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Abstract. Accurately predicting the seasonal streamflow
supply (SSS), i.e., the inflow into a reservoir accumulated
during the snowmelt season (April to August), is critical to
operating hydroelectric dams and avoiding hydrology-related
hazard. Such forecasts generally involve numerical models
that simulate the hydrological evolution of a basin. The oper-
ational department of the French electric company Electricité
de France (EDF) implements a semi-distributed model and
has carried out such forecasts for several decades on about 50
basins. However, both scarce observation data and oversim-
plified physics representation may lead to significant fore-
cast errors. Data assimilation has been shown to be benefi-
cial for improving predictions in various hydrological appli-
cations, yet very few have addressed the seasonal streamflow
supply prediction problem. More specifically, the assimila-
tion of snow observations, though available in various forms,
has been rarely studied, despite the possible sensitivity of
the streamflow supply to snow stock. This is the goal of the
present paper. In three mountainous basins, a series of four
ensemble data assimilation experiments – assimilating (i) the
streamflow (Q) alone, (ii)Q and fractional snow cover (FSC)
data, (iii) Q and local cosmic ray snow sensor (CRS) data
and (iv) all the data combined – is compared to the clima-
tologic ensemble and an ensemble of free simulations. The
experiments compare the accuracy of the estimated stream-
flows during the reanalysis (or assimilation) period Septem-
ber to March, during the forecast period April to August, and
the SSS estimation. The results show thatQ assimilation no-
tably improves streamflow estimations during both reanaly-
sis and the forecast period. Also, the additional combination

of CRS and FSC data to the assimilation further ameliorates
the SSS prediction in two of the three basins. In the last basin,
the experiments highlight a poor representativity of the CRS
observations during some years and reveal the need for an
enhanced observation system.

1 Introduction

Accurately predicting the seasonal streamflow supply (SSS),
i.e., the inflow into a reservoir accumulated during the
snowmelt season (April to August), is critical to operat-
ing hydroelectric dams and avoiding hydrology-related haz-
ard. Hence, the operational department of the French elec-
tric company Electricité de France (EDF) has been carrying
out such forecasts for several decades for nearly 50 basins.
However, in mountainous basins, the confidence provided
by long-term hydrological forecast is affected by the uncer-
tainty in the meteorological forcings (Li et al., 2009; Bor-
mann et al., 2013; Luce et al., 2014) and the inaccurately sim-
ulated snowpack (Liston and Sturm, 1998; Pan et al., 2003).
Acknowledging that the SSS partly depends on the snowpack
accumulated during winter, the growing number of satellite
observations of snow-related quantities and in situ snow mea-
surements may open the way to improving the SSS predic-
tions in mountainous basins.

Some studies suggest that controlling the snowpack evo-
lution using observations can significantly ameliorate short-
and long-term streamflow forecasts (Viviroli et al., 2011;
Fayad et al., 2017). In the present paper, a sensitivity exper-
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iment is conducted to highlight how the uncertainties prop-
agate within a hydrological system. The Sobol indices are
computed for each of the model variables, indicating the im-
pact that the uncertainty of these variables has on the uncer-
tainty of the streamflow at the outlet. This experiment inves-
tigates whether a better representation of the snowpack could
result in a significant gain in SSS estimation.

Data assimilation techniques are often used to help control
and refine hydrological systems (see Largeron et al., 2020,
for a detailed review). Several studies have successfully as-
similated snow water equivalent (SWE) data but mostly in
local models, i.e., models describing the snow dynamics at
a specific site and not the hydrological system of an entire
basin. Indeed, SWE measurements, especially from ground-
based cosmic ray sensor (CRS; Kodama et al., 1979; Paquet
and Laval, 2006) instruments, provide very local information
which can be used to improve a local model at a specific site
(e.g., Piazzi et al., 2018, at three Alpine sites). Assimilating
CRS data in a basin-scale model as is can lead to represen-
tativity errors (where the SWE measured by a CRS does not
correspond to any relevant global SWE model), thus deteri-
orating the system estimation. To circumvent this issue, an
alternative approach to consider CRS data in a basin-scale
model is discussed in Sect. 4.3, used throughout the follow-
ing experiments, and shows promising results.

Multiple studies have implemented ensemble-based data
assimilation schemes, such as the ensemble Kalman filter
(EnKF, Evensen, 2003), of direct or indirect snow observa-
tions (Andreadis and Lettenmaier, 2006; Clark et al., 2006;
Slater and Clark, 2006; Su et al., 2008; Magnusson et al.,
2014; Piazzi et al., 2019, 2021). However, the nonlinear na-
ture of these snow-related observations and the complex-
ity to control a hydrological system with indirect informa-
tion seem to favor the use of a more nonlinear and non-
Gaussian data assimilation method, especially when aiming
at long lead-time prediction improvements (Dumedah and
Coulibaly, 2013). One data assimilation method in particu-
lar, the particle filter (PF, Van Leeuwen, 2009), is known for
its ability to handle highly nonlinear systems containing non-
Gaussian probabilities. The PF implements Bayes’ theorem
by describing the probability density functions as a sum of
Dirac functions from an ensemble of simulations (particles)
and without any additional hypothesis. Therefore, under the
assumption of a sufficiently large ensemble of particles, the
PF provides the optimal solution of any inverse problem. In
hydrological applications, DeChant and Moradkhani (2011)
managed to improve SWE and discharge forecast using mi-
crowave radiance assimilation with a PF. Also, Leisenring
and Moradkhani (2011) showed in a synthetic experiment
comparing an EnKF and a PF that the assimilation of SWE
data with a PF improved seasonal predictions. The work of
Charrois et al. (2016) has shown the good performance of
the PF for the assimilation of optical reflectivity and snow
depths, and Piazzi et al. (2018) successfully used a PF for
SWE data assimilation in mountainous regions. Finally, Pi-

azzi et al. (2021) concluded that PF assimilation outperforms
an EnKF assimilation by generating longer-lasting predic-
tions.

The relevance of using local snow observations is an open
question though. How much is the SSS prediction sensitive to
the snowpack? Do the snow observations contain the neces-
sary information to estimate the snowpack accurately enough
to impact the quality of predictions? To answer these ques-
tions, the present paper assesses the potential of using local
snow observations in a seasonal forecast procedure to im-
prove the streamflow supply prediction at the outlet of moun-
tain basins. This is addressed by implementing real data as-
similation experiments.

The experiments performed in the present article are based
on the MORDOR-SD model (Garavaglia et al., 2017), the
semi-distributed version of the original MORDOR model,
used by EDF for many years. The experiments have been
deployed on three French mountainous basins. Three types
of observations are available in these basins: the observed
streamflow at the outlet Q, CRS data and fractional snow
cover (FSC, Masson et al., 2018), provided by the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite.
Each year, an assimilation of the available data is performed
from September to March of the following year. Through-
out the paper, this time period is called the reanalysis (or as-
similation) period. A free forecast is then run from April to
August. This time period is called the forecast period. The
performance of the assimilation is evaluated during both the
reanalysis and the forecast period.

The paper is structured as follows: a description of the
model and observations used in the study, i.e., the numer-
ical model, the three hydrological basins and the available
observations (Sect. 2), a study of the sensitivity of the sys-
tem (Sect. 3), the description of the experimental protocol
(Sect. 4) and the assimilation results (Sect. 5). A summary
and conclusions are given in Sect. 6.

2 Model and observations

2.1 MORDOR-SD model

For many years, EDF teams have been using a hydrologi-
cal box model: the MORDOR model. In this study, we use
the semi-distributed MORDOR-SD model (Garavaglia et al.,
2017), which is an improvement on the original MORDOR
that includes a spatial discretization scheme. MORDOR-SD
is based on a succession of hydrological components: the po-
tential evaporation is determined by an evaporation function
(depending on air temperature), the surface storage U (mod-
eling a rainfall excess and soil moisture accounting storage)
impacts the evaporation and the direct runoff, the capillar-
ity storage Z is fed by indirect runoffs and also impacts the
evaporation, the hillslope storage L separates direct and in-
direct runoffs, the rest feeds the deep storageN that provides
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the baseflow component and, lastly, a snow stock S is accu-
mulating or melting based on an improved degree-day for-
mulation. More specifically, the snow model is derived from
a classical degree-day scheme, with a few important addi-
tional processes: (i) a cold content able to dynamically con-
trol the melting phase; (ii) a liquid water content in the snow-
pack; (iii) a groundmelt component and (iv) a variable melt-
ing coefficient, depending on the potential radiation assumed
to model the changing albedo effect throughout the melting
season. The accumulation phase is controlled by the discrim-
ination of the liquid and solid fractions of the precipitations.
Finally, the total runoff Q is then determined with a unit hy-
drograph.

The discretization scheme of MORDOR-SD is based on
an elevation band approach adapted for mountain hydrology.
Classically, the number of elevation bands is optimized de-
pending on the hypsometric curve of the basin according to
the following criteria: (i) the relative area of each elevation
band has to be greater than or equal to 5 % and less than or
equal to 50 %, and (ii) the elevation range of each zone has
to be lower than 350 m.

In most MORDOR-SD applications, the spatial variabil-
ity of meteorological forcing is summarized by two oro-
graphic gradients: gpz (%× 1000 m−1) for precipitation and
gtz (◦C× 100 m−1) for temperature (see Appendix 2 of Gar-
avaglia et al., 2017). In this way, we assume that, in moun-
tainous areas, spatial variability is primarily determined by
elevation.

In our configuration, the MORDOR-SD model has
five state variables in each elevation band: four storage water
levels (U , L, Z and S) and the snowpack bulk temperature
(TST). The model has one global variable N representing
the deep storage water level. The number of free parameters
ranges from 10 to 12 depending on the basin-specific cali-
bration strategy. See Garavaglia et al. (2017) for a thorough
description of MORDOR-SD components and flows.

In addition to the state variables, the MORDOR-SD model
depends on two atmospheric forcings: temperature T and
precipitation P . Both forcings result from a statistical re-
analysis based on ground network data and weather patterns
(Gottardi et al., 2012). The MORDOR-SD model is pre-
scribed with the spatial average of these forcing data over
the basin and are given at daily time steps. As discussed
previously, the model modifies the impact of the forcings at
the different elevations using two orographic gradients. The
orographic gradients are constants prescribed to the model
(gpz= 21 %, 39 % and 28 %× 1000 m−1 and gtz=−0.75,
−0.60 and −0.57 ◦C× 100 m−1, respectively, for the three
basins studied in this paper and described in the next section:
the Verdon, Naguilhes and Guil basins). In the rest of the
work presented here, these gradients will not be discussed
further; however, these vertical gradients might represent a
significant source of uncertainty, and their impact should be
investigated in future works.

Figure 1. Time series of the forcings: precipitation P (a) and tem-
perature T (b) during the years 2001–2002 in the Verdon basin. The
deterministic forcings are represented in blue, and the correspond-
ing perturbed 50 ensemble members are plotted in gray curves.

In the following experiments, first-order stochastic autore-
gressive (AR1) processes are used to perturbed the atmo-
spheric forcings. These AR1 processes introduce perturba-
tions on the forcings that are consistent in time and that pro-
vide MORDOR-SD with an ensemble of probable meteoro-
logical scenarios. An AR1 process is added to the tempera-
ture in order to simulate the instrument and the representa-
tivity errors. The precipitation is multiplied by an AR1 (cen-
tered around 1) process, so that the variability in the precip-
itation intensity is simulated but no new day of precipitation
created. An illustration of the ensemble of forcings gener-
ated for the year 2001 in the Verdon basin (later described in
Sect. 2.2) is provided in Fig. 1. The calibration of these en-
sembles (i.e., calibration of the parameters of the autoregres-
sive processes) plays a crucial role in the implementation of
the assimilation system and is further discussed in Sect. 4.1.

2.2 Hydrological basins and observations

The present study focuses on three mountainous basins: the
Verdon at La Mure basin, the Naguilhes basin and the Guil
at Chapelue basin (Fig. 2) that are part of the EDF hydro-
electricity network. These three basins were selected accord-
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Figure 2. Geographic locations of the Verdon basin, the Guil basin in the Alps mountain range and the Naguilhes basin in the Pyrenees
mountain range (left panel). In the right panels, two zooms show the locations of the in situ CRS observations: V2471, V2804 and V4322
within the Guil, Verdon and Naguilhes basins, respectively.

ing to two criteria: (i) the quality of the hydrometric data
(to avoid assimilating poor-quality data); (ii) the presence of
CRS data on the basin. They also offer a variety of hydrocli-
matic dynamics.

The Verdon at La Mure basin is a subbasin of the Durance
basin located in the southern French Alps. The Verdon basin
covers 404 km2 and has an elevation ranging from 972 to
2990 m. The Naguilhes basin is located on a tributary of the
Ariege River in the eastern part of the French Pyrenees. It is
the smallest of the studied basins, covering 30 km2 and with
an elevation ranging from 1880 to 2750 m. The basin corre-
sponds to the inflow from the Naguilhes hydroelectric dam.
The Guil basin is a tributary of the Durance River, located in
the French Alps (Hautes-Alpes). The Guil at Chapelue basin
covers 418 km2 and has an elevation ranging from 1313 m to
3274 m. The outlet is located just upstream from Maison du
Roy dam.

Three types of observations are available in the basins: the
streamflow, the CRS and the FSC.

The streamflow is the observed water flow at the basin out-
let (m s−1). It is a direct and reliable observation of the model
state variableQ. The streamflow data have been collected by
EDF almost continuously since 1997 in the Verdon basin,
1962 in the Naguilhes basin and 2004 in the Guil basin.

The CRS (Kodama et al., 1979; Paquet and Laval, 2006)
is a cosmic ray snow sensor located in every basin as part of
the EDF snow network and provides the SWE that informs
on the state of the snow stock at a specific geographical point
(see Fig. 2, right panels).

– In the Verdon basin, the instrument is located at the
Sanguignères station (V2804) at an altitude of 2050 m.
The CRS data are available discontinuously from 2002
to 2017.

– In the Naguilhes basin, the instrument is located at the
Les Songes station (V4322) at an altitude of 2030 m.
The CRS data are available discontinuously from 2004
to 2017.

– In the Guil basin, the instrument is located at the
Les Marrous station (V2471) at an altitude of 2730 m.
The CRS data are available discontinuously from 2005
to 2016.

The CRS measurement technique is known to provide accu-
rate SWE estimations, except for very shallow snow depth
due to instrumental limitations. It provides a very local ob-
servation (typical footprint about 5 m), which suffers from
representativeness limitations. In Sect. 4.3, a detailed discus-
sion is held on how the CRS observations are integrated in
the assimilation process.

The FSC is provided by the MODIS satellite observations
(Hall et al., 2006). The FSC is quantified at 500 m and daily
resolutions by a value ranging from 0 to 1 for zero to full cov-
erage. FSC data suffer from well-known limitations concern-
ing cloud–snow discrimination and measure on complex veg-
etation/topography terrain. In our experiments, the FSC data
are averaged on catchment scale and are available discontin-
uously (depending on cloud cover) from 2001 to 2015 in the
Verdon basin, from 2003 to 2015 in the Naguilhes basin and
from 2002 to 2015 in the Guil basin.

For all observation types, the uncertainty is difficult to
quantify. This is all the more difficult for the assimilation per-
spective since representativeness uncertainties must be ac-
counted for. Those are impossible to quantify with the avail-
able model and observations and may be larger than instru-
mental uncertainties. For these reasons, the levels of uncer-
tainties (error variances) have been empirically tuned in the
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Figure 3. Available observation time series in the Verdon basin (a, d, g), in the Naguilhes basin (b, e, h) and in the Guil basin (c, f, i) of
streamflow Q (a–c), CRS SWE observation (d–f) and FSC (g–i).

data assimilation system to avoid significant data rejection,
which occurs when observation uncertainties are underesti-
mated.

The three types of observations are displayed for each
basin in Fig. 3.

The performance of the model is good in the three basins
of interest, with Nash–Sutcliffe efficiencies equal to 0.846,
0.760 and 0.926, respectively, for the Verdon, Naguilhes and
Guil basins over the calibration periods (1998–2013, 1987–
2012 and 2004–2013, respectively).

3 Sensitivity experiment

3.1 Sobol indices

In order to better understand the sensitivity, and thus the con-
trollability, of the MORDOR-SD model, we seek to deter-
mine which variables generate the most uncertainty in the
streamflow estimate at the basin outlet. To do so, we perform
a sensitivity study of the system based on the Sobol indices
(Sobol’, 1990; Nossent et al., 2011).

The Sobol indices evaluate the sensitivity of an output
variable to an input variable. If a model links one or more
random variables Xi , i ∈ [1,n] (input variables) to one ran-
dom variable Y (output variable), the Sobol index (of first

order) of the variable Xi is based on a variance decomposi-
tion and is defined by

Si =
Var[E [Y |Xi]]

Var[Y ]
. (1)

3.2 MORDOR-SD sensitivity

In the case of the MORDOR model, one can see the SSS
value as an output variable and all other state variables of the
model as input variables. It is then possible to run a set of
ensemble simulations by perturbing each variable indepen-
dently to compute Var[E[Y |Xi]] and another set by perturb-
ing all the variables at once to compute Var[Y ]. This gives
the SSS sensitivity to each state variable in the model.

It should be noted that the Sobol equations make the as-
sumption that the variablesXi are independent of each other.
This is clearly not the case for the MORDOR variables; how-
ever, the goal of this experiment is not to attribute the causal-
ity of the uncertainties in Y but to assess the potential con-
trollability of the model by each variable. In other words, if
we were to control and reduce the uncertainties in Xi , with
observations for instance, the Sobol indices could tell us how
effective the uncertainty reduction in Y would be.

To carry out this sensitivity study, a set of simulations is
generated in each basin on 1 April of each year, and the im-
pact on the seasonal streamflow supply on 31 August is eval-
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Figure 4. Sobol indices (%) in the Verdon configuration between the years 1968 and 2018 for a 10 % perturbation on each variable. The
Sobol indices show the sensitivity of the SSS value to the variables surface storage (U ), hillslope storage (L), capillarity storage (Z), snow
stocks (S) and snowpack temperature (TST) at the eight altitude levels (number 1 is the lowest altitude). The last column, Av, gives the
average over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to uncertainties in the snow stocks between
altitude levels 5 and 7.

uated. Figures 4–6 show the Sobol indices (%) in the Verdon,
Naguilhes and Guil basins, respectively, for a perturbation on
each variable of 10% of its initial value (1 April). The figures
show the Sobol indices between 1968 and 2018, and the last
column, Av, is the average over the entire time period. The
Sobol indices show the sensitivity of the SSS value to the
five state variables: U , L, Z, S and TST at the eight, four and
eight altitude levels in Figs. 4–6, respectively. The darkest
squares indicate a stronger sensitivity of the SSS to uncer-
tainties in the corresponding variables. The U , L and Z stor-
ages are expected to have a short-term impact on the runoff
at the basin outlet, and hence uncertainties in these storages
on 1 April should impact the SSS uncertainty less. This is
indeed confirmed by the small Sobol indices they generate
on the SSS. Uncertainty in the temperature of the snowpack
TST on 1 April also seems to not have much impact on the
SSS uncertainty. However, it can be seen that for all years
the variable uncertainties that lead to the largest uncertain-
ties in cumulative streamflow are the uncertainties in snow
stocks at the altitude bands from S4 to S7 in the Verdon basin,
from S2 to S4 in the Naguilhes basin and from S4 to S7 in
the Guil basin. The differences between elevation bands are
mainly due to the differences in their absolute snow content.

For example, the high-elevation bands have smaller areas (by
definition of the elevation bands), and hence they have less
snow content, which leads to less uncertainty. Similarly, dif-
ferences between years are most likely due to differences in
snowfall since the perturbations are prescribed relative to the
state variables (10 %), but the sensitivity of the streamflow is
absolute.

A substantial difference in sensitivity between the three
basins should be noted. The Verdon basin shows a maximum
of 36 % sensitivity, the Naguilhes basin 99 % and the Guil
basin 28 %. This could imply that, in the Naguilhes basin,
for instance, introducing accurate information on the snow
stocks might have a very positive impact on the SSS estima-
tion. On the other hand, in the other two basins, a control of
the snow stocks could improve the SSS estimation but maybe
to a lesser extent. This sensitivity study confirms nonetheless
that controlling the snow stocks at the end of winter seems to
be the most important lever to improve the SSS prediction.
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Figure 5. Sobol indices (%) in the Naguilhes configuration between the years 1968 and 2018 for a 10 % perturbation on each variable. The
Sobol indices show the sensitivity of the SSS value to the variables U , L, Z, S and TST at the four altitude levels (number 1 is the lowest
altitude). The last column, Av, gives the average over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to
uncertainties in the snow stocks at altitude levels 2 and 3.

Figure 6. Sobol indices (%) in the Guil configuration between the years 1968 and 2018 for a 10 % perturbation on each variable. The
Sobol indices show the sensitivity of the SSS value to the variables U , L, Z, S and TST at the eight altitude levels (number 1 is the lowest
altitude). The last column, Av, gives the average over the entire time period. The darkest squares indicate a stronger sensitivity of the SSS to
uncertainties in the snow stocks between altitude levels 4 and 7.
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4 Experimental protocol

4.1 Protocol and diagnostics

The experiments are performed during the years when CRS
and streamflow observations are available: from 2002 to
2017 in the Verdon basin, from 2004 to 2017 in the Naguil-
hes basin and from 2005 to 2016 in the Guil basin. Every
year, data assimilation is performed between 1 September
and 31 March; this period is called the reanalysis period. The
assimilated ensemble is then forecasted freely from 1 April
to 31 August; this period is called the forecast period. The
streamflow estimations are diagnosed during both the reanal-
ysis and the forecast period. The SSS estimation, i.e., the cu-
mulated streamflow during the forecast period, is also diag-
nosed.

The diagnostics performed are the continuous-rank proba-
bility score skill (CRPSS; see Hersbach, 2000, for details on
the CRPS and Piazzi et al., 2018, for details on the CRPSS)
according to the formulation described by Bontron (2004),
with a thinness component (FinS) and a correctness compo-
nent (JustS). A score of 1 represents a perfect ensemble and
lower than 0 an ensemble less accurate than the climatology
of the system. The FinS score can be seen as a measurement
of the dispersion of the ensemble and the JustS score as the
distance between the median of the ensemble and the obser-
vations. A second diagnostic is used to assess the SSS esti-
mation: the root-mean-square error (RMSE). The RMSE is
the Euclidian distance between the ensemble mean SSS es-
timation and the observed SSS and is computed (hm3). A
perfect RMSE score is equal to 0.

4.2 Meteorological forcing perturbations

The free ensemble simulations and the assimilation ensem-
ble simulations are generated using perturbations with AR1
processes on the forcings. The AR1 autocorrelation parame-
ters are prescribed for all experiments as 0.9 for temperature
and 0 for precipitation. Note that the AR1 process applied to
precipitation is multiplicative and the one applied to temper-
ature is additive. The AR1 standard deviations for the free
ensemble were tuned to provide the most accurate SSS pre-
diction. Figure 7 shows the CRPSS on the SSS estimation for
free ensembles with several sets of AR1 standard deviation
parameters (σP, σT ) applied to the forcings (P , T ).

A reproducibility issue was encountered during the assim-
ilation experiments (several experiments with the same pa-
rameters produced different results), probably due to the high
nonlinearities of the system and the finite number of ensem-
ble members. To avoid this problem, the standard deviations
σP and σT of the AR1 processes on the forcings used for the
assimilation were increased to stabilize the results during the
reanalysis period. Then, during the forecast period, the as-
similation ensemble uses the same AR1 process parameters

as the free ensemble. Table 1 summarizes the AR1 parame-
ters used in the experiments.

4.3 Assimilation setup

The assimilation is performed using a PF with sequential
importance resampling (Gordon et al., 1993; Van Leeuwen,
2009). The PF determines sequentially, within an ensemble
of simulations (also called particles or members), the simu-
lations with a model state close to the observations. The PF
describes the prior probability density of the system state as
a Dirac sum of equal weights 1/N for N the size of the en-
semble. Using Bayes’ theorem, the analysis assigns larger
weights to the simulations closer to the observations. The
weights are then used to resample the simulations farthest
from the observations so that the simulations closest to the
observations are duplicated. In this study, we use a stratified
resampling method introduced by Kitagawa (1996). The du-
plicated simulations are not perturbed after resampling. The
dispersion of the ensemble is maintained only by the per-
turbations on the forcings. Several studies showed the need
for additional perturbation after resampling in order to avoid
ensemble collapse, yet this does not seem necessary in our
system.

The free ensemble and the assimilation ensemble are com-
posed of 900 members. The PF provides the exact Bayes the-
orem solution for an infinitely large ensemble but quickly
suffers from the curse of dimensionality (Snyder et al., 2008)
and underperforms with small ensemble sizes. Some exper-
iments have been performed with smaller ensembles (not
shown here) and confirm this issue. Due to the very nonlin-
ear nature of the hydrological model, the assimilation per-
formances were not necessarily poor but unstable, meaning
that they would fluctuate when repeated. Since the goal of
the present paper is not to suggest the most appropriate as-
similation method for operational use but is rather to assess
whether information on the SSS exists and can be retrieved
from snow stock observations, we have chosen to use a very
large ensemble.

The assimilation window for all the experiments is a 3 d
window; i.e., an analysis is performed every 3 d using the
last three daily observations.

4.4 Observation operators

In order to allow small time lags between simulated and ob-
served streamflow, the three streamflow observations in the
3 d assimilation window are averaged to make a single ob-
servation. Streamflow observation error variance is then pre-
scribed as a function of the observed streamflow Qobs (sim-
ilarly to Clark et al., 2008, Weerts and El Serafy, 2006, and
Piazzi et al., 2021):

σ 2
Q = α ·Q

2
obs, (2)
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Figure 7. CRPSS of free ensemble simulations computed for AR1 parameter calibration (σP , σT ). The maximum CRPSS occurs at the
Verdon basin for (0.3, 0.3), at the Naguilhes basin for (0.3, 0.8) and at the Guil basin for (0.3, 0.5).

Table 1. AR1 process parameters applied to precipitation (φP, σP) and temperature (φT , σT ) forcings for the free ensemble and the assimi-
lation (assim.) ensembles during the reanalysis period (September to March) and the forecast period (April to August).

Verdon basin Naguilhes basin Guil basin

σP σT σP σT σP σT

Free 0.3 0.3 0.3 0.8 0.3 0.5
Q assim. 0.4 0.4 0.5 1.1 0.4 0.5
(Q, FSC) assim. 0.8 0.8 0.6 1.2 0.4 0.6
(Q, CRS) assim. 0.8 0.8 0.6 1.2 0.4 0.6
(Q, CRS, FSC) assim. 1.0 1.0 0.8 1.4 0.5 0.7

with α = 0.3. Also, a minimal threshold of σ 2
Q = 0.2 is used

so as to avoid unreasonably low uncertainties for very small
streamflow.

The assimilation is performed using the FSC-normalized
anomalies. The anomalies are computed by subtracting the
daily FSC climatologic average from the daily FSC value of
the current year, and this difference is then divided by the
climatologic average. The anomaly indicates with a positive
or negative value whether the snow cover is especially high
or low this year on that day. The same is done to the fractional
snow cover computed by the model. The observation error
variances of the FSC-normalized anomalies are prescribed at
σFSC = 0.3.

Finally, as previously mentioned, CRS observations are lo-
cal data and do not necessarily represent the snow dynamics
of an entire basin. Hence, the first step of the CRS obser-
vation operator is to consider the CRS-normalized anoma-
lies, similarly to the FSC observations. However, after sev-
eral tests (not shown here), the CRS-normalized anomaly
does not provide the correction needed for the model snow
stock anomaly at the appropriate altitude band. A second step
of the CRS observation operator was then to systematically
compare, at each assimilation window, the CRS anomaly to
the forecasted model snowpack anomaly at all altitude bands.
The closest (in terms of CRPSS) altitude band is then consid-
ered to be the observed band. This can be seen as an adaptive
observation operator. This process does slightly impact the
computation time (as it has to be performed every 3 d in this

case) but significantly improves the results in our study. The
observation error variances of the CRS anomalies are pre-
scribed at σCRS = 0.3.

5 Assimilation results

5.1 Streamflow reanalysis for September to March

During the September to March period, the observations are
available daily. In this subsection, only streamflow observa-
tions are assimilated. As an illustration, Fig. 8 shows the time
series ofQ during the year 2002 in the Verdon basin. The re-
analysis period corresponds to the times left of the vertical
dotted black line and the forecast period to the times right
of that line. While panels a and b highlight the high confi-
dence of the assimilated ensemble (red lines) versus the free
ensemble (green lines) with a reduction in dispersion, panel
c shows that the median after assimilation (red line) is more
accurate than the median without assimilation (green line)
with respect to the observations (blue line).

The first conclusions drawn from the year 2002 are con-
firmed over the 16 years 2002–2017 in the Verdon basin, the
12 available years between 2004 and 2017 in the Naguilhes
basin and the 10 available years between 2005 and 2016 in
the Guil basin, with the use of the probabilistic score CRPSS
and its components FinS and JustS summarized in Table 2.
The FinS of the free ensemble is higher than the FinS of
the assimilated ensemble, which is not abnormal since the
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Figure 8. Streamflow time seriesQ, during the year 2002 for the Verdon basin, of the observed streamflow (blue), the climatological ensemble
(black), the free ensemble (panel a; green) and the assimilated ensemble (panel b; red) for the assimilation of Q. Panel (c) represents the
ensemble’s respective medians. The vertical dotted black line represents the separation between the reanalysis period (before the line) and
the forecast period (after the line).

ensembles have not been generated with the same perturba-
tions and the assimilated ensemble perturbations were much
stronger. However, the assimilation increases the JustS of the
free ensemble from 37.1 % to 79.6 % in the Verdon basin,
31.1 % to 44 % in the Naguilhes basin and −36.6 % to 41 %
in the Guil basin. This results in a CRPSS of 75.4 %, 36.8 %
and 69.4 % after assimilation when the free ensemble CRPSS
was 47.6 %, 20.5 % and 39.3 % in the three basins, respec-
tively.

Assimilation of streamflow observations combined with
CRS and FSC observations has been compared to
streamflow-only assimilation and has very little to no impact
on the results during this reanalysis period (not shown here).
This is due to the very straightforward task of constraining
simulated streamflows using the accurately observed stream-
flow. Indeed, the PF sequentially selects and resamples the
simulations with a streamflow closer to the observations.

An interesting specificity of the particle filter, as a data
assimilation method, is that, each time, not only are the ac-
curate streamflows selected, but also all the corresponding

state variables. In other words, one can hope that the assim-
ilation will have also selected more accurate snow stocks,
which will then help produce better streamflow predictions
during the following spring and summer seasons.

5.2 Streamflow forecast for April to August

Figure 9 shows the streamflow time series of the ensem-
ble medians (climatologic ensemble in black, free ensemble
in green and assimilated ensemble in red) and the observed
streamflow (in blue) during the year 2011 in the Verdon basin
for the Q assimilation (panel a) and the (Q, CRS) assimila-
tion (panel b). The streamflow assimilation (Fig. 9a) seems
to improve the short-term (first 5 to 10 d) streamflow fore-
cast. However, the streamflow forecast is then overestimated
after a couple of weeks, but a good control of the snow-
pack with (Q, CRS) assimilation (Fig. 9b) reduces this long-
term streamflow forecast overestimation. Hence, the overall
streamflow forecast remains improved in the first few weeks
of the forecast period in comparison to the free ensemble,
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Table 2. Probabilistic scores on streamflowQ during the reanalysis period, from September to March, for the free ensemble (“Free”) and the
streamflow assimilation (Q assimilation).

Verdon basin Naguilhes basin Guil basin

Free Q assimilation Free Q assimilation Free Q assimilation

FinS 0.701 0.665 −0.015 0.218 0.755 0.830
JustS 0.371 0.796 0.311 0.440 −0.366 0.410
CRPSS 0.476 0.754 0.205 0.368 0.393 0.694

and the overestimation during the rest of the forecast period
is avoided.

This result is confirmed by the CRPSS for all years avail-
able and in two of the three basins: the Verdon and Naguilhes
basins (Fig. 10). Both (Q, CRS) and (Q, FSC) assimilations
show a CRPSS increase in comparison to Q-only assimila-
tion. In the Naguilhes basin, in particular, the streamflow as-
similation improvement over the “Free” ensemble (approx-
imately from a CRPSS of 0.44 to 0.455) is almost doubled
by the additional use of CRS (approximately to a CRPSS
of 0.465). This significant improvement in the Naguilhes
basin could be due to the strong sensitivity of the stream-
flow to the snow stock uncertainty as implied by the Sobol
experiment conclusions (Sect. 3).

In the Guil basin, the streamflow forecast is degraded by
the use of CRS data. This overall result is in fact due to some
years in particular where the CRS information contradicts
the observed streamflow. The case of the Guil basin will be
further discussed in the following section.

In general, the improvement brought by an accurately con-
trolled snowpack to the streamflow estimation is slim in
terms of scores. The variation in the CRPSS is almost al-
ways smaller than 5 %. This is due to the fact that, even
though the snow stock might be improved, the timing of the
streamflow runoff is mainly driven by the anticipated meteo-
rological forcings during the forecast period. The cumulated
streamflow, or seasonal streamflow supply, however should
be less impacted by the timing of the runoff and should be
significantly improved by a better-estimated snow stock.

5.3 SSS forecast

Global scores have been computed to assess the abilities of
the different assimilation configurations to estimate the SSS,
i.e., the cumulated runoff between April and August. Sim-
ilarly, Figs. 10 and 11 show the global CRPSS, FinS and
JustS of the SSS ensemble estimations in the three basins,
and Fig. 12 shows the RMSE of the ensemble means.

As for the streamflow estimation, the SSS estimation is
improved by assimilating all the available data in the Ver-
don basin and the Naguilhes basin. In the Verdon basin, the
Q assimilation increases the CRPSS from 77 % (free ensem-
ble) to 80.5 %, and the (Q, FSC, CRS) assimilation further
increases the CRPSS to 82.7 %. Meanwhile, the RMSE of

the free ensemble SSS mean (200 hm3) is almost halved by
the (Q, FSC, CRS) assimilation and reduced to a little over
100 hm3. In the Naguilhes basin, theQ assimilation increases
the CRPSS from 58.7 % (free ensemble) to 62.2 %, the (Q,
CRS) assimilation further increases the CRPSS to 75 % and
the (Q, FSC, CRS) assimilation CRPSS is slightly lower at
74.6 %. The RMSE is strongly reduced by the use of CRS
observations. Both the (Q, CRS) and (Q, FSC, CRS) assim-
ilations reduce the free ensemble SSS mean RMSE, which
is over 10 hm3, to under 4 hm3. Once again, these very good
performances in the Naguilhes basin are likely due to the sig-
nificant sensitivity of the SSS estimation to the snow stock
uncertainty that was highlighted by the Sobol sensitivity ex-
periment (Sect. 3).

The yearly SSS CRPSS histograms presented in Figs. 13
and 14 allow us to understand how combining all the obser-
vations improves the global scores. Every year, the free en-
semble SSS CRPSS (green) is compared to the SSS CRPSS
of the assimilated ensemble (red) for the different assimila-
tion configurations. As a reminder, a negative CRPSS indi-
cates that the ensemble estimation is less accurate (in terms
of CRPS) than the climatological ensemble. In the Verdon
basin, the main inaccurate free ensemble SSS estimation oc-
curs in 2014. During that year, only the assimilation config-
urations containing CRS observations are able to truly cor-
rect that estimation. Meanwhile, in 2003 for instance, the (Q,
CRS) assimilation deteriorates the SSS estimation. However,
only assimilating (Q, CRS, FSC) manages to improve both
2003 and 2014. Similarly, in the Naguilhes basin, the years
2004 and 2011 are poorly estimated by the free ensemble,
the Q assimilation and the (Q, FSC) assimilation, but both
the (Q, CRS) and (Q, FSC, CRS) assimilations significantly
increase the SSS CRPSS. These yearly variations show that
the hydrological problem considered here is not a linear and
Gaussian problem where adding observations systematically
improves the estimation every year. These variations can be
due to the quality or representativity of those observations,
which can also vary from one year to the next. However, in
this case, the benefits of combining multivariate data come
from the particle filter-selection process, which behaves as a
data cross-validation of sorts that will take advantage of the
most appropriate observations each year. This remains true,
however, as long as none of the observations is widely inac-
curate.
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Figure 9. Same as Fig. 8c, during the year 2011 in the Verdon basin, for the Q assimilation (a) and the (Q, CRS) assimilation (b).

For instance, in the Guil basin, the detrimental impact of
the CRS observations is even larger on the SSS estimation
than it is on the streamflow estimation. The average CRPSS
declines from approximately 75 % to 65 % (Fig. 10), and the
RMSE increases from 120 to 280 hm3 (Fig. 11). Similarly to
Figs. 13 and 14, the yearly histograms in Fig. 15 reveal that
the assimilation performances differ significantly from one
year to the next. In particular, the histograms reveal that the
SSS estimation in 2012 is improved by the CRS observations.
However, for the years 2008, 2013 and 2014, the CRS obser-
vations seem to completely mislead the SSS estimation. This
behavior can be explained by (1) the particularly wide area
covered by the Guil basin and (2) specific atmospheric events
during those years, both rendering the CRS observations un-
representative of the hydrological situation of the basin. In
particular, for the year 2008, the poor results can be explained
both by the non-representativity of the CRS observations and
by a historical flooding episode at the end of May associated
with strong uncertainties in precipitation.

6 Summary and conclusions

The objective of this work is to assess the potential of using
local snow observations such as cosmic ray sensor (CRS)
observations and fractional snow cover (FSC) data in order
to improve the estimation of the seasonal streamflow sup-
ply at the outlet of a mountainous basin. The assimilation
of streamflow measurements is commonly performed and is
known to improve the short-term prediction of hydrological
system evolution. However, combining different snowpack
observations at basin scale, such as FSC data, and at local

scale, such as CRS data, could improve the prediction of sea-
sonal streamflow supply between April and August (SSS).

As a first step, a sensitivity test performed in Sect. 3 shows
that snow stock control has the potential to strongly reduce
the uncertainties in the SSS. The Sobol indices (relative vari-
ances) demonstrate a significant sensitivity of the SSS to un-
certainties in the snow stocks at different altitudes (S4 to S8
in the Verdon basin, S2 to S4 in the Naguilhes basin and S4
to S7 in the Guil basin). Although expected, this result sup-
ports the idea that assimilating data containing snow stock
information can improve SSS estimation.

The streamflow assimilation is confirmed to be beneficial
for the streamflow estimation during the reanalysis period
from September to March (Sect. 5.1), the streamflow predic-
tion (after the assimilation) from April to August (Sect. 5.2)
and for the SSS estimation (Sect. 5.3). Indeed, in the three
basins, the Q assimilation significantly improves the stream-
flow estimation during the reanalysis period: from 47.6 % to
75.4 % in the Verdon basin, from 20.5 % to 36.8 % in the
Naguilhes basin and from 39.3 % to 69.4 % in the Guil basin.
Also, the streamflow forecast during the 5-month forecast pe-
riod is systematically improved by the Q assimilation, albeit
slightly. Finally, the SSS CRPSS of the Q assimilation is in-
creased compared to the one of the free ensemble for both
the Verdon and Naguilhes basins and remains approximately
constant in the Guil basin. In all the basins, the SSS RMSE
of the Q assimilation ensemble mean is smaller than the free
ensemble mean.

Since the streamflow assimilation seems to be improving
the SSS estimation, further experiments were performed in
Sect. 5.2 to assess the combination of streamflow and other
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Figure 10. Probabilistic scores in the Verdon basin (a), Naguilhes
basin (b) and Guil basin (c) for the forecasted streamflow Q by the
free ensemble (“Free”) and the four assimilation experiments.

observations. Also, separate tests were performed to assess
CRS-only and FSC-only assimilations in the hydrological
system (not shown here), but not using the streamflow ob-
servations seemed to strongly deteriorate the SSS estimation.
Section 5.2 shows that, in two of the three basins, the com-
bination of FSC and CRS with Q in the assimilation process
has proven to be very beneficial to the SSS estimation. In
the Verdon and Naguilhes basins, where it was identified that
FSC and CRS are beneficial, the best strategy seems to be
that all available observations are to be included in the as-
similation process, so that if in some years one observation
type misrepresents the hydrological situation, the others can
counteract its effect. For instance, in the Verdon basin, the
(Q, FSC) assimilation degrades the estimation in 2014, and
in 2003 the (Q, CRS) assimilation degrades the estimation,
but when assimilating (Q, CRS, FSC), both those years are
improved. The overall scores show that the (Q, FSC, CRS)
assimilation when compared to the Q-only assimilation in-

Figure 11. Probabilistic scores for the forecasted SSS by the free
ensemble (Free) and the four assimilation experiments.

creases the SSS estimation CRPSS by 2 % in the Verdon
basin and by 22 % in the Naguilhes basin and reduces the
SSS estimation RMSE by 19.7 hm3 in the Verdon basin, cor-
responding to a 15.9 % improvement, and by 4.8 hm3 in the
Naguilhes basin, corresponding to a 56.6 % improvement.

Caution should be applied with this strategy since, in the
Guil basin during specific years, the CRS observations can
largely misrepresent the hydrological situation, thus signif-
icantly deteriorating the streamflow and SSS estimations.
More specifically, during three years (2008, 2013 and 2014)
the CRS observations appear to contradict the streamflow ob-
servations, hence misleading the SSS estimation. This can
be explained by specific atmospheric events occurring during
those years and leading to highly heterogeneous precipitation
patterns.

The present study showed that assimilating multivariate
data in a basin-scale hydrological model is possible and can
improve long-term predictions such as the SSS estimation.
In two of the three basins, the assimilation of snow observa-
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Figure 12. RMSE for the forecasted SSS by the free ensemble
(Free) and the four assimilation experiments. Not shown here,
the climatology RMSEs are 3603.43 hm3 in the Verdon basin,
57.26 hm3 in the Naguilhes basin and 2079.76 hm3 in the Guil
basin.

tions has proven to be beneficial, improving the overall per-
formances. This result was achieved by incorporating local
CRS data into a basin model through the use of an adaptive
observation operator on the elevation band. While heuristic,
the adaptive observation operator has proven to be successful
in most cases. However, in some years, the poor representa-
tivity of local CRS observations can degrade the performance
of the data assimilation process. Combining the sources of
observations therefore appears to be the best guarantee of ro-
bustness for operational purposes. Also, the multivariate as-
similation allowed us to highlight that the CRS observations
in one of the studied basins and during specific years are not
appropriate for assimilation and should be disregarded.

As a continuation of this work and to keep improving SSS
prediction in operational forecasting systems, several other
aspects must be investigated further. First, a wider study
should be conducted using the same experimental setup to
assess the benefits and issues of the available observations,

Figure 13. Yearly CRPSS of the SSS for the free ensemble (green)
and the assimilated ensemble (red) from the Q assimilation, (Q,
FSC) assimilation, (Q, CRS) assimilation and (Q, CRS, FSC) as-
similation (10 experiments each year) in the Verdon basin.
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Figure 14. Same as Fig. 13 in the Naguilhes basin.
Figure 15. Same as Fig. 13 in the Guil basin.
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in particular the CRS data, in a larger panel of hydrological
basins. Options to compensate for the lack of representativ-
ity of the CRS data in some basins are limited. A study on
the cost and benefit to densify the observation network in the
concerned basins should be conducted by operational cen-
ters. A more attractive, because less expensive, alternative
could be to better characterize and/or improve the represen-
tativity of SWE data at the basin scale by using the existing
large network of snow poles that may contain complementary
SWE information. Finally, moving from the semi-distributed
MORDOR model to the fully spatialized MORDOR model
(Rouhier et al., 2017) should make the integration of local
CRS information into the physics of a basin model more re-
alistic and ultimately improve the SSS estimation.
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