

Supplement of

Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models

Richard Arsenault et al.

Correspondence to: Richard Arsenault (richard.arsenault@etsmtl.ca)

The copyright of individual parts of the supplement might differ from the article licence.

⁵ Supplement

10

Contents:

- 1- Figure S1 LSTM model structure implemented in this study
- 2- Table S1 HSAMI hydrological model parameters
- 3- Table S2 HMETS hydrological model parameters
- 15 4- Table S3 GR4JCN hydrological model parameters

Figure S1: LSTM model structure implemented in this study. Numbers in parentheses in the input and output fields of each model represent the size of the inputs and outputs, respectively.

Table S1: HSAMI model parameters

Parameter	Units	Description
\mathbf{X}_1	-	Summer PET scaling factor
X_2	-	Proportion of summer PET corresponding to winter PET
X_3	cm/°C/d	Degree-day factor for daytime snowmelt
X_4	cm/°C/d	Degree-day factor for nighttime snowmelt
X_5	°C	Threshold temperature for daytime snowmelt initiation
X_6	°C	Threshold temperature for nighttime snowmelt initiation
X7	°C	Minimum temperature threshold to accelerate rain induced snowmelt
X_8	-	Parameter that relates snowmelt conditions to the snow covered proportion of the watershed
X9	-	Parameter that relates freezing conditions to the proportion of surface runoff
X_{10}	cm/d	Daily rainfall rate necessary for 50% of surface runoff when the soil is completely dry
X11	cm/d	Daily rainfall rate necessary for 50% of surface runoff when the soil is saturated
X12	cm	Water in unsaturated zone which cannot flow by gravity
X13	cm	Maximum water quantity which can be contained in the unsaturated zone
X_{14}	cm	Maximum water quantity which can be contained in the aquifer before turning into surface runoff
X15	-	Surface water proportion which flows through the intermediary hydrograph in normal conditions
X16	-	Surface water proportion which flows through the intermediary hydrograph when unsaturated zone is full
X17	cm/d	Outflow rate from the unsaturated zone to the saturated zone
X18	cm/d	Outflow rate from the saturated zone which constitutes the base flow rate
X19	cm/d	Outflow rate from the interflow storage which constitutes the interflow rate
X_{20}	d	Time to peak of surface unit hydrograph
X_{21}	-	Shape parameter of the surface unit hydrograph
X ₂₂	d	Time to peak of the interflow unit hydrograph
X ₂₃	-	Shape parameter of the interflow unit hydrograph

Table S2: HMETS model parameters

Parameter	Units	Description
ddf_{min}	mm/°C/d	Minimum degree-day-factor
ddf_{plus}	mm/°C/d	ddf_{plus} : Maximum degree-day-factor ($ddf_{min} + ddf_{plus} = ddf_{max}$)
T_{bm}	°C	Base melting temperature
Kcum	mm ⁻¹	Empirical parameter for the calculation of the degree-day-factor
\mathbf{fc}_{\min}	-	Minimum fraction for the snowpack water retention capacity
fcplus	-	Maximum fraction of the snowpack water retention capacity $(fc_{min} + fc_{plus} = fc_{max})$
Ccum	mm ⁻¹	Parameter for the calculation of water retention capacity
T_{bf}	°C	Base refreezing temperature
K_{f}	mm/°C/d	Degree-day factor for refreezing
Fe	-	Empirical exponent for the freezing equation
$\mathrm{ET}_{\mathrm{eff}}$	-	Fraction of the potential evapotranspiration
Cr	-	Fraction of the water for surface and delayed runoff
Cvp	-	Fraction of the water for groundwater recharge
$C_{\rm V}$	-	Fraction of the water for hypodermic flow
cp	-	Fraction of the water for groundwater flow
LV _{max}	mm	Maximum level of the vadose zone
LP _{max}	mm	Maximum level of the phreatic zone
α_1	-	Shape parameter α for the gamma distribution used on the surface unit hydrograph
β_1	-	Rate parameter β for the gamma distribution used on the surface unit hydrograph
α_2	-	Shape parameter α for the gamma distribution used on the delayed unit hydrograph
β_2	-	Rate parameter β for the gamma distribution used on the delayed unit hydrograph

Table S3: GR4JCN model parameters

Parameter	Units	Description
X_1	mm	Production storage capacity
X_2	mm	Groundwater exchange coefficient
X3	mm	One day ahead maximum capacity of the routing store
X_4	d	Time base of unit hydrograph
C _{TG}	-	Ponderation coefficient of the thermic state
K _f	mm/°C/d	Degree-day factor

40