Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-139-2023
https://doi.org/10.5194/hess-27-139-2023
Research article
 | 
09 Jan 2023
Research article |  | 09 Jan 2023

Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models

Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai

Related authors

Enhancing physically based and distributed hydrological model calibration through internal state variable constraints
Frédéric Talbot, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3353,https://doi.org/10.5194/egusphere-2024-3353, 2024
Short summary
Towards a semi-asynchronous method for hydrological modeling in climate change studies
Frédéric Talbot, Simon Ricard, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3037,https://doi.org/10.5194/egusphere-2024-3037, 2024
Preprint archived
Short summary
Exploring the ability of LSTM-based hydrological models to simulate streamflow time series for flood frequency analysis
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134,https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: A case for long-short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2133,https://doi.org/10.5194/egusphere-2024-2133, 2024
Short summary
Assessing the Hydrological Impact Sensitivity to Climate Model Weighting Strategies
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183,https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025,https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025,https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary

Cited articles

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Progress in Physical Geography: Earth and Environment, 36, 480–513, https://doi.org/10.1177/0309133312444943, 2012.  
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Ali, A. S. A., Ebrahimi, S., Ashiq, M. M., Alasta, M. S., and Azari, B.: CNN-Bi LSTM neural network for simulating groundwater level, Environ. Eng., 8, 1–7, https://doi.org/10.52547/crpase.8.1.2748, 2022. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
Anctil, F. and Rat, A.: Evaluation of neural network streamflow forecasting on 47 watersheds, J. Hydrol. Eng., 10, 85–88, https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(85), 2005. 
Download
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Share