudden
changes in mean annual ET, which can happen if the ref-
erence is a composite of other references). As relative dif-
ferences among precipitation products were small, the sole
criterion for selection was the spatial resolution, i.e., high-
resolution products (< 0.25◦) were favored. After the ini-
tial comparison of datasets, three ET and five precipitation
products (see Table 1) were selected to build 15 hydrologi-
cal models, each calibrated based on a unique combination
of the selected products.

The five selected precipitation inputs are (1) the Cli-
mate Hazards Group InfraRed Precipitation with Stations
(CHIRPS), (2) the fifth generation of the ECMWF reanal-
ysis with enhanced resolution (ERA5-Land), (3) the Multi-
Source Weighted-Ensemble Precipitation (MSWEP), (4) the
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks – Climate Data Record
(PERSIANN-CDR), and (5) the Tropical Rainfall Measuring
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Table 1. Characteristics of selected ET and precipitation products. The abbreviations used in the table are as follows: fifth generation of the
ECMWF reanalysis with enhanced resolution (ERA5-Land), Numerical Terradynamic Simulation Group (NTSG), Penman–Monteith and
Leuning (PML) v.2, Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP) v.2, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data Record
(PERSIANN-CDR), and Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis v.7.

Dataset Spatial Spatial Temporal Temporal Reference
resolution coverage resolution coverage

Evapotranspiration

ERA5-Land∗ 0.1◦ global daily 1981–now Muñoz Sabater (2019)
FLUXCOM 0.083◦ global 8 d 2001–2015 Jung et al. (2019)
NTSG 0.083◦ global daily 1982–2013 Zhang et al. (2010)
PML v.2 0.005◦ global 8 d 2002–2019 Zhang et al. (2019)

Precipitation

CHIRPS 0.05◦ 50◦ N–50◦ S daily 1981–now Funk et al. (2015)
ERA5-Land 0.1◦ global daily 1981–now Muñoz Sabater (2019)
MSWEP 0.1◦ global 3-hourly 1979–2017 Beck et al. (2019)
PERSIANN-CDR 0.25◦ 60◦ N–60◦ S 3-hourly 1983–now Ashouri et al. (2015)
TRMM 0.25◦ 50◦ N–50◦ S 3-hourly 1998–now Huffman et al. (2007)

∗ ERA5-Land ET is only used for validation of concept.

Figure 2. Regional climatologies and annual estimates of three evapotranspiration references (a, b) and five precipitation inputs (c, d) for the
entire study area. Climatologies are based on available data from 2000 to 2020.

Mission (TRMM) Multi-satellite Precipitation Analysis (Ta-
ble 1). CHIRPS uses reanalysis and satellite infrared data to
estimate precipitation and gauge observations for correction
(Funk et al., 2015). ERA5-Land is a high-spatial-resolution
land component of the global ERA5 climate reanalysis sys-
tem – a product driven by a large number of satellite and

gauge data (Muñoz Sabater, 2019). MSWEP is a synthe-
sis of different precipitation products that are merged using
gauge observations (Beck et al., 2019). PERSIANN-CDR is
a machine-learning product that uses satellite infrared data
and gauge observations for bias correction (Ashouri et al.,
2015). TRMM uses infrared and microwave satellite data to
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estimate precipitation and gauge observations for subsequent
correction (Huffman et al., 2007). Precipitation products are
very similar when comparing seasonal and annual variations
and showed one distinct peak during the summer monsoon
(Fig. 2c, d). However, relative differences of up to 40 % were
found between the annual precipitation rates in the arid cli-
mate zone in the lower Indus Basin.

The three selected ET products are FLUXCOM, Numeri-
cal Terradynamic Simulation Group (NTSG), and Penman–
Monteith–Leuning (Table 1). FLUXCOM is a machine-
learning product that combines energy balance observations
at flux towers with satellite data (Jung et al., 2019). NTSG
is a satellite- and reanalysis-driven product that combines
the Penman–Monteith and Priestley–Taylor models (Zhang
et al., 2010). PML is a satellite- and reanalysis-driven prod-
uct that is based on the Penman–Monteith and Leuning mod-
els (Zhang et al., 2019). All three products have the fact in
common that they, to a large degree, utilize thermal and op-
tical data from MODIS. The ET products were rather dif-
ferent with respect to their seasonal and annual variations
but were generally characterized by two distinct peaks: the
first in March and the second between July and Septem-
ber (Fig. 2a, b). The seasonal pattern is dominated by the
summer monsoon and influenced by extensive irrigation dur-
ing the dry period (December–April). The ET products were
more similar during the dry period compared with the wet
period, and relative differences were observed in annual ET
across the basins in the humid (20 %) and arid (50 %) cli-
mate zones. Besides seasonal patterns, annual estimates sug-
gest that ET and precipitation have increased since 2001
(Fig. 2b, d) which agrees with other studies (Jin and Wang,
2017; Katzenberger et al., 2021).

The selected products (Table 1) include different temporal
and spatial resolutions, and all products have been prepro-
cessed to the same spatiotemporal dimensions before model-
ing. The ET and precipitation products have been aggregated
by summation to monthly and daily scales, respectively. Fur-
ther, all ET products have been up- or downscaled to 5 km,
and precipitation data were resampled to 10 km spatial reso-
lution by bilinear interpolation.

3.4 Rainfed map

To calibrate the hydrological model against rainfed condi-
tions (cropland that are not under irrigation), we created a
map differentiating rainfed and irrigated cropland. The clas-
sification of cropland into rainfed and irrigated areas was
based on MODIS land cover and normalized difference veg-
etation index (NDVI) products (MODIS MCD12Q1.v006
and MOD13Q1.v006). We found inspiration from Dari et
al. (2021), who used results from a temporal stability anal-
ysis of satellite and modeled soil moisture in an unsuper-
vised K-means analysis to detect and map irrigated areas. In
our adopted approach, we used mean dry-period NDVI cli-
matologies (i.e., 5 months, December–April) in a temporal

Figure 3. Map showing the classification of rainfed cropland ap-
plied in the evapotranspiration calibration during the dry (red) and
wet (red and green) periods. The light gray signature delineates the
Indus and Ganges basins, and the dark gray signature shows irri-
gated cropland in both dry and wet periods. Green indicates crop-
land that is only irrigated in the dry period.

stability analysis. More precisely, we used the standard devi-
ation of the spatial anomalies and the temporal anomalies in
a 2D unsupervised K-means classification to identify three
clusters representing rainfed cropland, irrigated cropland,
and mixed; more information about the temporal analysis
components can be found in Dari et al. (2021). The assump-
tion is that NDVI of rainfed cropland can be characterized
by a high temporal stability and a low temporal anomaly in
the 5 selected months, and vice versa for irrigated cropland.
The classification was performed at the original MODIS res-
olution of 500 m and then upscaled to the model resolution,
i.e., 5 km. A threshold of 95 % was used to identify primarily
rainfed and irrigated pixels (to avoid a mixed rainfed and irri-
gated signal in the calibration); thus, a third class was added
to represent pixels that were mixed. The classification was
evaluated against the FAO Global Map of Irrigation Areas
(GMIA) v5.0 dataset (Siebert et al., 2013) on global areas
equipped for irrigation (Fig. 1) and showed overall consis-
tency. During the wet period, cropland classified as “humid”
according to the dryland classification by the Joint Research
Center of the European Commission (Spinoni, 2015) was as-
sumed to be rainfed cropland (Fig. 6e). The dry- and wet-
period rainfed maps (Fig. 3) were used to correct the rainfed
grids in the LAI climatologies, as described in Sect. 3.1.

3.5 Net irrigation estimation

Net irrigation is the amount of supplied irrigation that is lost
through ET; thus, it does not account for return flows of irri-
gation water that drain to nearby rivers or recharge to ground-
water. With that said, in complex irrigation systems like the
Indus, studies indicate that the irrigation system is adapted
to extensively reuse drainage water from irrigation (Simons
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et al., 2020). We assume that net irrigation can be quantified
as the difference between an ET reference (ET references re-
fer to different satellite products), obtained using methods
such as remote sensing, and a hydrological model acting as a
rainfed baseline (Koch et al., 2020). Net irrigation is quanti-
fied on a monthly timescale and at a 5 km spatial resolution
for the 15 ensemble members, which are based on combi-
nations of three ET and five precipitation products. We fur-
ther assume that, by calibrating the 15 hydrological models
against rainfed ET, we can simulate rainfed baselines for the
entire model area that match the unique combination of ET
and precipitation product. Our assumption is supported by
the strong parameter regionalization schemes incorporated
in mHM, which link model parameters to fully distributed
catchment characteristics. This will yield physically mean-
ingful parameter fields, which we believe are the foundation
to make robust predictions of a rainfed baseline ET, includ-
ing over irrigated areas. The magnitude of the ET products
varies substantially (Fig. 2), and we hypothesize that cali-
bration will enable the hydrological model to accommodate
this, resulting in hydrological models with different magni-
tudes of rainfed ET to match the differences in the reference
ET products. Uncertainties can be expressed as precision
and accuracy. Precision investigates the ensemble dispersion,
whereas accuracy is the closeness between estimates and ob-
servations. Thus, in the absence of observations, the accuracy
of our net irrigation estimate cannot be quantified. Neverthe-
less, we believe that analyzing the precision of irrigation esti-
mates is a valuable and novel contribution. We define net irri-
gation as the difference between ET as obtained from the ref-
erence products and the rainfed hydrological baseline model:

net irrigation= ETreference−ETbaseline. (3)

For rainfed areas, it is assumed that ETreference is equal to the
ETbaseline; thus, for irrigated areas, ETreference is expected to
exceed the ETbaseline, resulting in positive residuals (net irri-
gation). Negative residuals are a sign of an overestimation of
the rainfed hydrological model and are treated as zero irriga-
tion. If they occur, negative residuals can be related to uncer-
tainties in the precipitation forcing, the ET product used as
reference, or the hydrological baseline model itself.

3.6 Variance decomposition analysis

The model ensemble yielded 15 different net irrigation esti-
mates, and we applied a variance decomposition analysis to
investigate the sources of uncertainties in more detail. The
uncertainty contribution from the two investigated sources,
namely, the ET reference and precipitation on net irrigation,
was analyzed following the approach of Déqué et al. (2007).
This analysis quantifies the magnitude of net irrigation vari-
ance caused by the two uncertainty sources, thus ranking
the influence of ET and precipitation. The procedure of the
method is carried out in two steps. First, the variance con-
tribution from both uncertainty sources and interactions be-

tween sources is calculated; thus, the total variance is the sum
of all three variance contributions. Second, the variance term,
as a percentage of the total variance, is calculated for each
uncertainty source by summing the individual source vari-
ance and contributions from interactions and then dividing by
the total variance. The sum of the two variance terms is more
than the total variance, as the latter includes both the individ-
ual source variance and contributions from interactions be-
tween sources, but the magnitudes of the two variance terms
indicate the individual role of each uncertainty source in the
total variance (Déqué et al., 2007). The analysis was applied
to monthly net irrigation estimates for each climate zone. The
variance decomposition analysis has successfully been ap-
plied in a range of hydrological applications, for example, to
study the uncertainty contributions of the climate model and
hydrological model structure on climate change impact sim-
ulations (Karlsson et al., 2016). We acknowledge that this
does not represent a complete uncertainty analysis, but we
believe that the precipitation input and ET reference are the
most important components for irrigation quantification.

4 Results and discussion

4.1 Baseline models

The Pareto fronts based on the 15 calibrations conducted
(Fig. 4) show the trade-off between the two applied objec-
tive functions for rainfed ET, namely, MAE addressing the
magnitude of ET and SPAEF addressing the spatial pattern
performance. We tested different numbers of iterations and
perturbation sizes before the calibration; based on our find-
ings, we expect a higher number of iterations (more than 600)
to only marginally improve the trade-off around the optimal
solution but to primarily extend the tails of the Pareto fronts.
In general, the range in the MAE of the Pareto fronts is larger
than for SPAEF due to the assumption that model parame-
ters can easily change the ET magnitude, but the simulated
bias-insensitive spatial patterns are more realistic as a start-
ing point. This is because the simulated spatial patterns are,
to a large degree, linked to the spatial parameter fields which,
again, are tied to fully distributed catchment characteristics,
such as soil and vegetation variability. This will limit the
range of SPAEF and rule out very poor pattern performance.

Based on the Pareto fronts, the trade-off between the two
applied objective functions can be studied, and we selected
a single optimal parametrization for each of the 15 baseline
models using the approach described in Sect. 3.2. The MAE
of the 15 selected runs lies within a range of 13–17 mm per
month, and the SPAEF varies between 0.44 and 0.76 during
the dry period and between 0.60 and 0.85 during the wet pe-
riod. The baseline models calibrated against the NTSG ET
reference vary from the remaining models with an SPAEF
that ranges between 0.44 and 0.63 during the dry period and
between 0.70 and 0.74 during the wet period, thereby show-
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Figure 4. Calibration results for the 15 baseline models regarding the two defined objective functions: the MAE and SPAEF. The lines
represent the Pareto fronts, containing the dominant solutions, and the points of the selected parametrizations with the optimal trade-off
between objective functions. Point colors represent the three reference models and line colors represent the five precipitation inputs. The
color scheme is consistent with the legends in Fig. 2.

ing the poorest spatial pattern performance. This shortcom-
ing relates to the homogeneous pattern in the satellite-based
ET reference during the pre-monsoon period in April–May,
which the baseline models cannot simulate. A list of cali-
bration parameters and parameter bounds can be found in
the Supplement (Table S1). The baseline model that was cal-
ibrated against the ERA5-Land reference and uses ERA5-
Land precipitation is plotted as a 16th Pareto front in Fig. 4.
For this calibration, the climate input and calibration target
are obtained from the same modeling system and are, there-
fore, in good agreement. ERA5-Land does not directly in-
corporate irrigation and has, therefore, been used to validate
the spatial parameter transfer between rainfed and irrigated
areas. We calculated an MAE of 8.8 mm per month and an
SPAEF of 0.83 for ERA5-Land over irrigated areas with pa-
rameters calibrated over rainfed conditions. We consider the
high performance over irrigated areas to be a proof of con-
cept that our calibration approach can reproduce a rainfed
hydrological model. Rainfed ET bias time series and maps
for ERA5-Land can be seen in Fig. S1 in the Supplement.

The ensemble ET baselines vary by about 200 mm yr−1 –
between 265 and 461 mm yr−1 for the Indus Basin and be-
tween 473 and 674 mm yr−1 for the Ganges Basin – which
is the same total variability that is found across the ET refer-
ences that the baselines were calibrated against. This implies
that the ensemble baseline of rainfed ET is just as uncertain
as the ET references; however, the aim is not to simulate the
actual rainfed ET but to fine-tune each baseline hydrological
model to their satellite-based ET reference and, thereby, en-

able a subtraction of rainfed ET from irrigated areas. Thus,
a large range in ensemble baseline indicates that the calibra-
tion has served its purpose. Kushwaha et al. (2021) used an
ensemble of hydrological models and applied the Budyko ap-
proach to estimate ET across the Indian subcontinental river
basins; they found ET values in the Indus and Ganges basins
in the range of 246–369 and 511–622 mm yr−1, respectively.

The spatial patterns of the ET baselines are characterized
by high ET along the Himalayan mountains and a regional
east–west gradient matching the climatic zones (Fig. 5a, c).
This emphasizes that the baselines simulate rainfed ET ac-
cording to precipitation patterns (Fig. 5c, d). It becomes ob-
vious that the ERA5-Land reference (Fig. 5b) does not con-
sider the effect of irrigation on ET in the Indus and Ganges
basins, and we found that only minor parts of the crop-
land are classified as irrigated in the ERA5 reanalysis model
(ECMWF, 2018). As irrigation does not affect ERA5-Land,
the spatial patterns of the ERA5-Land baseline (simulated
by mHM) and ERA5-Land ET reference (Fig. 5a, b) are
expected to also match for irrigated areas. We calculated
the SPAEF between the ERA5-Land baseline and reference
ET for rainfed and irrigated cropland and found the SPAEF
for rainfed and irrigated cropland to be 0.79 and 0.88, re-
spectively, which means that the baseline and reference ET
match well in both rainfed and irrigated areas. We found that
the ERA5-Land baseline was able to reproduce the natural
precipitation-induced ET patterns in the irrigated areas but
showed minor elevated ET in the desert due to model uncer-
tainty.
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Figure 5. Average modeled baseline (a, c) and reference evapotranspiration (b, d) for February 2004. Both baseline models use ERA5-Land
precipitation input.

This underpins the validity of the method, i.e., that a hy-
drological model can be calibrated to reproduce rainfed ET
originating from an alternative reference. By comparing the
FLUXCOM baseline and reference (Fig. 5c, d), the ET base-
line magnitude is similar to the ET reference for rainfed ar-
eas and the spatial pattern resembles precipitation patterns.
Thus, the hydrological model can simulate a realistic rainfed
ET baseline. As ERA5-Land does not account for irrigation,
the product is not used in the ensemble estimates described
in Sect. 4.2.

4.2 Net irrigation ensemble estimates and precision

The analysis is based on an ensemble of 15 independent net
irrigation estimates (hereafter referred to as ensemble esti-
mates). The main finding of the analysis is that the stan-
dard deviation of the ensemble estimates is low in most
of the study area (Fig. 6b). Although the ensemble base-
lines, i.e., the simulated rainfed ET of the 15 models, dif-
fer by about 91.5 mm yr−1, the net irrigation precision is
44.7 mm yr−1 for the entire region. This indicates that the
magnitude of ET variation induced by irrigation within each
ET reference yields net irrigation estimates of comparable
magnitudes.

The ensemble estimates of the dry period (Fig. 6a) show
high net irrigation across the Indo-Gangetic Plain. As ex-
pected, net irrigation is largest in the northern Punjab re-
gion (Sharma et al., 2010), and a decrease from west to east

following the transition from arid to humid climatic zones
(Fig. 6e) can be observed. Dry-period ensemble estimate
precision is evenly distributed across all four climate zones
(Fig. 6b), illustrating the importance of calibration to obtain
comparable net irrigation magnitudes from references with
different ET magnitudes. The wet-period ensemble estimate
(Fig. 6c) shows high net irrigation in the arid zone, which we
did not expect. The precision is highly correlated in space
during the wet period, expressed by a cluster of low preci-
sion, i.e., high standard deviation, in the arid zone (Fig. 6d).
Based on further analysis, we relate this effect to the apparent
overestimation of FLUXCOM and PML ET references. Dur-
ing the wet season, these products show very limited spatial
variation in ET within the entire arid zone and are, thus, char-
acterized by a very high, uniform ET rate. Contrarily, NTSG
and the hydrological models show distinct spatial variations
within the arid zone that relate to variability in vegetation and
soil texture. Therefore, the ensemble precision is low in the
arid zone.

The temporal variation in the ensemble estimates and their
precision (Fig. 7) show that net irrigation estimates peak dur-
ing February–March in the entire region and that precision
is well defined at a monthly scale, except in the arid zone
during the wet period (Fig. 7a). The mean ensemble estimate
and precision in the Indus Basin are estimated to be 233.4±
80.5 mm yr−1 (74.4± 25.7 km3 yr−1) and the mean ensem-
ble estimate and precision in the Ganges Basin are estimated
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Figure 6. Mean ensemble net irrigation estimates (a, c) and ensemble standard deviation (b, d) for the dry period (a, b) and wet period (c, d).
(e) Dryland classification by the Joint Research Center of the European Commission (Spinoni, 2015), where red denotes arid, orange denotes
semiarid, yellow denotes dry, and green denotes humid; climate data can be seen in Fig. 1.

Table 2. Overview of ensemble net irrigation estimates and precision for the Indus and Ganges basins separately and aggregated as a region.
The wet-period net irrigation and precision are calculated according to dry-period irrigated cropland.

Total Total Wet- Dry- Yearly Yearly Wet- Dry-
irrigation irrigation period period precision precision period period

(mm yr−1) (km3 yr−1) irrigation irrigation (mm yr−1) (km3 yr−1) precision precision
(mm) (mm) (mm) (mm)

Indus 233.4 74.4 114.4 119.0 80.5 25.7 61.6 29.1
Ganges 101.4 66.7 30.6 70.8 27.2 17.9 12.1 23.5
Indus and Ganges 144.4 141.0 57.9 86.5 44.7 43.6 28.2 25.3

to be 101.4±27.2 mm yr−1 (66.7±17.9 km3 yr−1) (Table 2).
This highlights the higher intensity of irrigation in the Indus
Basin, as the total irrigation water use is about the same as
the Ganges Basin despite the substantially smaller cropland
area (Indus: 796.8× 106 ha; Ganges: 1643.4× 106 ha). Ag-
gregated seasonal ensemble estimates indicate that net irri-
gation in the Indus Basin is evenly split between the dry and
wet periods (51 % and 49 %, respectively), whereas 70 % of
net irrigation in the Ganges Basin occurs during the dry pe-
riod. The mean ensemble estimate and precision aggregated
for both the Indus and Ganges basins are estimated to be
144.4± 44.7 mm yr−1 (141.0± 43.6 km3 yr−1), resulting in
a precision of 31 % for the total irrigated water use. By com-
paring basin and regional ensemble estimates, the regional

estimate is influenced by the lower precision in the Indus
Basin during the wet period. Therefore, we want to highlight
a precision of 18 % (25.3 mm per season) in both basins dur-
ing the dry period (Table 2).

The mean monthly standard deviation was found to de-
pend on the climatic zones and decreased from 8 to 4 mm per
month during the dry period and from 12 to 5 mm per month
during the wet period as the aridity index increased, i.e., go-
ing from arid to humid climate. This overall increase in preci-
sion across the four climate zones (Fig. 7a–d) coincides with
a decrease in the ET reference uncertainty. Estimating ET
can be very difficult under extreme climatic conditions, such
as those experienced in arid zones, and is strongly dependent
on the modeling approach (Jung et al., 2019; Zhang et al.,
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Figure 7. Temporal ensemble net irrigation estimates and precision for each climate zone: (a) arid, (b) semiarid, (c) dry, and (d) humid. The
solid line indicates the mean monthly net irrigation, whereas the shaded envelope indicates the precision as ±1 SD (standard deviation). The
lower bar charts illustrate results from the variance decomposition analysis and show the degree to which evapotranspiration (ET, yellow)
and precipitation uncertainty (P , blue) explain the ensemble variance.

2019). This is also evident in our initial analysis of 10 differ-
ent reference models. A comparison of the seasonal coeffi-
cients of variation shows that the standard deviation is 37 %
of the mean net irrigation during the wet period and 27 % dur-
ing the dry period, which is consistent in both basins. Lower
precision during the wet period has been reported for irriga-
tion quantifications using alternative soil-moisture-based ap-
proaches (Jalilvand et al., 2019; Zohaib and Choi, 2020) and
results from less irrigation being used to supplement precip-
itation during the wet period, whereas irrigation largely re-
places precipitation during the dry period. Therefore, it can
be difficult to isolate the net irrigation signal from ET af-
fected primarily by precipitation during the wet period.

The uncertainty of the rainfed ensemble baselines is eval-
uated based on ET residuals over rainfed cropland that have
a mean error of 32.5 mm yr−1, corresponding to a 5.2 % er-
ror. This low bias implies that the baseline models were able
to reliably simulate rainfed ET that matches the ET refer-
ences and can be understood as a measure of accuracy under
the assumption that the simulation bias over rainfed crop-
land can be transferred to irrigated cropland. For irrigation
quantification for the North China Plain, Koch et al. (2020)
found that the accuracy was highest during the monsoon sea-
son due to energy-limiting conditions. We found the accu-
racy to be equally high in both wet and dry periods. We as-
sume that this is due to the skewed weight on wet-period

rainfed cropland during the calibration, as this area is much
larger than dry-period rainfed cropland (Fig. 3). The preci-
sion of the ensemble estimates (44.7 mm yr−1) can be at-
tributed to ET and precipitation uncertainties, whereas the
accuracy (32.5 mm yr−1) can be attributed to uncertainties
originating from the hydrological model, ET references, and
precipitation uncertainties. This implies that the precision
and accuracy are not independent in our case and that the
total variance is not simply the sum of the two.

The comparison of irrigation estimates can be challenging,
as notions might cover different aspects like irrigation wa-
ter withdrawal, irrigation water requirement, or net irrigation
as the ET loss to the atmosphere. Simons et al. (2020) used
remote-sensing data and the Budyko framework to quan-
tify irrigation water use and found consumed fractions to
be 0.71–0.93 in the Indus Basin irrigation system of Pak-
istan due to the substantial reuse of unconsumed water. Our
estimates could therefore potentially underestimate irriga-
tion water use by 10 %–30 % within Pakistan. The consumed
fractions were based on actual ET estimates from the op-
erational Simplified Surface Energy Balance (SSEBop) v4
model that we had to reject due to a significantly higher
yearly actual ET. Our pre-analysis of SSEBop could poten-
tially explain why our irrigation estimates are several hun-
dred millimeters lower than the 707 mm yr−1. Overestima-
tion of the actual ET and potential ET within the Budyko
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framework could yield higher irrigation water use and un-
derestimate the consumed fractions. However, we acknowl-
edge that our framework cannot account for the total irri-
gated water use. Karimi et al. (2013) used a water account-
ing framework (WA+) to track water within the Indus Basin
for the year 2007 and found ET from utilized water flows
to amount to 157 km3, which is higher than our estimate of
74.4± 25.7 km3 yr−1. In Karimi et al. (2013) the yearly ac-
tual ET is also several hundreds of millimeters higher than
the three ET references used in our study. Water statistics
from the AQUASTAT database estimated a yearly irriga-
tion water requirement in Pakistan (126 km3 yr−1) and In-
dia (370 km3 yr−1). The estimates are based on climatic con-
ditions and crop physiological processes and encompass all
water to meet crop water requirements, water for flooding of
paddy fields, water for land preparation, etc. (Frenken and
Gillet, 2012). Based on the assumption that the yearly irriga-
tion water requirement estimated by AQUASTAT is true, our
net irrigation estimates suggest that about 31 % of the total ir-
rigation water requirement for the entire Indian subcontinent
is lost through ET in the Indus and Ganges basins.

We found the difference, due to irrigation in cropland, be-
tween the baseline and reference ET to be 55 % and 14 %
in the Indus and Ganges basins, respectively. However, a
55 % increase might be an overestimation that arises from
the FLUXCOM and PML references. If only considering the
NTSG baseline and reference ET, the change in the Indus
Basin is found to be 37 %, which seems to be more appropri-
ate. Shah et al. (2019b) used a soil moisture deficit approach
and estimated a percent change in ET between a natural and
irrigated scenario modeled with the Variable Infiltration Ca-
pacity model. They found an annual ET increase of 47 % and
12 % in the respective Indus and Ganges basins from 1951
to 2012 because of irrigation activities. The mismatch com-
pared with our reported figures could result from their irri-
gation timing being off, thereby allowing irrigation to occur
in between harvest and sowing when the fields are fallow;
however, overall, there is a good match of results. Shah et
al. (2019a) incorporated reservoirs and irrigation water de-
mand into the model framework from Shah et al. (2019b)
and found that ET increased by about 16.1 % and 15.7 % in
the Indus and Ganges basins, respectively. Our results com-
pare well with this estimate for the Ganges Basin. In both
studies (Shah et al., 2019a, b), the natural model seems to
be calibrated against data that could potentially be influ-
enced by irrigation, like irrigation water demand (only Shah
et al., 2019a) and streamflow, which could underestimate ET
in a managed scenario.

4.3 Influence on ensemble precision

The main finding of our variance decomposition analysis is
a strong ET control on ensemble estimate variance. ET ac-
counts for 73 % of the ensemble estimate precision across the
basins, and the influence of precipitation is observed to in-

crease in more humid climate zones (blue and yellow bars in
Fig. 7). However, the contribution of precipitation becomes
more prominent in the monsoon season from July to Septem-
ber and around March (Fig. 7) and, thus, tends to follow the
precipitation climatology (Fig. 2c).

The ET reference and any related uncertainties affect the
baseline ET estimates through the calibration, and the net ir-
rigation estimation (as the baseline ET) is subtracted from
the reference ET. On the other hand, precipitation uncertainty
only affects the baseline ET models. Therefore, the refer-
ence ET directly affects the net irrigation estimates, whereas
precipitation uncertainty acts indirectly as it is propagated
through the hydrological model to impact the baseline ET.
Furthermore, precipitation uncertainty between irrigated and
rainfed cropland is likely similar, whereas uncertainty be-
tween irrigated and rainfed ET may vary in the reference ET
products.

Thus, it is difficult to conclude whether the influence
of precipitation increases because of the uncertainty or in-
creases because the ET uncertainty decreases. The fact that
the influence of precipitation tends to follow the seasonal
variation in precipitation emphasizes that ET residuals are
more difficult to extract during high precipitation (Koch et
al., 2020). In the arid zone, the influence of ET is higher
during the wet period, which is due to the high ET uncer-
tainty and potential errors in FLUXCOM and PML products.
The ET uncertainty seems to overrule the high precipitation
uncertainty in the arid zone, even though ERA5-Land and
MSWEP precipitation inputs are about 40 % lower than the
other precipitation inputs.

5 Conclusion

This study focuses on an ET-based approach to estimate ir-
rigation water use for the Indus and Ganges basins, a global
hotspot of unsustainable irrigation practices. We investigated
the influence of different ET reference models and precipita-
tion inputs on the precision of irrigation estimates by analyz-
ing an ensemble of 15 net irrigation estimates. We showed
that isolating the irrigation component through ET residuals
of rainfed ET baselines and reference ET models yields high-
precision estimates of net irrigation.

The main findings of this work are as follows:

– We estimated net irrigation of the Indus and Ganges
basins to be 144.4± 44.7 mm yr−1, of which about half
of the irrigation takes place in the Indus Basin, despite
the fact that the Indus Basin accounts for only 35 % of
the irrigated cropland areas.

– We found that, even though ET varied by 91.5 mm yr−1

between reference ET products, the precision of net ir-
rigation was just 25.3 mm per season during the dry pe-
riod.

Hydrol. Earth Syst. Sci., 27, 2463–2478, 2023 https://doi.org/10.5194/hess-27-2463-2023



S. J. Kragh et al.: The precision of satellite-based net irrigation quantification in the Indus and Ganges basins 2475

– We found that net irrigation precision increased as ref-
erence ET uncertainty decreased, which was related to
the climatic conditions of the area.

– We found that ET accounted for 73 % of net irrigation
variance and that the influence of precipitation uncer-
tainty was highest during the monsoon season from July
to September.

We emphasize the strength of model calibration to compen-
sate for ET biases to create robust net irrigation estimates. As
large differences in seasonal and annual rainfed ET may be
evident between reference models, the magnitude of ET vari-
ation induced by irrigation within each ET reference yields
net irrigation estimates of comparable magnitudes. There-
fore, it is essential to calibrate and fine-tune each baseline
model to a reference rainfed baseline to extract net irrigation.
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