Articles | Volume 27, issue 8
https://doi.org/10.5194/hess-27-1645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Mette H. Mortensen
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Peter Sandersen
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Torben O. Sonnenborg
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Karsten H. Jensen
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Jacob Kidmose
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Related authors
No articles found.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021, https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
Short summary
The protection of subsurface aquifers from contamination is an ongoing environmental challenge. Some areas of the underground have a natural capacity for reducing contaminants. In this research these areas are mapped in 3D along with information about, e.g., sand and clay, which indicates whether contaminated water from the surface will travel through these areas. This mapping technique will be fundamental for more reliable risk assessment in water quality protection.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986a.
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 61–77, https://doi.org/10.1016/0022-1694(86)90115-0, 1986b.
Andersen, T. R., Poulsen, S. E., Pagola, M. A., and Medhus, A. B.: Geophysical mapping and 3D geological modelling to support urban planning: A case study from Vejle, Denmark, J. Appl. Geophys., 180, 104130, https://doi.org/10.1016/j.jappgeo.2020.104130, 2020.
Attard, G., Rossier, Y., and Eisenlohr, L.: Urban groundwater age modeling under unconfined condition – Impact of underground structures on groundwater age: Evidence of a piston effect, J. Hydrol., 535, 652–661, https://doi.org/10.1016/j.jhydrol.2016.02.034, 2016a.
Attard, G., Rossier, Y., Winiarski, T., Cuvillier, L., and Eisenlohr, L.: Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France, Hydrogeol. J., 24, 1213–1229, https://doi.org/10.1007/s10040-016-1385-z, 2016b.
Attard, G., Winiarski, T., Rossier, Y., and Eisenlohr, L.: Revue: Impact des structures du sous-sol sur les écoulements des eaux souterraines en milieu urbain, Hydrogeol. J., 24, 5–19, https://doi.org/10.1007/s10040-015-1317-3, 2016c.
Attard, G., Rossier, Y., and Eisenlohr, L.: Underground structures increasing the intrinsic vulnerability of urban groundwater: Sensitivity analysis and development of an empirical law based on a groundwater age modelling approach, J. Hydrol., 552, 460–473, https://doi.org/10.1016/j.jhydrol.2017.07.013, 2017.
Berthier, E., Andrieu, H., and Creutin, J. D.: The role of soil in the generation of urban runoff: development and evaluation of a 2D model, J. Hydrol., 299, 252–266, https://doi.org/10.1016/j.jhydrol.2004.08.008, 2004.
Bhaskar, A. S., Welty, C., Maxwell, R. M., and Miller, A. J.: Untangling the effects of urban development on subsurface storage in Baltimore, Water Resour. Res., 51, 1158–1181, https://doi.org/10.1002/2014WR016039, 2015.
Birks, D., Whittall, S., Savill, I., Younger, P. L., and Parkin, G.: Groundwater cooling of a large building using a shallow alluvial aquifer in Central London, Q. J. Eng. Geol. Hydroge., 46, 189–202, https://doi.org/10.1144/qjegh2012-059, 2013.
Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., and Bica, I.: A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania, Hydrogeol. J., 23, 437–450, https://doi.org/10.1007/s10040-014-1220-3, 2015.
Butts, M. and Graham, D.: Watershed Models, edited by: Singh, V. P. and Frevert, D. K., CRC Press, 245–271, https://doi.org/10.1201/9781420037432, 2010.
Culshaw, M. G. and Price, S. J.: The 2010 Hans Cloos lecture, B. Eng. Geol. Environ., 70, 333–376, https://doi.org/10.1007/s10064-011-0377-4, 2011.
Danish National Agency for Data Supply and Infrastructure: Digital Terrain Model 10 m, https://dataforsyningen.dk/data/930, last access: 29 February 2019.
DHI: MIKE HYDRO River User guide, DHI, 310 pp., https://manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKEHydro_River_UserGuide.pdf (last access: 2 February 2019), 2017.
DHI: MIKE SHE 2020 User Guide and Reference Manual, 822 pp., https://manuals.mikepoweredbydhi.help/latest/Water_Resources/MIKE_SHE_Print.pdf, last access: 4 January 2020.
DHI: MIKE HYDRO River, DHI [code], https://www.mikepoweredbydhi.com/download/mike-2023/mike-hydro-river-2023?ref={87BCBD77-6F24-4197-97EA-E3FE4372FA30} (last access: 17 April 2023), 2023a.
DHI: MIKE SHE Software, DHI [code], https://www.mikepoweredbydhi.com/download/mike-2023/mike-she-2023?ref={87BCBD77-6F24-4197-97EA-E3FE4372FA30} (last access: 17 February 2020), 2023b.
DMI – Danish Meteorological Institute: Climate data – Precipitation, ETref*0.95 and Temperature, https://confluence.govcloud.dk/display/FDAPI/Danish+Meteorological+Institute+-+Open+Data, last access: 6 January 2021.
Doherty, J.: Calibration and Uncertainty Analysis for Complex Environmental Models, Watermark Numerical Computing, Brisbane, Australia, 227 pp., ISBN 978-0-9943786-0-6, 2015.
Doherty, J.: PEST Model-Independent Parameter Estimation, User
Manual Part I, https://pesthomepage.org/documentation (last access: 12 April 2023), 2016a.
Doherty, J.: PEST Model-Independent Parameter Estimation, User
Manual Part II, https://pesthomepage.org/documentation (last access: 12 April 2023), 2016b.
Doherty, J.: PEST 2017, https://pesthomepage.org/programs (last access: 17 April 2023), 2017.
Epting, J., Huggenberger, P., and Rauber, M.: Integrated methods and scenario development for urban groundwater management and protection during tunnel road construction: a case study of urban hydrogeology in the city of Basel, Switzerland, J. Hydrol., 16, 437–450, https://doi.org/10.1007/s10040-007-0242-5, 2008.
Farr, G. J., Patton, A. M., Boon, D. P., James, D. R., Williams, B., and Schofield, D. I.: Mapping shallow urban groundwater temperatures, a case study from Cardiff, UK, Q. J. Eng. Geol. Hydroge., 50, 187–198, https://doi.org/10.1144/qjegh2016-058, 2017.
Fletcher, T. D., Andrieu, H., and Hamel, P.: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art, Adv. Water Resour., 51, 261–279, https://doi.org/10.1016/j.advwatres.2012.09.001, 2013.
Ford, J. R., Price, S. J., Cooper, A. H., and Waters, C. N.: An assessment of lithostratigraphy for anthropogenic deposits, Geol. Soc. Spec. Publ., 395, 55–89, https://doi.org/10.1144/SP395.12, 2014.
GEUS – Geological surveys of Denmark and Greenland: National well database (Jupiter), GEUS [data set], https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter, last access: 19 December 2019.
Han, D., Currell, M. J., Cao, G., and Hall, B.: Alterations to groundwater recharge due to anthropogenic landscape change, J. Hydrol., 554, 545–557, https://doi.org/10.1016/j.jhydrol.2017.09.018, 2017.
Hibbs, B. J. and Sharp, J. M.: Hydrogeological impacts of urbanization, Environ. Eng. Geosci., 18, 3–24, https://doi.org/10.2113/gseegeosci.18.1.3, 2012.
Hutchins, M. G., McGrane, S. J., Miller, J. D., Hagen-Zanker, A., Kjeldsen, T. R., Dadson, S. J., and Rowland, C. S.: Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of “big data” requirements, WIREs Water, 4, e1177, https://doi.org/10.1002/wat2.1177, 2017.
I-GIS: GeoScene3D, https://geoscene3d.com/GeoScene3D/Download (last acces: 14 April 2023), 2019.
Jakobsen, P. R. and Tougaard, L.: Geomorfologisk kort over Syd- og Østdanmark, version2, https://data.geus.dk/geusmap/?mapname=denmark#baslay=baseMapDa&optlay=&extent=290273.4254273991,6075492.263147449,843727.9711775389,6356543.399661193 (last access: 12 April 2023), 2018.
Jakobsen, P. R., Tougaard, L., and Anthonsen, K. L.: Danmarks Digitale Jordartskort 1:25 000 version 6.0 – ArcGIS og QGIS, Dataverse [data set], https://doi.org/10.22008/FK2/XAFCRS, 2022.
Kidmose, J. and Sonnenborg, T. O.: Fælles grundvand – Fælles ansvar: WP2 Hydrologisk model, GEUS, https://doi.org/10.22008/gpub/32579, 2018.
Kidmose, J., Troldborg, L., Refsgaard, J. C., and Bischoff, N.: Coupling of a distributed hydrological model with an urban storm water model for impact analysis of forced infiltration, J. Hydrol., 525, 506–520, https://doi.org/10.1016/j.jhydrol.2015.04.007, 2015.
Koch, J., Gotfredsen, J., Schneider, R., Troldborg, L., Stisen, S., and Henriksen, H. J.: High Resolution Water Table Modeling of the Shallow Groundwater Using a Knowledge-Guided Gradient Boosting Decision Tree Model, Front. Water, 3, 1–14, https://doi.org/10.3389/frwa.2021.701726, 2021.
LaBianca, A.: SUBWATER Sewer Network, Dataverse [data set], https://doi.org/10.22008/FK2/YAXCMS/T3ORTF, 2023a.
LaBianca, A.: SUBWATER Urban Catchments, Dataverse [data set], https://doi.org/10.22008/FK2/YAXCMS/NFYI4A, 2023b.
Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., and Provost, A. M.: Documentation for the MODFLOW 6 Groundwater Flow Model, in: Book 6, 197, Modeling Techniques, US Geological Survey Techniques and Methods, https://doi.org/10.3133/tm6A55, 2017.
Laursen, G. and Linderberg, J.: Odense – A City with Water Issues, Procedia Engineer., 209, 104–118, https://doi.org/10.1016/j.proeng.2017.11.136, 2017.
Lerner, D. N.: Groundwater recharge in urban areas, Atmos. Environ. B-Urban, 24, 29–33, https://doi.org/10.1016/0957-1272(90)90006-G, 1990.
Lerner, D. N.: Identifying and quantifying urban recharge: A review, Hydrogeol. J., 10, 143–152, https://doi.org/10.1007/s10040-001-0177-1, 2002.
Levin, G., Blemmer, M. K., and Nielsen, M. R.: Basemap: technical documentation of a model for elaboration of a land-use and land-cover map for Denmark, Technical Report from DCE – Danish Centre for Environment and Energy, 64 pp., https://dce2.au.dk/pub/TR95.pdf (last access: 12 April 2023), 2012.
Levin, G., Iosub, C.-I., and Jepsen, M. R.: Basemap02, Technical documentation of a model for elaboration of a land-use and land-cover map for Denmark, Technical Report from DCE, Danish Centre for Environment and Energy, Aarhus, 64 pp., https://dce2.au.dk/pub/TR95.pdf (last access: 12 April 2023), 2017.
Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., and Binning, P. J.: Hydrologic impact of urbanization with extensive stormwater infiltration, J. Hydrol., 544, 524–537, https://doi.org/10.1016/j.jhydrol.2016.11.030, 2017.
Lundy, L. and Wade, R.: Integrating sciences to sustain urban ecosystem services, Prog. Phys. Geog., 35, 653–669, https://doi.org/10.1177/0309133311422464, 2011.
Madsen, H., van Griensven, A., and Højberg, A. L.: Model calibration and validation in model-based water management, in: Modelling Aspects of Water Framework Directive Implementation, vol. 1, edited by: Vanrolleghem, P. A., IWA Publishing, https://doi.org/10.2166/9781780401676, 2010.
McGrane, S. J.: Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrolog. Sci. J., 61, 2295–2311, https://doi.org/10.1080/02626667.2015.1128084, 2016.
Mielby, S. and Henriksen, H. J.: Hydrogeological studies integrating the climate, freshwater cycle, and catchment geography for the benefit of urban resilience and sustainability, Water, 12, 3324, https://doi.org/10.3390/w12123324, 2020.
Mielby, S. and Sandersen, P. B. E.: Development of a 3D geological/hydrogeological model targeted at sustainable management of the urban water cycle in Odense City, Denmark, Procedia Engineer., 209, 75–82, https://doi.org/10.1016/j.proeng.2017.11.132, 2017.
Mitchell, V. G.: Applying integrated urban water management concepts: A review of Australian experience, Environ. Manage., 37, 589–605, https://doi.org/10.1007/s00267-004-0252-1, 2006.
Odense Kommune: Odense kommune Spildevandsplan 2011–2022, 1–75, https://www.odense.dk/erhverv/byggeri-og-miljoe/spildevand-og-regnvand/spildevandsplan (last access: 14 April 2023), 2011.
Odense Kommune: Bygningsinfo fra BBR, https://drift.kortinfo.net/Map.aspx?Site=Odense&Page=kortopslag, last access: 29 May 2019.
Petrosino, P., Claudia Angrisani, A., Barra, D., Donadio, C., Aiello, G., Allocca, V., Coda, S., De Vita, P., Jicha, B. R., and Calcaterra, D.: Multiproxy approach to urban geology of the historical center of Naples, Italy, Quatern. Int., 577, 147–165, https://doi.org/10.1016/j.quaint.2020.12.043, 2021.
Pophillat, W., Sage, J., Rodriguez, F., and Braud, I.: Dealing with shallow groundwater contexts for the modelling of urban hydrology – A simplified approach to represent interactions between surface hydrology, groundwater and underground structures in hydrological models, Environ. Modell. Softw., 144, 105144, https://doi.org/10.1016/j.envsoft.2021.105144, 2021.
Pophillat, W., Sage, J., Rodriguez, F., and Braud, I.: Consequences of interactions between stormwater infiltration systems, shallow groundwater and underground structures at the neighborhood scale, Urban Water J., 19, 812–823, https://doi.org/10.1080/1573062X.2022.2090382, 2022.
Rasmussen, P., Kidmose, J., Kallesøe, A. J., Sandersen, P. B. E., Schneider, R., and Sonnenborg, T. O.: Evaluation of adaptation measures to counteract rising groundwater levels in urban areas in response to climate change, Hydrogeol. J., 587, 124983, https://doi.org/10.1007/s10040-022-02573-7, 2022.
Refsgaard, J. C., Stisen, S., and Koch, J.: Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development, Hydrol. Process., 36, 1–20, https://doi.org/10.1002/hyp.14463, 2022.
Salvadore, E., Bronders, J., and Batelaan, O.: Hydrological modelling of urbanized catchments: A review and future directions, J. Hydrol., 529, 62–81, https://doi.org/10.1016/j.jhydrol.2015.06.028, 2015.
Sandersen, P. B. E. and Jørgensen, F.: Kortlægning af begravede dale i Danmark. Opdatering 2010–2015. Bind 2. Lokalitetsbeskrivelser (Særudgivelse), De Nationale Geologiske Undersøgelser for Danmark og Grønland, Denmark, ISBN 978-87-7871-452-7, 2016.
Sandersen, P. B. E. and Kallesøe, A. J.: Odense Vest – 3D geologisk/hydrostratigrafisk detailmodellering, GEUS, Copenhagen, https://doi.org/10.22008/gpub/32521, 2017.
Sandersen, P. B. E., Kristensen, M., and Mielby, S.: Udvikling af en 3D geologisk/hydrogeologisk model som basis for det urbane vandkredsløb. Delrapport 4 – 3D geologisk/hydrostratigrafisk modellering (Særudgivelse), De Nationale Geologiske Undersøgelser for Danmark og Grønland, Denmark, https://doi.org/10.22008/gpub/43101, 2015.
Schirmer, M., Leschik, S., and Musolff, A.: Current research in urban hydrogeology – A review, Adv. Water Resour., 51, 280–291, https://doi.org/10.1016/j.advwatres.2012.06.015, 2013.
Schneider, R., Koch, J., Troldborg, L., Henriksen, H. J., and Stisen, S.: Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth, Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, 2022.
SDFI – The Danish Agency for Data Supply and Infrastructure: https://dataforsyningen.dk/data/3563 (last access: 14 April 2023), 2019.
SDFI – The Danish Agency for Data Supply and Infrastructure: Dataforsyningen, https://dataforsyningen.dk/, last access: 14 April 2023.
Stisen, S., Ondracek, M., Troldborg, L., Schneider, R. J. M., and van Til, M. J.: National Water Resource Model – Construction and calibration of the DK-model2019, 125 pp., https://doi.org/10.22008/gpub/32631, 2019.
Troldborg, L., Ondracek, M., Koch, J., Kidmose, J., and Refsgaard, J. C.: Quantifying stratigraphic uncertainty in groundwater modelling for infrastructure design, Hydrogeol. J., 29, 1075–1089, https://doi.org/10.1007/s10040-021-02303-5, 2021.
Tubau, I., Vázquez-Suñé, E., Carrera, J., Valhondo, C., and Criollo, R.: Quantification of groundwater recharge in urban environments, Sci. Total Environ., 592, 391–402, https://doi.org/10.1016/j.scitotenv.2017.03.118, 2017.
United Nations: World Urbanization Prospects : The 2018 Revision, New York, 103 pp., http://digitallibrary.un.org/record/3833745 (last access: 14 April 2023), 2019.
Vázquez-Suñé, E., Carrera, J., Tubau, I., Sánchez-Vila, X., and Soler, A.: An approach to identify urban groundwater recharge, Hydrol. Earth Syst. Sci., 14, 2085–2097, https://doi.org/10.5194/hess-14-2085-2010, 2010.
Vázquez-Suñé, E., Ángel Marazuela, M., Velasco, V., Diviu, M., Pérez-Estaún, A., and Álvarez-Marrón, J.: A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area, Solid Earth, 7, 1317–1329, https://doi.org/10.5194/se-7-1317-2016, 2016.
Yang, Y., Lerner, D. N., Barrett, M. H., and Tellam, J. H.: Quantification of groundwater recharge in the city of Nottingham, UK, Environ. Geol., 38, 183–198, https://doi.org/10.1007/s002540050414, 1999.
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
The study explores the effect of Anthropocene geology and the computational grid size on the...