Articles | Volume 27, issue 7
https://doi.org/10.5194/hess-27-1607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1607-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China
Feng Wu
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China
Hao Jiang
State Environmental Protection Key Laboratory of Integrated Surface
Water–Groundwater Pollution Control, School of Environmental Science and
Engineering, Southern University of Science and Technology, Shenzhen, China
Naliang Guo
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China
Yong Tian
State Environmental Protection Key Laboratory of Integrated Surface
Water–Groundwater Pollution Control, School of Environmental Science and
Engineering, Southern University of Science and Technology, Shenzhen, China
Chunmiao Zheng
CORRESPONDING AUTHOR
EIT Institute for Advanced Study, Ningbo, Zhejiang, China
State Environmental Protection Key Laboratory of Integrated Surface
Water–Groundwater Pollution Control, School of Environmental Science and
Engineering, Southern University of Science and Technology, Shenzhen, China
Related authors
No articles found.
Ganquan Mao, Junguo Liu, Feng Han, Ying Meng, Yong Tian, Yi Zheng, and Chunmiao Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-193, https://doi.org/10.5194/hess-2018-193, 2018
Manuscript not accepted for further review
Short summary
Short summary
Apart from traditional water assessment, a new framework is proposed that assesses water resources beyond water balance and take into consideration of all the important factors as possible from perspective of both water supply and consumption.
The interaction between green and blue water plays a key role in the completed water cycling.
Natural ecosystems potentially take a higher risk on freshwater use when the water use competition increases between human and nature.
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Assessment of Upscaling Methodologies for Daily Crop Transpiration using Sap-Flows and Two-Source Energy Balance Models in Almonds under Different Water Status and Production Systems
Developing water supply reservoir operating rules for large-scale hydrological modelling
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
An investigation of anthropogenic influences on hydrologic connectivity using stress tests
Making a case for power-sensitive water modelling: a literature review
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Assessing interannual variability in nitrogen sourcing and retention through hybrid Bayesian watershed modeling
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Global cotton production under climate change – Implications for yield and water consumption
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-5, https://doi.org/10.5194/hess-2024-5, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
EGUsphere, https://doi.org/10.5194/egusphere-2024-326, https://doi.org/10.5194/egusphere-2024-326, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large-scales. We design a new, simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain where we can significantly improve the simulation of reservoir-impacted flow.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-243, https://doi.org/10.5194/hess-2023-243, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
We investigated the influence of anthropogenic water withdrawals and climatic changes on streambed drying the Dreisam valley (24 km²) in Germany by means of physical modeling. The model was able to reproduce streambed drying at 50 % of locations. Our results show that groundwater withdrawals intensifiy riverbed drying on short timescales during phases with low groundwater levels at specific locations. At some upstream locations however, climatic preconditions are the primary influencing factor.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-164, https://doi.org/10.5194/hess-2023-164, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 49 scientific articles shows that in scientific literature little attention is given to the power of hydrological models to influence development processes and outcomes. However, that there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling which means that people are critical about how models made and with what effects.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Jonathan W. Miller, Kimia Karimi, Arumugam Sankarasubramanian, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 25, 2789–2804, https://doi.org/10.5194/hess-25-2789-2021, https://doi.org/10.5194/hess-25-2789-2021, 2021
Short summary
Short summary
Within a watershed, nutrient export can vary greatly over time and space. In this study, we develop a model to leverage over 30 years of streamflow, precipitation, and nutrient sampling data to characterize nitrogen export from various livestock and land use types across a range of precipitation conditions. Modeling results reveal that urban lands developed before 1980 have remarkably high levels of nitrogen export, while agricultural export is most responsive to precipitation.
Chia-Wen Wu, Frederick N.-F. Chou, and Fong-Zuo Lee
Hydrol. Earth Syst. Sci., 25, 2063–2087, https://doi.org/10.5194/hess-25-2063-2021, https://doi.org/10.5194/hess-25-2063-2021, 2021
Short summary
Short summary
This paper promotes the feasibility of emptying instream storage through joint operation of multiple reservoirs. The trade-off between water supply and emptying reservoir storage and alleviating impacts on downstream environment are thoroughly discussed. Operation of reservoirs is optimized to calibrate the optimal parameters defining the activation and termination of emptying reservoir. The optimized strategy limits the water shortage and maximizes the expected benefits of emptying reservoir.
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Cited articles
Abebe, Y. A., Ghorbani, A., Nikolic, I., Vojinovic, Z., and Sanchez, A.: A
coupled flood-agent-institution modelling (CLAIM) framework for urban flood
risk management, Environ. Modell. Softw., 111, 483–492,
https://doi.org/10.1016/j.envsoft.2018.10.015, 2019.
Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J.
W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther,
H.: Integrating human behaviour dynamics into flood disaster risk
assessment, Nat. Clim. Change, 8, 193–199,
https://doi.org/10.1038/s41558-018-0085-1, 2018.
Alam, M. J., Habib, M. A., and Pothier, E.: Shelter locations in evacuation:
A Multiple Criteria Evaluation combined with flood risk and traffic
microsimulation modeling, Int. J. Disaster Risk R., 53, 102016,
https://doi.org/10.1016/j.ijdrr.2020.102016, 2021.
Alçada-Almeida, L., Tralhão, L., Santos, L., and Coutinho-Rodrigues,
J.: A multiobjective approach to locate emergency shelters and identify
evacuation routes in urban areas, Geogr. Anal., 41, 9–29,
https://doi.org/10.1111/j.1538-4632.2009.00745.x, 2009.
Alonso Vicario, S., Mazzoleni, M., Bhamidipati, S., Gharesifard, M.,
Ridolfi, E., Pandolfo, C., and Alfonso, L.: Unravelling the influence of
human behaviour on reducing casualties during flood evacuation, Hydrolog. Sci.
J., 65, 2359–2375, https://doi.org/10.1080/02626667.2020.1810254, 2020.
Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S.,
and Blöschl, G.: The Value of Empirical Data for Estimating the
Parameters of a Sociohydrological Flood Risk Model, Water Resour. Res., 55,
1312–1336, https://doi.org/10.1029/2018WR024128, 2019.
Bayram, V., Tansel, B. T., and Yaman, H.: Compromising system and user
interests in shelter location and evacuation planning, Transp. Res. B,
72, 146–163, https://doi.org/10.1016/j.trb.2014.11.010, 2015.
Bernardini, G., Santarelli, S., Quagliarini, E., and Orazio, M. D.: Dynamic
guidance tool for a safer earthquake pedestrian evacuation in urban systems,
Comput. Environ. Urban Syst., 65, 150–161,
https://doi.org/10.1016/j.compenvurbsys.2017.07.001, 2017.
Bhatt, G., Kumar, M., and Duffy, C. J.: A tightly coupled GIS and
distributed hydrologic modeling framework, Environ. Modell. Softw., 62,
70–84, https://doi.org/10.1016/j.envsoft.2014.08.003, 2014.
Braess, D., Nagurney, A., and Wakolbinger, T.: On a Paradox of Traffic
Planning, Transp. Sci., 39, 446–450,
https://doi.org/10.1287/trsc.1050.0127, 2005.
Brunner, M. I., Papalexiou, S., Clark, M. P., and Gilleland, E.: How
Probable Is Widespread Flooding in the United States?, Water Resour. Res.,
56, 1–16, https://doi.org/10.1029/2020WR028096, 2020.
Chen, C., Lindell, M. K., and Wang, H.: Tsunami preparedness and resilience
in the Cascadia Subduction Zone: A multistage model of expected evacuation
decisions and mode choice, Int. J. Disaster Risk Re., 59, 102244,
https://doi.org/10.1016/j.ijdrr.2021.102244, 2021.
Chen, C., Mostafizi, A., Wang, H., Cox, D., and Chand, C.: An integrative
agent-based vertical evacuation risk assessment model for near-field tsunami
hazards, Risk Anal., 1, 1–15, https://doi.org/10.1111/risa.13881, 2022.
Chen, X. and Zhan, F. B.: Agent-based modelling and simulation of urban
evacuation: Relative effectiveness of simultaneous and staged evacuation
strategies, J. Oper. Res. Soc., 59, 25–33,
https://doi.org/10.1057/palgrave.jors.2602321, 2008.
Chen, X., Wang, D., Tian, F., and Sivapalan, M.: From channelization to
restoration: Sociohydrologic modeling with changing community preferences in
the Kissimmee River Basin, Florida, Water Resour. Res., 52, 1227–1244,
https://doi.org/10.1002/2015WR018194, 2016.
Dias, C., Rahman, N. A., and Zaiter, A.: Evacuation under flooded
conditions: Experimental investigation of the influence of water depth on
walking behaviors, Int. J. Disaster Risk Re., 58, 102192,
https://doi.org/10.1016/j.ijdrr.2021.102192, 2021.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013.
Du, E., Rivera, S., Cai, X., Myers, L., Ernest, A., and Minsker, B.: Impacts
of human behavioral heterogeneity on the benefits of probabilistic flood
warnings: An agent-based modeling framework, J. Am. Water Resour. As.,
53, 316–332, https://doi.org/10.1111/1752-1688.12475, 2016.
Du, E., Cai, X., Sun, Z., and Minsker, B.: Exploring the Role of Social
Media and Individual Behaviors in Flood Evacuation Processes: An Agent-Based
Modeling Approach, Water Resour. Res., 53, 9164–9180,
https://doi.org/10.1002/2017WR021192, 2017.
Du, E., Tian, Y., Cai, X., Zheng, Y., Li, X., and Zheng, C.: Exploring
spatial heterogeneity and temporal dynamics of human-hydrological
interactions in large river basins with intensive agriculture: A tightly
coupled, fully integrated modeling approach, J. Hydrol., 591, 125313,
https://doi.org/10.1016/j.jhydrol.2020.125313, 2020.
Du, E., Wu, F., Jiang, H., Guo, N., Tian, Y., and Zheng, C.: Dataset for the article “Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes” (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7797361, 2023.
Etkin, D., Medalye, J., and Higuchi, K.: Climate warming and natural
disaster management: An exploration of the issues, Clim. Change, 112,
585–599, https://doi.org/10.1007/s10584-011-0259-6, 2012.
Farkas, K., Nagy, A., Tomas, T., and Szabo, R.: Participatory sensing based
real-time public transport information service, in: IEEE International
Conference on Pervasive Computing and Communication Workshops, Budapest, Hungary, 24–28 March 2014,
141–144,
https://doi.org/10.1109/PerComW.2014.6815181, 2014.
Frank, M.: The Braess paradox, Math. Program., 20, 283–302,
https://doi.org/10.1007/BF01589354, 1981.
Fu, L., Sun, D., and Rilett, L. R.: Heuristic shortest path algorithms for
transportation applications: State of the art, Comput. Oper. Res., 33,
3324–3343, https://doi.org/10.1016/j.cor.2005.03.027, 2006.
Fuchs, S., Karagiorgos, K., Kitikidou, K., Maris, F., Paparrizos, S., and Thaler, T.: Flood risk perception and adaptation capacity: a contribution to the socio-hydrology debate, Hydrol. Earth Syst. Sci., 21, 3183–3198, https://doi.org/10.5194/hess-21-3183-2017, 2017.
Gallo, G. and Pallottino, S.: Shortest path algorithms, Ann. Oper. Res., 13,
1–79, 1988.
Girons Lopez, M., Di Baldassarre, G., and Seibert, J.: Impact of social
preparedness on flood early warning systems, Water Resour. Res., 53,
522–534, https://doi.org/10.1002/2016WR019387, 2017.
Goodarzi, L., Banihabib, M. E., and Roozbahani, A.: A decision-making model
for flood warning system based on ensemble forecasts, J. Hydrol., 573,
207–219, https://doi.org/10.1016/j.jhydrol.2019.03.040, 2019.
Guo, K., Guan, M., and Yu, D.: Urban surface water flood modelling – a comprehensive review of current models and future challenges, Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021, 2021.
Harvey, E. P., Cardwell, R. C., McDonald, G. W., van Delden, H., Vanhout,
R., Smith, N. J., Kim, J. hwan, Forgie, V. E., and van den Belt, M.:
Developing integrated models by coupling together existing models; land use,
economics, demographics and transport in Wellington, New Zealand, Comput.
Environ. Urban, 74, 100–113,
https://doi.org/10.1016/j.compenvurbsys.2018.07.004, 2019.
Hasan, S., Ukkusuri, S., Gladwin, H., and Murray-Tuite, P.: Behavioral model
to understand household-level hurricane evacuation decision making, J.
Transp. Eng., 137, 341–348,
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000223, 2011.
He, M., Chen, C., Zheng, F., Chen, Q., Zhang, J., Yan, H., and Lin, Y.: An
efficient dynamic route optimization for urban flooding evacuation based on
Cellular Automata, Comput. Environ. Urban, 87, 101622,
https://doi.org/10.1016/j.compenvurbsys.2021.101622, 2021.
Hino, M. and Nance, E.: Five ways to ensure flood-risk research helps the
most vulnerable, Nature, 595, 27–29,
https://doi.org/10.1038/d41586-021-01750-0, 2021.
Hofflinger, A., Somos-Valenzuela, M. A., and Vallejos-Romero, A.: Response time to flood events using a social vulnerability index (ReTSVI), Nat. Hazards Earth Syst. Sci., 19, 251–267, https://doi.org/10.5194/nhess-19-251-2019, 2019.
Horni, A.: Multi-agent Transport Simulation Matsim, Ubiquity Press, London,
https://doi.org/10.5334/baw, 2016.
Huang, S., Lindell, M. K., Prater, C. S., Wu, H., and Siebeneck, L. K.:
Household evacuation decision making in response to Hurricane Ike, Nat.
Hazards Rev., 13, 283–296,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000074, 2012.
Huang, S.-K., Lindell, M. K., and Prater, C. S.: Multistage Model of
Hurricane Evacuation Decision: Empirical Study of Hurricanes Katrina and
Rita, Nat. Hazards Rev., 18, 05016008,
https://doi.org/10.1061/(asce)nh.1527-6996.0000237, 2017.
Islam, K. A., Marathe, M., Mortveit, H., Swarup, S., and Vullikanti, A.: A
Simulation-based Approach for Large-scale Evacuation Planning, in: IEEE
International Conference on Big Data, 1338–1345,
https://doi.org/10.1109/BigData50022.2020.9377794, 2020.
Jiang, R., Yu, X., Xie, J., Zhao, Y., Li, F., and Yang, M.: Recent changes
in daily climate extremes in a serious water shortage metropolitan region, a
case study in Jing-Jin-Ji of China, Theor. Appl. Climatol., 134, 565–584,
https://doi.org/10.1007/s00704-017-2293-4, 2018.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river
and coastal flooding: Long term trends and changes, Glob. Environ. Chang.,
22, 823–835, https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.
Khalilpourazari, S. and Pasandideh, S. H. R.: Designing emergency flood
evacuation plans using robust optimization and artificial intelligence, J.
Comb. Optim., 41, 640–677, https://doi.org/10.1007/s10878-021-00699-0,
2021.
Koch, Z., Yuan, M., and Bristow, E.: Emergency Response after Disaster
Strikes: Agent-Based Simulation of Ambulances in New Windsor, NY, J.
Infrastruct. Syst., 26, 06020001,
https://doi.org/10.1061/(asce)is.1943-555x.0000565, 2020.
Kreibich, H., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P.,
Ciavola, P., Green, C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R.,
and Thieken, A. H.: Costing natural hazards, Nat. Clim. Chang., 4, 303–306,
https://doi.org/10.1038/nclimate2182, 2014.
Kreibich, H., Bubeck, P., Van Vliet, M., and De Moel, H.: A review of
damage-reducing measures to manage fluvial flood risks in a changing
climate, Mitig. Adapt. Strat. Gl., 20, 967–989,
https://doi.org/10.1007/s11027-014-9629-5, 2015.
Lämmel, G., Klüpfel, H., and Nagel, K.: The MATSim Network Flow
Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an
Application to the Evacuation of the Indonesian City of Padang in Case of a
Tsunami Warning, in: Pedestrian Behavior, edited by: Timmermans, H., Emerald
Group Publishing Limited, 245–265,
https://doi.org/10.1108/9781848557512-011, 2009.
Lämmel, G., Grether, D., and Nagel, K.: The representation and
implementation of time-dependent inundation in large-scale microscopic
evacuation simulations, Transp. Res. Part C, 18, 84–98,
https://doi.org/10.1016/j.trc.2009.04.020, 2010.
Lee, K. S., Eom, J. K., and Moon, D.: Applications of TRANSIMS in
transportation: A literature review, Procedia Comput. Sci., 32, 769–773,
https://doi.org/10.1016/j.procs.2014.05.489, 2014.
Li, A. C. Y., Nozick, L., Xu, N., and Davidson, R.: Shelter location and
transportation planning under hurricane conditions, Transp. Res. Part E, 48,
715–729, https://doi.org/10.1016/j.tre.2011.12.004, 2012.
Li, B., Hou, J., Ma, Y., Bai, G., Wang, T., Xu, G., Wu, B., and Jiao, Y.: A
coupled high-resolution hydrodynamic and cellular automata-based evacuation
route planning model for pedestrians in flooding scenarios, Nat. Hazards,
110, 607–628, https://doi.org/10.1007/s11069-021-04960-x, 2022.
Li, X., Zhang, L., Zheng, Y., Yang, D., Wu, F., Tian, Y., Han, F., Gao, B.,
Li, H., Zhang, Y., Ge, Y., Cheng, G., Fu, B., Xia, J., Song, C., and Zheng,
C.: Novel hybrid coupling of ecohydrology and socioeconomy at river basin
scale: A watershed system model for the Heihe River basin, Environ. Modell.
Softw., 141, 105058, https://doi.org/10.1016/j.envsoft.2021.105058, 2021.
Lindell, M., Sorensen, J., Baker, E., and Lehman, W.: Community response to
hurricane threat: Estimates of household evacuation preparation time
distributions, Transp. Res. Part D, 85, 102457,
https://doi.org/10.1016/j.trd.2020.102457, 2020.
Lindell, M. K., Lu, J.-C., and Prater, C. S.: Household decision making and
evacuation in response to hurricane Lili, Nat. Hazards Rev., 6, 171–179,
https://doi.org/10.1061/(ASCE)1527-6988(2005)6:4(171), 2005.
Liu, X. and Lim, S.: Integration of spatial analysis and an agent-based
model into evacuation management for shelter assignment and routing, J.
Spat. Sci., 61, 283–298, https://doi.org/10.1080/14498596.2016.1147393,
2016.
Mahmud, K. and Town, G. E.: A review of computer tools for modeling electric
vehicle energy requirements and their impact on power distribution networks,
Appl. Energ., 172, 337–359,
https://doi.org/10.1016/j.apenergy.2016.03.100, 2016.
McClymont, K., Morrison, D., Beevers, L., and Carmen, E.: Flood resilience:
a systematic review, J. Environ. Plann. Man., 63, 1151–1176,
https://doi.org/10.1080/09640568.2019.1641474, 2020.
Melnikov, V. R., Krzhizhanovskaya, V. V, Lees, M. H., and Boukhanovsky, A.
V: Data-driven Travel Demand Modelling and Agent-based Traffic Simulation in
Amsterdam Urban Area, Procedia Comput. Sci., 80, 2030–2041,
https://doi.org/10.1016/j.procs.2016.05.523, 2016.
Milevich, D., Melnikov, V., Karbovskii, V., and Krzhizhanovskaya, V.:
Simulating an impact of road network improvements on the performance of
transportation systems under critical load: Agent-based Approach, Procedia
Comput. Sci., 101, 253–261, https://doi.org/10.1016/j.procs.2016.11.030,
2016.
Mostafizi, A., Wang, H., Cox, D., Cramer, L., and Dong, S.: Agent-based
tsunami evacuation modeling of unplanned network disruptions for
evidence-driven resource allocation and retrofitting strategies, Nat.
Hazards, 88, 1347–1372, https://doi.org/10.1007/s11069-017-2927-y, 2017.
Mostafizi, A., Wang, H., Cox, D., and Dong, S.: An agent-based vertical
evacuation model for a near-field tsunami: Choice behavior, logical shelter
locations, and life safety, Int. J. Disaster Risk Re., 34, 467–479,
https://doi.org/10.1016/j.ijdrr.2018.12.018, 2019.
Moulds, S., Buytaert, W., Templeton, M. R., and Kanu, I.: Modeling the
Impacts of Urban Flood Risk Management on Social Inequality, Water Resour.
Res., 57, e2020WR029024, https://doi.org/10.1029/2020WR029024, 2021.
Muhammad, A., De Risi, R., De Luca, F., Mori, N., Yasuda, T., and Goda, K.:
Are current tsunami evacuation approaches safe enough?, Stoch. Environ. Res.
Risk Assess., 35, 759–779, https://doi.org/10.1007/s00477-021-02000-5,
2021.
Murchland, J. D.: Braess's paradox of traffic flow, Transp. Res., 4,
391–394, https://doi.org/10.1016/0041-1647(70)90196-6, 1970.
Murray-Tuite, P. and Wolshon, B.: Evacuation transportation modeling: An
overview of research, development, and practice, Transp. Res. Part C, 27,
25–45, https://doi.org/10.1016/j.trc.2012.11.005, 2013.
Murray-Rust, D., Robinson, D. T., Guillem, E., Karali, E., and Rounsevell,
M.: An open framework for agent based modelling of agricultural land use
change, Environ. Modell. Softw., 61, 19–38,
https://doi.org/10.1016/j.envsoft.2014.06.027, 2014.
Nakanishi, H., Black, J., and Suenaga, Y.: Investigating the flood
evacuation behaviour of older people: A case study of a rural town in Japan,
Res. Transp. Bus. Manag., 30, 100376,
https://doi.org/10.1016/j.rtbm.2019.100376, 2019.
Nappi, M. M. L. and Souza, J. C.: Disaster management: hierarchical
structuring criteria for selection and location of temporary shelters, Nat.
Hazards, 75, 2421–2436, https://doi.org/10.1007/s11069-014-1437-4, 2015.
Nester, T., Komma, J., Viglione, A., and Blöschl, G.: Flood forecast
errors and ensemble spread-A case study, Water Resour. Res., 48, 1–19,
https://doi.org/10.1029/2011WR011649, 2012.
Nigussie, T. A. and Altunkaynak, A.: Modeling the effect of urbanization on
flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM
model, Nat. Hazards, 99, 1031–1047,
https://doi.org/10.1007/s11069-019-03794-y, 2019.
Oh, W. S., Yu, D. J., and Muneepeerakul, R.: Efficiency-fairness trade-offs
in evacuation management of urban floods: The effects of the shelter
capacity and zone prioritization, PLoS One, 16, e0253395,
https://doi.org/10.1371/journal.pone.0253395, 2021.
Palen, L., Starbird, K., Vieweg, S., and Hughes, A.: Twitter-based
information distribution during the 2009 Red River Valley flood threat,
Bull. Am. Soc. Inf. Sci. Technol., 36, 13–17,
https://doi.org/10.1002/bult.2010.1720360505, 2010.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of
challenges and opportunities, WIREs Water, 4, e1193,
https://doi.org/10.1002/wat2.1193, 2017.
Papaioannou, G., Loukas, A., Vasiliades, L., and Aronica, G. T.: Flood
inundation mapping sensitivity to riverine spatial resolution and modelling
approach, Nat. Hazards, 83, S117–S132,
https://doi.org/10.1007/s11069-016-2382-1, 2016.
Pas, E. I. and Principio, S. L.: Braess' paradox: Some new insights, Transport
Res. B-Meth., 31, 265–276,
https://doi.org/10.1016/S0191-2615(96)00024-0, 1997.
Paul, B. K.: Factors Affecting Evacuation Behavior: The Case of 2007 Cyclone
Sidr, Bangladesh, Prof. Geogr., 64, 401–414,
https://doi.org/10.1080/00330124.2011.609780, 2012.
Rahman, A., Hokugo, A., Ohtsu, N., and Chakma, S.: Evacuation Preparation
Scenarios of Households during Early and Emergency Evacuation: A Case Study
of Cyclone Bulbul in Southwestern Coastal Bangladesh, J. Integr. Disaster
Risk Manag., 11, 108–137, https://doi.org/10.5595/001c.29128, 2021.
Saadi, I., Mustafa, A., Teller, J., and Cools, M.: Investigating the impact
of river floods on travel demand based on an agent-based modeling approach:
The case of Liège, Belgium, Transp. Policy, 67, 102–110,
https://doi.org/10.1016/j.tranpol.2017.09.009, 2018.
Shahabi, K. and Wilson, J. P.: CASPER: Intelligent capacity-aware evacuation
routing, Comput. Environ. Urban, 46, 12–24,
https://doi.org/10.1016/j.compenvurbsys.2014.03.004, 2014.
Shi, H., Du, E., Liu, S., and Chau, K.: Advances in Flood Early Warning:
Ensemble Forecast, Information Dissemination and Decision-Support Systems,
Hydrology, 7, 56, https://doi.org/10.3390/hydrology7030056, 2020.
Simonovic, S. P. and Ahmad, S.: Computer-based model for flood evacuation
emergency planning, Nat. Hazards, 34, 25–51,
https://doi.org/10.1007/s11069-004-0785-x, 2005.
Sivapalan, M., Savenije, H., and Blöschl, G.: Socio-hydrology: A new
science of people and water, Hydrol. Process., 26, 1270–1276,
https://doi.org/10.1002/hyp.8426, 2012.
Smith, A. B. and Matthews, J. L.: Quantifying uncertainty and variable
sensitivity within the US billion-dollar weather and climate disaster cost
estimates, Nat. Hazards, 77, 1829–1851,
https://doi.org/10.1007/s11069-015-1678-x, 2015.
Su, H., Wang, W., Jia, Y., Han, S. C., Gao, H., Niu, C., and Ni, G.: Impact
of urbanization on precipitation and temperature over a lake-marsh wetland:
A case study in Xiong'an New Area, China, Agr. Water Manage., 243, 106503,
https://doi.org/10.1016/j.agwat.2020.106503, 2021.
Sun, B. and Yang, X.: Simulation of water resources carrying capacity in
Xiong'an New Area based on system dynamics model, Water, 11, 1085,
https://doi.org/10.3390/w11051085, 2019.
Sun, J., Chow, A. C. H., and Madanat, S. M.: Multimodal transportation
system protection against sea level rise, Transp. Res. Part D, 88, 102568,
https://doi.org/10.1016/j.trd.2020.102568, 2020.
Sung, K., Jeong, H., Sangwan, N., and Yu, D. J.: Effects of Flood Control
Strategies on Flood Resilience Under Sociohydrological Disturbances, Water
Resour. Res., 54, 2661–2680, https://doi.org/10.1002/2017WR021440, 2018.
Takabatake, T., Fujisawa, K., Esteban, M., and Shibayama, T.: Simulated
effectiveness of a car evacuation from a tsunami, Int. J. Disaster Risk
Re., 47, 101532, https://doi.org/10.1016/j.ijdrr.2020.101532, 2020.
Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood
vulnerability in the last 50 years, Sci. Rep., 6, 36021,
https://doi.org/10.1038/srep36021, 2016.
Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S.,
Brakenridge, G. R., Erickson, T. A., and Slayback, D. A.: Satellite imaging
reveals increased proportion of population exposed to floods, Nature, 596,
80–86, https://doi.org/10.1038/s41586-021-03695-w, 2021.
Teng, J., Jakeman, A., Vaze, J., Croke, B., Dutta, D., and Kim, S.: Flood
inundation modelling: A review of methods, recent advances and uncertainty
analysis, Environ. Modell. Softw., 90, 201–216,
https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Troy, T. J., Konar, M., Srinivasan, V., and Thompson, S.: Moving sociohydrology forward: a synthesis across studies, Hydrol. Earth Syst. Sci., 19, 3667–3679, https://doi.org/10.5194/hess-19-3667-2015, 2015.
Urata, J. and Pel, A. J.: People's Risk Recognition Preceding Evacuation and
Its Role in Demand Modeling and Planning, Risk Anal., 38, 889–905,
https://doi.org/10.1111/risa.12931, 2018.
Verkade, J. S. and Werner, M. G. F.: Estimating the benefits of single value and probability forecasting for flood warning, Hydrol. Earth Syst. Sci., 15, 3751–3765, https://doi.org/10.5194/hess-15-3751-2011, 2011.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G.,
Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from
socio-hydrology modelling on dealing with flood risk – Roles of collective
memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82,
https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Wang, H., Mostafizi, A., Cramer, L. A., Cox, D., and Park, H.: An
agent-based model of a multimodal near-field tsunami evacuation:
Decision-making and life safety, Transport Res. C-Emerg., 64,
86–100, https://doi.org/10.1016/j.trc.2015.11.010, 2016.
Wang, W., Yang, S., Stanley, H. E., and Gao, J.: Local floods induce
large-scale abrupt failures of road networks, Nat. Commun., 10, 2114,
https://doi.org/10.1038/s41467-019-10063-w, 2019.
Wang, Y., Song, L., Han, Z., Liao, Y., Xu, H., Zhai, J., and Zhu, R.:
Climate-related risks in the construction of Xiongan New Area, China, Theor.
Appl. Climatol., 141, 1301–1311,
https://doi.org/10.1007/s00704-020-03277-2, 2020.
Wang, Z. and Jia, G.: A novel agent-based model for tsunami evacuation
simulation and risk assessment, Nat. Hazards, 105, 2045–2071,
https://doi.org/10.1007/s11069-020-04389-8, 2021.
Wedawatta, G. and Ingirige, B.: Resilience and adaptation of small and
medium-sized enterprises to flood risk, Disaster Prev. Manag.,
21, 474–488, https://doi.org/10.1108/09653561211256170, 2012.
Witkowski, K.: Man's impact on the transformation of channel patterns (the
Skawa River, southern Poland), River Res. Appl., 37, 150–162,
https://doi.org/10.1002/rra.3702, 2021.
Wood, N., Henry, K., and Peters, J.: Influence of demand and capacity in
transportation simulations of short-notice, distant-tsunami evacuations,
Transp. Res. Interdiscip. Perspect., 7, 100211,
https://doi.org/10.1016/j.trip.2020.100211, 2020.
Wu, F., Guo, N., Kumar, P., and Niu, L.: Scenario-based extreme flood risk
analysis of Xiong'an New Area in northern China, J. Flood Risk Manag., 14,
e12707, https://doi.org/10.1111/jfr3.12707, 2021.
Yu, D. J., Haeffner, M., Jeong, H., Pande, S., Dame, J., Di Baldassarre, G.,
Garcia-Santos, G., Hermans, L., Muneepeerakul, R., Nardi, F., Sanderson, M.
R., Tian, F., Wei, Y., Wessels, J., and Sivapalan, M.: On capturing human
agency and methodological interdisciplinarity in socio-hydrology research,
Hydrolog. Sci. J., 67, 1905–1916,
https://doi.org/10.1080/02626667.2022.2114836, 2022.
Zhu, J., Ma, Z., Yan, Z., Yuan, X., and Fu, C.: Problems Faced by
Construction of Xiongan New Area under Climate Change, Bull. Chinese Acad.
Sci., 32, 1231–1236, https://doi.org/10.16418/j.issn.1000-3045.2017.11.008,
2017.
Zhu, Y., Xie, K., Ozbay, K., and Yang, H.: Hurricane Evacuation Modeling
Using Behavior Models and Scenario-Driven Agent-based Simulations, Procedia
Comput. Sci., 130, 836–843, https://doi.org/10.1016/j.procs.2018.04.074,
2018.
Zhuge, C., Bithell, M., Shao, C., Li, X., and Gao, J.: An improvement in
MATSim computing time for large-scale travel behaviour microsimulation,
Transportation, 48, 193–214,
https://doi.org/10.1007/s11116-019-10048-0, 2021.
Zhuo, L. and Han, D.: Agent-based modelling and flood risk management: A
compendious literature review, J. Hydrol., 591, 125600,
https://doi.org/10.1016/j.jhydrol.2020.125600, 2020.
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
This study develops an integrated socio-hydrological modeling framework that can simulate the...