Articles | Volume 27, issue 12
https://doi.org/10.5194/hess-27-2283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow data assimilation for seasonal streamflow supply prediction in mountainous basins
Sammy Metref
CORRESPONDING AUTHOR
Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Grenoble, France
Datlas, Grenoble, France
Emmanuel Cosme
Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Grenoble, France
Matthieu Le Lay
Électricité de France – Division Technique Générale, Saint-Martin-le-Vinoux, France
Joël Gailhard
Électricité de France – Division Technique Générale, Saint-Martin-le-Vinoux, France
Related authors
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024, https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Short summary
This study contributes to the development of methods to estimate targeted ocean ecosystem indicators, including their uncertainty, in the framework of the Copernicus Marine Service. A simplified approach is introduced to perform a 4D ensemble analysis and forecast, directly targeting selected biogeochemical variables and indicators (phenology, trophic efficiency, downward flux of organic matter). Care is taken to present the methods and discuss the reliability of the solution proposed.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021, https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
Short summary
In the mountains, the combination of large model error and observation sparseness is a challenge for data assimilation. Here, we develop two variants of the particle filter (PF) in order to propagate the information content of observations into unobserved areas. By adjusting observation errors or exploiting background correlation patterns, we demonstrate the potential for partial observations of snow depth and surface reflectance to improve model accuracy with the PF in an idealised setting.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Cited articles
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow
observations into a macroscale hydrology model, Adv. Water Resour., 29,
872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. a
Bontron, G.: Prévision quantitative des précipitations: Adaptation
probabilitste par recherche d'analogues. Utilisation des Réanalyses NCEP/NCAR et application aux précipitations du Sud-Est de la France,
Theses, INPG – Institut National Polytechnique Grenoble,
https://tel.archives-ouvertes.fr/tel-01090969 (last access: 15 June 2023), 2004. a
Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and
temporal variability in seasonal snow density, J. Hydrol., 484, 63–73,
https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013. a
Charrois, L., Cosme, E., Dumont, M., Lafaysse, M., Morin, S., Libois, Q., and
Picard, G.: On the assimilation of optical reflectances and snow depth
observations into a detailed snowpack model, The Cryosphere, 10, 1021–1038,
https://doi.org/10.5194/tc-10-1021-2016, 2016. a
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J.,
Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area
information into hydrologic and land-surface models, Adv. Water Resour., 29,
1209–1221, 2006. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater,
A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with
the ensemble Kalman filter: Use of streamflow observations to update states
in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324,
https://doi.org/10.1016/j.advwatres.2008.06.005, 2008. a
DeChant, C. M. and Moradkhani, H.: Improving the characterization of initial
condition for ensemble streamflow prediction using data assimilation, Hydrol. Earth Syst. Sci., 15, 3399–3410, https://doi.org/10.5194/hess-15-3399-2011, 2011. a
Dumedah, G. and Coulibaly, P.: Evaluating forecasting performance for data
assimilation methods: The ensemble Kalman filter, the particle filter, and
the evolutionary-based assimilation, Adv. Water Resour., 60, 47–63,
https://doi.org/10.1016/j.advwatres.2013.07.007, 2013. a
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003. a
Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Page,
M. L., and Escadafal, R.: Snow hydrology in Mediterranean mountain regions: A
review, J. Hydrol., 551, 374–396, https://doi.org/10.1016/j.jhydrol.2017.05.063, 2017. a
Garavaglia, F., Le Lay, M., Gottardi, F., Garçon, R., Gailhard, J., Paquet, E., and Mathevet, T.: Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach, Hydrol. Earth Syst. Sci., 21, 3937–3952, https://doi.org/10.5194/hess-21-3937-2017, 2017. a, b, c, d, e
Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, in: IEE PROC-F, vol. 140,
IET, 107–113, https://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015 (last access: 15 June 2023), 1993. a
Gottardi, F., Obled, C., Gailhard, J., and Paquet, E.: Statistical reanalysis
of precipitation fields based on ground network data and weather patterns:
Application over French mountains, J. Hydrol., 432-433, 154–167,
https://doi.org/10.1016/j.jhydrol.2012.02.014, 2012. a
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: MODIS snow and sea ice
products, Earth Science Satellite Remote Sensing: Vol. 1: Science and
Instruments, Springer, Berlin, Heidelberg, 154–181, https://doi.org/10.1007/978-3-540-37293-6_9, 2006. a
Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for
Ensemble Prediction Systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a
Kitagawa, G.: Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models, J. Comput. Graph. Stat., 5, 1–25,
https://doi.org/10.1080/10618600.1996.10474692, 1996. a
Kodama, M., Nakai, K., Kawasaki, S., and Wada, M.: An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent, J. Hydrol., 41, 85–92, https://doi.org/10.1016/0022-1694(79)90107-0, 1979. a, b
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S.,
Cosme, E., Jonas, T., Winstral, A., and Margulis, S. A.: Toward snow cover
estimation in mountainous areas using modern data assimilation methods: a
review, Front. Earth. Sci., 8, 325, https://doi.org/10.3389/feart.2020.00325, 2020. a
Leisenring, M. and Moradkhani, H.: Snow water equivalent prediction using
Bayesian data assimilation methods, Stoch. Environ. Res. Rist A., 25, 253–270, 2011. a
Li, H., Luo, L., Wood, E. F., and Schaake, J.: The role of initial conditions
and forcing uncertainties in seasonal hydrologic forecasting, J. Geophys. Res.-Atmos., 114, D010969, https://doi.org/10.1029/2008JD010969, 2009. a
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, J.
Glaciol., 44, 498–516, 1998. a
Luce, C. H., Lopez-Burgos, V., and Holden, Z.: Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models, Water Resour. Res., 50, 9447–9462, https://doi.org/10.1002/2013WR014844, 2014. a
Magnusson, J., Gustafsson, D., Hüsler, F., and Jonas, T.: Assimilation of
point SWE data into a distributed snow cover model comparing two contrasting
methods, Water Resour. Res., 50, 7816–7835, 2014. a
Masson, T., Dumont, M., Mura, M. D., Sirguey, P., Gascoin, S., Dedieu, J.-P.,
and Chanussot, J.: An assessment of existing methodologies to retrieve snow
cover fraction from MODIS data, Remote Sens.-Basel, 10, 619, https://doi.org/10.3390/rs10040619, 2018. a
Nossent, J., Elsen, P., and Bauwens, W.: Sobol’sensitivity analysis of a
complex environmental model, Environ. Model. Softw., 26, 1515–1525, 2011. a
Pan, M., Sheffield, J., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake,
J. C., Robock, A., Lohmann, D., Cosgrove, B., Duan, Q., et al.: Snow process
modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent, J. Geophys. Res.-Atmos., 108, 8850, https://doi.org/10.1029/2003JD003994, 2003.
a
Paquet, E. and Laval, M.-T.: Operation feedback and prospects of EDF Cosmic-Ray Snow Sensors, La Houille Blanche, 92, 113–119, https://doi.org/10.1051/lhb:200602015, 2006. a, b
Piazzi, G., Thirel, G., Campo, L., and Gabellani, S.: A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment, The Cryosphere, 12, 2287–2306,
https://doi.org/10.5194/tc-12-2287-2018, 2018. a, b, c
Piazzi, G., Campo, L., Gabellani, S., Castelli, F., Cremonese, E., di Cella,
U. M., Stevenin, H., and Ratto, S. M.: An EnKF-based scheme for snow
multivariable data assimilation at an Alpine site, J. Hyrol. Hydromech., 67,
4–19, 2019. a
Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O.: Sequential data
assimilation for streamflow forecasting: assessing the sensitivity to
uncertainties and updated variables of a conceptual hydrological model at
basin scale, Water Resour. Res., 57, R028390, https://doi.org/10.1029/2020WR028390, 2021. a, b, c
Rouhier, L., Le Lay, M., Garavaglia, F., Le Moine, N., Hendrickx, F.,
Monteil, C., and Ribstein, P.: Impact of mesoscale spatial variability of
climatic inputs and parameters on the hydrological response, J. Hydrol., 553,
13–25, https://doi.org/10.1016/j.jhydrol.2017.07.037, 2017. a
Slater, A. G. and Clark, M. P.: Snow data assimilation via an ensemble Kalman
filter, J. Hydrometeorol., 7, 478–493, 2006. a
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to
high-dimensional particle filtering, Mon. Weather Rev., 136, 4629–4640, 2008. a
Sobol', I. M.: On sensitivity estimation for nonlinear mathematical models,
Matematicheskoe Modelirovanie, 2, 112–118, 1990. a
Su, H., Yang, Z.-L., Niu, G.-Y., and Dickinson, R. E.: Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter, J. Geophys. Res.-Atmos., 113, D08120, https://doi.org/10.1029/2007JD009232, 2008. a
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B.,
Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., López-Moreno,
J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and
recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471–504, https://doi.org/10.5194/hess-15-471-2011, 2011. a
Weerts, A. H. and El Serafy, G. Y.: Particle filtering and ensemble Kalman
filtering for state updating with hydrological conceptual rainfall-runoff
models, Water Resour. Res., 42, W09403, https://doi.org/10.1029/2005WR004093, 2006. a
Short summary
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to anticipating the operation of hydroelectric dams and avoiding hydrology-related hazard. This quantity partly depends on the snowpack accumulated during winter. The study addresses this prediction problem using information from streamflow data and both direct and indirect snow measurements. In this study, the prediction is improved by integrating the data information into a basin-scale hydrological model.
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to...