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Abstract. This study investigates the ability of long short-
term memory (LSTM) neural networks to perform stream-
flow prediction at ungauged basins. A set of state-of-the-
art, hydrological model-dependent regionalization methods
are applied to 148 catchments in northeast North America
and compared to an LSTM model that uses the exact same
available data as the hydrological models. While conceptual
model-based methods attempt to derive parameterizations at
ungauged sites from other similar or nearby catchments, the
LSTM model uses all available data in the region to maxi-
mize the information content and increase its robustness. Fur-
thermore, by design, the LSTM does not require explicit defi-
nition of hydrological processes and derives its own structure
from the provided data. The LSTM networks were able to
clearly outperform the hydrological models in a leave-one-
out cross-validation regionalization setting on most catch-
ments in the study area, with the LSTM model outperforming
the hydrological models in 93 % to 97 % of catchments de-
pending on the hydrological model. Furthermore, for up to
78 % of the catchments, the LSTM model was able to predict
streamflow more accurately on pseudo-ungauged catchments
than hydrological models calibrated on the target data, show-
ing that the LSTM model’s structure was better suited to con-
vert the meteorological data and geophysical descriptors into
streamflow than the hydrological models even calibrated to
those sites in these cases. Furthermore, the LSTM model ro-
bustness was tested by varying its hyperparameters, and still
outperformed hydrological models in regionalization in al-

most all cases. Overall, LSTM networks have the potential
to change the regionalization research landscape by provid-
ing clear improvement pathways over traditional methods in
the field of streamflow prediction in ungauged catchments.

1 Introduction

The ability to simulate streamflow at ungauged sites is a ma-
jor unresolved problem in hydrology (Blöschl et al., 2019).
Estimating flows in ungauged rivers, also known as stream-
flow regionalization, is a necessary step for many infrastruc-
ture control projects such as flood control reservoirs, hy-
dropower generation and management, and water availability
for recreational, agricultural, and environmental uses. Since
the International Association of the Hydrological Sciences
(IAHS) 2003–2013 decade on streamflow prediction in un-
gauged basins (PUBs) (Sivapalan et al., 2003), numerous
methods ranging from statistical (Castiglioni et al., 2011;
Skøien and Blöschl, 2007) to conceptual or physical (Wa-
gener et al., 2004; Wagener and Wheater, 2006) methods to
transfer knowledge from gauged basins to those ungauged
locations have been proposed. Some studies investigated the
ability to estimate continuous streamflow time series (Wa-
gener et al., 2004; Zhang and Chiew, 2009), whereas others
attempted to regionalize hydrological indices such as mean
and peak flow values directly (Yadav et al., 2007; Zhang et
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al., 2018), foregoing the necessity to model the entire hydro-
graph.

In the past few years, a multitude of studies have docu-
mented the progress of regionalization methods, which at-
tempt to solve, or alleviate, the problem of PUB. He et al.
(2011), Hrachowitz et al. (2013), and Razavi and Coulibaly
(2013) proposed detailed literature reviews following the
IAHS decade on PUB, which readers are encouraged to
consult for more in-depth knowledge about regionalization
methods. In a three-part metastudy, Parajka et al. (2013),
Salinas et al. (2013), and Viglione et al. (2013) analyzed the
results of 34 regionalization studies. The aim of their study
was to recommend best practices for regionalization based on
the climatological and physiographic properties of the region
of interest as well as the type of hydrological model. Here,
and in this study in general, the term “hydrological model”
refers to conceptual or physical models that represent hydro-
logical processes and can simulate streamflow from meteo-
rologic inputs. While some general trends were found, it was
still generally recognized that more research needed to be
performed to improve regionalization method performance.
Guo et al. (2021) also evaluated the research effort in terms of
regionalization across the globe since the end of the decade
on PUB, and their compilation shows that this is still a very
active field of research with novel methods being introduced
continuously.

Artificial neural networks (ANNs) have long been used in
hydrology (e.g. Abrahart et al., 2012; Anctil and Rat, 2005;
Coulibaly et al., 2000; Dawson and Wilby, 2001). Most stud-
ies used various versions of multilayer perceptron (MLP)
networks and some applications of simple recurrent neural
network (RNN) architecture. Despite a couple of decades of
work, MLP networks have not been shown to outperform
traditional conceptual/physical approaches in many different
sub-fields, such as water quality, groundwater, and stream-
flow modelling (Oyebode and Stretch, 2019), and method
improvements are required for them to gain broader accep-
tance.

A long short-term memory (LSTM) network is a spe-
cial type of RNN introduced by Hochreiter and Schmidhu-
ber (1997) that has built-in feedback connections that gives
it the ability to learn sequence dependence. This property
makes it particularly well suited to hydrological streamflow
simulation/forecast problems where data series are typically
strongly autocorrelated. LSTM models have the potential to
reshuffle the modelling/forecasting landscape in the near fu-
ture (Nearing et al., 2021). Even though LSTM models date
back to 1997, their use has only recently drastically increased
in the field of deep learning and particularly in the tradi-
tional artificial intelligence fields such as computer vision
and speech processing (e.g. Guo et al., 2016; LeCun et al.,
2015).

In hydrology, a breakthrough occurred with the seminal
work of Kratzert et al. (2018, 2019a), which showed that
deep learning (DL) could be successfully applied to stream-

flow modelling and regionalization studies, bringing signifi-
cant improvements over previous state-of-the-art methods. In
their study, Kratzert et al. (2019a) compared a modified long
short-term memory (LSTM) model to accept inputs not only
to be the meteorological forcing data, but also (static) catch-
ment characteristics serving as inputs during training. Their
model, named Entity-Aware-LSTM (EA-LSTM), was then
trained on a large number of catchments, using meteorologi-
cal and physiographic properties to best represent streamflow
at multiple gauges simultaneously. The EA-LSTM was then
applied to ungauged catchments using only meteorological
and physiographic properties of the ungauged basins. Their
results showed that the EA-LSTM was generally able to pro-
vide better flow estimates at the ungauged sites than well-
known conceptual hydrological models that were calibrated
on observed streamflow data. This work showed the potential
that LSTM models have in terms of representing the hydro-
logical processes without having to make assumptions and
hypotheses on their nature and structure.

Applications of deep learning in hydrology are all re-
cent, but most of the published studies have shown that neu-
ral networks outperform the baseline traditional approaches
(Kratzert et al., 2018). The ability of LSTM models is now
well established for streamflow modelling (Gauch et al.,
2021a; Kratzert et al., 2019b), but they are also showing
promise in other areas such as groundwater modelling (Ali et
al., 2022; Nourani et al., 2022), snow water equivalent map-
ping (Duan and Ullrich, 2021), and soil moisture modelling
(Q. Li et al., 2022). For example, Ayzel et al. (2021) used an
LSTM model to generate a gridded runoff database in West-
ern Russia that compared favourably to a similar dataset cre-
ated using the GR4J hydrology model processes.

For streamflow modelling, in a traditional comparison
mode, for which both the LSTM and hydrological models
are trained/calibrated using only data from each single catch-
ment, LSTM models have shown to globally outperform tra-
ditional conceptual and process-based hydrological models.
In a study of 241 catchments from the CAMELS database
(Addor et al., 2017), Kratzert et al. (2018) reported a mean
NSE (Nash–Sutcliffe efficiency) value of 0.63 for the LSTM
model and 0.58 for the SAC-SMA (Sacramento Soil Mois-
ture Accounting) conceptual lumped hydrological model in
temporal validation. The latter only outperformed the LSTM
model in the dry catchments of the southwest of the United
States, as the LSTM model suffered from the large portions
of the streamflow time series being zero and hence only con-
taining limited information. A similar performance gain was
noted by Kratzert et al. (2019a) on a study with 531 catch-
ments extracted from the same CAMELS database. Mean
NSE values in out-of-sample regionalization were 0.69 for
the LSTM model, 0.64 for the SAC-SMA conceptual hydro-
logical model, and 0.58 for the National Water Model, which
is a process-based streamflow-generating model. The mean
gain of 0.05 in terms of NSE efficiency between the LSTM
and SAC-SMA conceptual model across both studies is quite
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significant in the field of hydrological modelling. However,
the above results are only compared against two hydrologi-
cal models, and the observed gain in efficiency might have
been different (and possibly even be negative) if a different
hydrological model structure had been chosen as the base-
line comparison model. Feng et al. (2020) showed that us-
ing regional flow duration curves as predictors in an LSTM
model improved the prediction in ungauged basins skill over
671 CAMELS basins compared to an LSTM model without
the flow duration curve inputs. The Mai et al. (2022) study
specifically looked at this issue by comparing 12 hydrologi-
cal models locally and regionally calibrated against one glob-
ally trained LSTM model over the Great Lakes watershed.
The LSTM model was the best performing one across all val-
idation experiments (temporal, spatial, spatio-temporal) re-
garding streamflow (with an improvement in median KGE
compared to the second-best model of 0.03, 0.15, and 0.15,
respectively).

The LSTM models particularly shine when they are glob-
ally calibrated using data from all catchments. In the Kratzert
et al. (2018) study, the regional LSTM models (single mod-
els that can predict streamflow on a variety of catchments in a
region) performed on average just as well as the local LSTM
(trained specifically on a single catchment at a time) with
a median NSE difference of zero. Ayzel et al. (2020) also
demonstrated that for 200 catchments in Northwest Russia,
LSTM-based regionalization outperformed the regionalized
GR4J model with median NSE values of 0.73 and 0.61, re-
spectively. Furthermore, Nearing et al. (2021) showed that
the median improvement of regionally trained LSTMs im-
proved the performance of single-basin trained LSTM by a
median value of 0.10 in NSE performance by using basins
used in Kratzert et al. (2019b). This is in sharp contrast to
regionalization using a hydrological model in which a per-
formance loss is unavoidable since a hydrological model cal-
ibrated on a dataset has access to all of the information, and
this information asymmetry guarantees a better performance
for the calibrated models over the regionalized ones. This
shows that LSTM models are very efficient at extracting in-
formation from large datasets (Kratzert et al., 2022, 2019a, b;
Ayzel et al., 2020), displaying the added value of deep learn-
ing approaches. It also shows that large hydrological datasets
contain more information that can possibly be extracted by
conceptual and process-based hydrological models (Nearing
et al., 2021). Choi et al. (2022) showed that this was also
the case in Korea, where their LSTM regionalization imple-
mentation was performed over 13 catchments with satisfac-
tory results but that could likely be improved with access to
more catchment data. These results also seem to hold in more
arid climates, according to Nogueira Filho et al. (2022), who
showed that both LSTM and feed-forward neural networks
outperformed conceptual hydrological models for regional-
ization in a semi-arid region of Brazil. Zhang et al. (2022)
were able to obtain better results than with conceptual hy-
drological models using a regional encoder–decoder LSTM

on 35 catchments in China for streamflow prediction in un-
gauged catchments, showing that this approach can be used
with success even with limited numbers of training catch-
ments.

Downsides of LSTM models (and of all deep learning
methods) is the need to rely on large datasets for training
the artificial neural networks and potential difficulties at ex-
trapolating extremes in conditions outside the range of ex-
isting datasets. Kratzert et al. (2018) showed that for daily
streamflow simulation, 15 years is a lower bound for the
training, with additional years also needed as a validation
period (not to be confused with the testing period also used
in machine learning). Gauch et al. (2021a, b) also studied
the impact of the length of training data and showed a per-
formance loss for shorter periods. Ayzel and Heistermann
(2021) came to the same conclusion and compared the in-
cremental performance gain obtained by adding additional
training years to the GR4H conceptual hydrological model
and two types of RNNs, i.e. LSTM and GRUs (gated recur-
rent units). Results showed that the temporal validation per-
formance of GR4J rose rapidly and transitioned to an asymp-
totic behaviour on an independent 9 year validation period
after just 3 years of streamflow data used for calibration,
whereas the performance in validation of both deep learning
approaches rose much slower and did not reach an asymp-
totic plateau even when using the full 14 year calibration pe-
riod. On half their test catchments, the RNNs performed bet-
ter than GR4H after training on a 14 year window, and for the
other catchments the RNNs still performed acceptably well.
Other data requirements for regionalization include catch-
ment physical descriptors. Although some are relatively easy
to evaluate (land cover, slope, elevation, area, etc.), others
can be more difficult (soil depth, soil porosity, etc.). X. Li et
al. (2022) recently showed that it was possible to train the
LSTM model in regionalization using random vectors of de-
scriptors for those unavailable while still maintaining similar
levels of performance as if the original descriptors were all
available. With respect to the extrapolation to extreme events
problem, Frame et al. (2022) showed that LSTM models are
relatively accurate at producing high flows when compared
to SAC-SMA and a process-based model (US National Wa-
ter Model), even when extreme events were excluded from
the training. This suggests that LSTM models are able to not
only extract relevant hydrological information from the train-
ing dataset but actually learn from it. This idea was explored
by Lees et al. (2022) who showed that LSTM models do in-
deed have the capability of learning, and that these learned
representations can even be interpreted by scientists into pro-
cess understanding.

Ultimately, the above studies are consistent in the find-
ing that LSTM models perform as well (worst case scenario)
or better than traditional approaches. The ability of LSTM
models at using large datasets from multiple catchments
makes them particularly well suited for prediction at un-
gauged basins; a fact that has been underlined by a few stud-
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ies (e.g. Kratzert et al., 2019a, b; Ayzel et al., 2020; Mai et
al., 2022). However, actual performance in a regionalization
context has only been indirectly assessed based on the per-
formance of regional LSTM models compared against that of
hydrology models specifically calibrated at each catchment,
or in some cases against a regionally calibrated hydrology
model. The former is a fair assessment since a performance
loss is inevitable in a regionalized setting. However, the fact
remains that LSTM models have yet to be compared against
traditional regionalization approaches in a true “leave-one-
out cross-validation” (LOOCV) setting using state-of-the-art
hydrological model-based methods on ungauged basins.

Thus, the first objective of this work consists in comparing
the performance of a LSTM model against that of traditional
state-of-the-art regionalization methods based on hydrologi-
cal models. The second objective consists in an analysis of
the strengths and weaknesses of the developed LSTM model
and to propose avenues of research to improve its perfor-
mance.

2 Data and study area

The study area is located in northeast North America and is
composed of 148 catchments that are at least occasionally
subjected to snow accumulation and melt events. The catch-
ments were taken from the HYSETS database (Arsenault et
al., 2020a) that contains over 14 000 catchments including
flow and meteorological data over North America. The sub-
domain shown in Fig. 1 was selected to maintain reasonable
computing time and memory management. The spatial ex-
tent, as shown in Fig. 1, ensures that the catchments in the
southern part of the domain have a hydrological signature
that strongly differs (e.g. earlier peak flow, a much larger
fraction of liquid precipitation) than those in the north, which
therefore requires modelling of the processes and cannot sim-
ply rely on simple transfer functions based on catchment area
(e.g. Fry et al., 2014). Furthermore, only catchments with a
drainage area of more than 500 km2 were included in this
study to avoid scale and lag issues when regionalizing with
hydrological models calibrated on a daily time step.

Table 1 presents the main properties of these catchments
which will be used as descriptors for the regionalization
methods described below. These were taken directly from the
HYSETS database (Arsenault et al., 2020a), therefore only
a summary is presented here. In HYSETS, land cover data
were computed from the North American Land Cover Mon-
itoring System (NALCMS) of 2010, whereas slope, aspect,
and elevation were computed from the EarthENV 90 m dig-
ital elevation model (Robinson et al., 2014). Climatological
indicators were computed from the meteorological data di-
rectly (as discussed below), and the aridity index was com-
puted from the observed precipitation and estimated potential
evapotranspiration as computed by the Oudin et al. (2005)
method. All catchment descriptors were averaged at the basin

scale. It should be noted that there exist a multitude of possi-
ble descriptor sets to use, such as that in Table 4 in Kratzert
et al. (2019b) which has shown good results. Some descrip-
tors are included as they are required for hydrological model-
based regionalization, such as longitude and latitude, that are
typically used as proxies for unknown data that are assumed
to be spatially relatively homogeneous such as soil properties
and bedrock depth.

The meteorological data were taken from the HYSETS
database, which contains data for over 14 000 catchments
in North America (Arsenault et al., 2020a). Various data
sources are available in HYSETS, but for this study, the
daily ERA5 reanalysis data (Hersbach et al., 2020) were pre-
ferred since there are no missing values and multiple stud-
ies have shown its reliability for hydrological modelling over
the study domain (Tarek et al., 2020a, b). Meteorological
data (rainfall, snowfall, minimum and maximum tempera-
ture) cover the period 1979 to 2018 inclusively, on a daily
time step. Daily streamflow data were also taken from the
HYSETS database, which aggregated daily flow data from
Environment and Climate Change Canada’s (ECCC) water
survey Canada (WSC) and the United States Geological Sur-
vey (USGS). Flow data cover the period ranging from 1979
to 2018 inclusively, with many stations being only available
on subsets of that period, typically having between 10 and
20 years of available data. However, in this study, only catch-
ments that had at least 30 years of data (even if not sequen-
tial) were preserved, guaranteeing that each catchment has a
long enough observational record for results to be robust and
representative. After this filter was applied, 148 catchments
remained over the study domain in northeast North America.

3 Methods

The methods can be separated into three main themes: hydro-
logical model preparation and calibration (Sect. 3.1), “clas-
sical” regionalization method application using hydrological
models (Sect. 3.2), and creation and application of the LSTM
model applied to the problem of prediction of streamflow in
ungauged basins (Sect. 3.3).

3.1 Hydrological models and calibration

Three lumped hydrological models were implemented for
the model-based regionalization. These are models that were
previously used in streamflow regionalization studies in the
similar region, i.e. in the province of Québec, Canada. The
first is the HSAMI model, which was used in Arsenault and
Brissette (2014) over 268 catchments in Quebec, Canada.
HSAMI is used by Hydro-Québec in operational forecast-
ing for hydropower management (Fortin, 2000). It is a con-
ceptual model which has 23 calibration parameters (see Ta-
ble S1 in the Supplement). It simulates infiltration, runoff,
evapotranspiration, snow accumulation and melt, and flow
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Figure 1. Study site of the 148 catchments in northeast North America. All catchments have the same transparent colour, and regions with
darker colour (blue) represent areas where multiple catchments overlap.

routing, and contains three storage reservoirs, representing
surface flow, vadose zone flow, and saturated zone flow. Wa-
ter is routed to the outlet using two unit hydrographs. The
second is the HMETS model (Martel et al., 2017), which was
implemented for regionalization in the same study area as the
previous study in Arsenault and Brissette (2016). HMETS
is a conceptual model that contains 21 parameters (see Ta-
ble S2), and has a more complex snow model than HSAMI,
but also has a less complex infiltration and routing setup. The
final model is the GR4J model (Perrin et al., 2003), which
is widely used across the world in hydrology studies and
was also implemented in regionalization over the province of
Quebec in Poissant et al. (2017). GR4J is a simple four pa-
rameter model that simulates the rainfall–runoff process us-
ing two storage reservoirs and a unit hydrograph-based rout-
ing scheme. However, it does not simulate snow processes,
therefore the CemaNeige snow model (Valéry et al., 2014)
was added to account for snow accumulation and melt. This
also added two parameters, for a total of six parameters for
the GR4J-CemaNeige (GR4JCN) model (see Table S3). The
rationale of using GR4JCN is that there are few parameters,
thus it is more likely that parameters will be linked to a phys-
ical process due to lesser equifinality. This should improve
the relationship between parameter values and physical re-
sponse of the model, which can be seen as an advantage for
PUB studies.

Each of these models was calibrated using the covari-
ance matrix adaptation evolution strategy (CMAES; Hansen
et al., 2003) optimization algorithm. They were used and
calibrated with good results in the Arsenault and Bris-

sette (2014) (HSAMI), Arsenault and Brissette (2016)
(HSAMI, HMETS) and Poissant et al. (2017) (GR4JCN)
studies, and model parameter bounds are reused here
to maintain the same level of model flexibility. Calibra-
tions were performed using an upper limit of either 5000
(GR4JCN) or 10 000 (HSAMI, HMETS) model evaluations.
The objective of the calibration was to maximize the Nash–
Sutcliffe efficiency metric (NSE; Nash and Sutcliffe, 1970).
NSE was selected despite the Kling–Gupta efficiency (KGE;
Gupta et al., 2009) metric being better suited, solely to ease
comparisons between the previous regionalization studies
that were strongly reliant on NSE and this current study. All
hydrological models were calibrated on the entire period of
1979–2018 as suggested by Arsenault et al. (2018) and Shen
et al. (2022), while keeping the first available year (1979) of
each catchment as the warmup period.

Calibration results for the three models are shown in
Fig. 2, in which results for calibration over each of the
148 catchments are shown in box plots. It can be seen that
most catchments display acceptable to strong NSE values,
with median NSEs of 0.67, 0.67, and 0.68 for the GR4JCN,
HMETS„ and HSAMI models, respectively. Some catch-
ments display calibration results below 0.5 for some models.
These were kept in the study to evaluate how they can im-
pact the regionalization results, as described in the following
section.
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Table 1. List of catchment descriptors used in the regionalization experiment. All values are spatial averages over each basin. The descriptors
were derived based on the EarthENV DEM, the NALCMS land cover database, and ERA5 reanalysis meteorological data.

Catchment descriptors (unit) Minimum Median Maximum

Area (km2) 500.8 1149.6 31 900.0

Longitude (◦ E) −84.9 −75.8 −62.0

Latitude (◦ N) 41.1 44.2 49.9

Elevation (m) 75.9 348.2 722.5

Slope (%) 0.3 3.5 12.2

Aspect (◦) 3.8 163.5 355.7

Gravelius (–) 1.3 1.9 3.7

Perimeter (km) 113.5 233.5 1846.2

Land cover – crops (%) 0.0 8.9 86.0

Land cover – forest (%) 4.4 73.2 96.6

Land cover – shrub (%) 0.0 1.7 14.7

Land cover – grass (%) 0.1 0.9 8.6

Land cover – water (%) 0.0 1.0 13.9

Land cover – wetlands (%) 0.0 2.7 19.6

Land cover – urban (%) 0.1 3.6 64.2

Permeability (m2) −16.5 −14.5 −11.8

Porosity (%) 1.0 12.4 23.7

Mean annual precipitation (mm) 814.7 1153.7 1432.1

Mean annual evapotranspiration (mm) 435.4 637.3 798.3

Mean snow water equivalent (mm) 2.0 16.8 109.9

Aridity index (–) 0.35 0.54 0.80

High precipitation frequency (ratio of number of days with precipitation
> 5× average precipitation over total number of days) (–)

0.03 0.05 0.06

Low precipitation frequency (ratio of number of days with precipitation
< 1 mm over total number of days) (–)

0.47 0.58 0.66

High precipitation duration (average number of consecutive days with
precipitation > 5× average precipitation) (d)

1.07 1.10 1.16

Low precipitation duration (average number of consecutive days with
precipitation < 1 mm) (d)

2.35 2.89 3.43

3.2 Model-dependent regionalization methods

The hydrological models were used as the transfer functions
to estimate flows on the ungauged sites based on the mete-
orological and physiographic properties. A suite of six re-
gionalization methods was implemented for each model. Re-
gionalization skill was evaluated using a leave-one-out cross-
validation (LOOCV) approach, by which each catchment
was in turn considered as (pseudo-)ungauged, while the re-

gionalization approaches were applied to try and estimate its
flows (Parajka et al., 2005). This allowed performing 148 re-
gionalization tests for each of the 18 scenarios, i.e. the com-
bination of hydrological model (here three) and regionaliza-
tion method (here six).

In this study, two well-known and omnipresent region-
alization methods were implemented: the spatial proximity
method and the physical similarity method. For both cases,
some variants were introduced to increase performance as
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Figure 2. Box plots of Nash–Sutcliffe efficiency (NSE) calibration
scores for GR4JCN (blue), HMETS (orange) and HSAMI (green).
The box represents the interquartile range (25th–75th percentiles)
with the median displayed as the horizontal line in the box. The
whiskers represent the maximum and minimum non-outlier values,
which are set at 1.5 times the interquartile range covering 99.3 %
of the distribution. Each box plot contains the score for the 148
catchments calibrated on all data available between 1979 and 2018,
using the first available year for each catchment as a warmup period.

recommended by various studies in the literature (He et al.,
2011; Oudin et al., 2008; Razavi and Coulibaly, 2013). The
well-known methods use the following framework:

1. All available catchments are modelled and calibrated
using a hydrological model in order to prepare opti-
mal parameter sets independently for all basins, but
only the results of the N − 1 (all except the one con-
sidered ungauged) basins are used for regionalization at
the pseudo-ungauged site.

2. The most similar (physical similarity method; PS) or
closest (spatial proximity method; SP) catchment is
considered as the “donor” catchment. The donor catch-
ments’ calibrated parameters are transferred to the un-
gauged site. Here, the most (physically) similar catch-
ment refers to the catchment that has the smallest abso-
lute difference between all the standardized catchment
descriptors to ensure equal weighting of each descrip-
tor. The (spatially) closest catchment is the one whose
centroid is nearest in the latitude/longitude domain.

3. The ungauged basin is set up using meteorological forc-
ings, static catchment attributes, and the donor catch-
ment parameters. This setup is then used to simulate
streamflow using the observed meteorological data.

4. The simulated streamflow at the pseudo-ungauged site
is then compared with the observations, and the NSE
score is computed.

This process is repeated for each of the 148 catchments
and all three models. Furthermore, to improve performance,
some simulations were performed with variations on the
standard regionalization approaches, as follows:

– [a.] Multi-donor simulations. In this case, more than
one donor is used, such that the N nearest catchments
transfer their parameter sets to the ungauged catchment
and streamflow is generated for each case, resulting in
N simulated hydrographs. The average of these hydro-
graphs is then taken, resulting in a single, more accu-
rate hydrograph. This has been demonstrated in many
studies, with between N = 4 and N = 8 donors being
recommended as the optimal value (Arsenault and Bris-
sette, 2014; Oudin et al., 2008). In this study, all tests
performed used the multi-donor approach, with N = 5
donors as a generally accepted good compromise value
without expending computing resources on larger donor
sets.

– [b.] Inverse distance weighting (IDW). IDW is a variant
of multi-donor simulations. In this case, the averaging
of multi-donor hydrographs is performed according to
the degree of similarity (or distance) between the donors
and the ungauged site using weights,

wi = 1−

(
di∑N

j=1dj

)
, (1)

where di is the distance/similarity between donor basin
i and the ungauged basin, and N is the total number of
donor basins in the weighting (here N = 5 in this study).
Therefore, more similar catchments are weighted more
heavily in the hydrograph averaging. This has also been
noted as a significant improvement over standard multi-
donor regionalization (Arsenault and Brissette, 2014;
Oudin et al., 2008; Parajka et al., 2005).

– [c.] Removal of poor donor catchments. In regionaliza-
tion, if a donor catchment is of poor quality (data qual-
ity problems, unreliable parameter set, etc.), then it can
be considered unreasonable to use it as a donor catch-
ment for other sites. In this study, tests were performed
both with and without this filter to evaluate its impact.
Even “poor” donor catchments were used as targets in
the LOOCV. However, they did not contribute as donor
catchments for other sites in this scenario. The filter ap-
plied here was the same as in Arsenault and Brissette
(2014), which is the removal of all catchments whose
calibration NSE was below 0.7. This translates to 84
to 89 basins being considered “poor” depending on the
hydrology model (see Fig. 2). Here, the multi-model
method still always uses N = 5 donors, but these ex-
clude the “poor” donors.

Overall, the tests performed for each hydrological model and
both the spatial proximity and physical similarity methods,
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using multi-donor averaging (N = 5 in all cases), are as fol-
lows:

i. Regular proximity/similarity approach with no poor
catchment filter (ALL).

ii. Regular proximity/similarity approach with a selection
using a poor catchment filter (SEL).

iii. Regular proximity/similarity approach with IDW and
poor catchment filter (SEL IDW).

The results of these six methods were then compared with
the LSTM model approach, detailed in the next section.

3.3 LSTM regionalization model

A recurrent neural network (RNN) is a type of artificial neu-
ral network that can be used for the prediction of time se-
ries. As highlighted by Bengio et al. (1994), simple RNNs
have difficulty remembering information for long periods of
time. For hydrological modelling application, this is prob-
lematic considering the need to track state variables up to
multiple weeks or months, such as the snow water equiva-
lent within the snowpack or soil moisture. Long short-term
memory (LSTM) is a variant of an RNN that has been intro-
duced by Hochreiter and Schmidhuber (1997) which allows
the tracking of long-term dependencies between input and
output sequences. Kratzert et al. (2018, 2019a) offer a de-
tailed description of the working behind an LSTM unit. Note
that an LSTM model is composed of multiple LSTM units
that can be interconnected in multiple layers.

In this study, the network architecture used is composed
of two main branches for (1) dynamic inputs fed into two
LSTM layers each with 512 units, followed by a dropout of
0.3, and (2) static inputs fed into a 25 neurons dense layer
with a dropout of 0.1, followed by a leaky rectified linear
unit (ReLU) activation function. The leaky ReLU was used
instead of a regular ReLU to eliminate any possibility of
generating impossible objective function values or exploding
gradients, which could sometimes appear depending on the
training convergence and learning rate. This provided more
robustness and a bit more model flexibility at the expense of
a small amount of extra computing time. Outputs from these
two branches are then concatenated into a 20 neurons dense
layer, activated with a regular ReLU function before being
fed into a final one neuron dense layer. This setup is similar
to that in Kratzert et al. (2019b) but adds an extra LSTM layer
and doubles the number of LSTM units per layer. In their pa-
per, Kratzert et al. (2019b) tested multiple model structures
and hyperparameters, including up to 256 units per LSTM
layer, both for one and two layers with dropout rates ranging
from 0.0 to 0.5 and input sequence lengths of 90 to 365 d.
They finally settled for the model that provided the high-
est median, which was a single-layer, 256-unit LSTM with
a dropout rate of 0.4 and an input sequence length of 270 d.
However, the static descriptors were directly embedded in

the LSTM layers, as opposed to their addition in a separate,
parallel branch that is also tuned during training in this study.
The model structure can be visualized in Fig. S1 in the Sup-
plement. The codes are made available at the location indi-
cated in the data availability statement below. Simpler mod-
els are also tested and discussed in Sect. 5.2.

The LSTM model used in this study is designed to only
predict 1 day of streamflow at a time, following the previous
365 d of the four following dynamic variables: rainfall, snow-
fall, and minimum and maximum temperature. This is re-
peated T times to create a simulation of streamflow of length
T . The 25 static descriptors presented in Table 1 allow the
model to distinguish between each catchment.

To improve the learning, the following preprocessing of
the data was conducted. Static descriptors were normalized
between 0 and 1 using a min–max scaler, while the dynamic
variables (meteorologic data) were standardized by the mean
and the standard deviation, which is a standard practice. Both
scaling operations were performed on the training catch-
ments (i.e. all except the ungauged catchment) only, leav-
ing both validation catchments and testing catchments out of
the process to fit the scalers’ parameters to avoid contami-
nating the scaler with information it is not supposed to have
access to. Once the scaler is trained, the scaling is applied to
the validation and testing catchments. The target variable of
streamflow was not itself scaled using this approach, since
the model output and target values are not part of the model
training computations and thus have no impact on the ob-
tained results. Instead, the specific streamflow was used as
the target variable by dividing streamflow records by the
drainage area and converting to mmd−1. This was done to al-
low combining information from the multiple training catch-
ments during the LSTM training, since all streamflow val-
ues were now represented in an area-independent depth unit,
while at the same time ensuring all values had similar mag-
nitudes to avoid convergence problems. Without this mech-
anism, larger catchments and their larger flows would be
weighed more heavily in the NSE objective function. In re-
gionalization, the LSTM model would then output the same
units (i.e. mmd−1), which could then be multiplied by the
pseudo-ungauged basin’s area and converted back to m3 s−1.

The training and application of the LSTM models to re-
gionalization used the following setup. First, the pseudo-
ungauged catchment (e.g. testing) is first identified out of
the 148 catchments. In LOOCV, each catchment will even-
tually be considered the pseudo-ungauged catchment. Thus,
from the 148 catchments, 147 remain. Of these, 80 % (118
catchments) are randomly selected to be used as the train-
ing dataset. These will provide the catchment descriptors
and meteorologic data to train the LSTM model. This leaves
20 % (29 catchments) as the validation dataset. The valida-
tion dataset is not used for training except to act as a stop-
ping criterion for the training operation. This is to prevent
any overfitting during training. While these 29 catchments
are not used directly for training, they are also not indepen-
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dent enough to evaluate the model performance. Therefore,
testing occurs only on the pseudo-ungauged basin, and these
testing regionalization metric values are those that are pre-
sented in this study.

3.4 Hyperparameter selection

Furthermore, to evaluate the sensitivity of the results to the
LSTM model structure, multiple structures were tested, from
simple single-layer LSTMs with 128 units, to complex dual-
layer LSTMs with 512 units each, and in each case using
various combinations of dense layers for the static inputs,
activation functions, regularization options, batch sizes, and
objective functions. In all cases, a decaying learning rate was
implemented to ensure proper convergence of the training al-
gorithm, refining the learning rate step as a function of the
number of epochs. The type and dimensionality of each el-
ement selected to build the network structure all play a role
in the model performance and robustness, but through trial
and error, a generally stable setup (one that led to good per-
formance throughout the trials in LOOCV) was found and
implemented. However, to analyze this point further, a series
of tests was performed by repeating this study with an ar-
ray of varying model hyperparameters. Nine additional runs
were performed using the same general structure but with the
adaptations as shown in Table 2.

Each of these modes was used as the LSTM model and re-
sults were compared to the hydrological model-based region-
alization approaches. For the following results, model num-
ber 7 (two-layer, 512-unit LSTM model) was implemented.

4 Results

The first step in assessing the LSTM performance was to
compare its ability to simulate flow at the pseudo-ungauged
sites to that of the hydrological models. This was done in
two steps. First, the LSTM results in leave-one-out cross-
validation (LOOCV) were compared to the hydrological
models calibrated at the individual sites. This gives a sig-
nificant advantage to the hydrological models, as they are di-
rectly calibrated on the available streamflow data and hence
have access to all the information. The LSTM, on the other
hand, only has access to the streamflow data from all but the
pseudo-ungauged basin, therefore it does not have access to
the target catchment streamflow in this step. These results
are shown in Fig. 3 comparing the three hydrological models
(x axis) to the LSTM results (y axis).

Results show that the LSTM is able to perform surpris-
ingly well considering the information asymmetry compared
to the hydrological models. The LSTM is able to perform at
least as well as the GR4JCN, HMETS, and HSAMI models
in 75 %, 78 %, and 73 % of basins, respectively. The reasons
for this will be discussed in Sect. 5.1.

The second step was to compare the LSTM in LOOCV
to all three hydrological models in regionalization (i.e. spa-
tial validation), putting both model categories on the same
playing field. Figure 4 presents the overall results of the hy-
drological model performance when using various regional-
ization methods to obtain results at (pseudo-)ungauged loca-
tions. The performance of the LSTM model is shown as well
(same results as presented for LSTM in Fig. 3). Furthermore,
it presents the maximum skill attained by any of the 18 hy-
drological model and regionalization method combinations
over each catchment as a best-case scenario for the hydro-
logical model group (BEST HM). BEST-HM is a utopic case
in that it would not be possible ahead of time to determine
which model or regionalization method would be the best,
therefore it serves only to show the best possible outcome
the models and regionalization methods could provide.

From Fig. 4, it is clear that the choice of the hydrologi-
cal model plays only a small role in the regionalization per-
formance, while the selection of the regionalization method
plays a more significant role. Removing poorly calibrated
catchments did not increase overall regionalization skill, con-
trary to Oudin et al. (2008) and Arsenault and Brissette
(2014). However, all three conceptual hydrological models
fall short of the performance of the LSTM, which displays a
median NSE of 0.78, compared to values ranging from 0.58
to 0.63 for all of the 18 tested configurations. The LSTM
model’s median NSE of 0.78 is also better than BEST-HM
(median NSE of 0.66). While useful to help interpreting the
results in the context of this study, it is nonetheless impor-
tant to stress that in a real-world application to an ungauged
basin, the BEST-HM approach is not feasible. However,
compared to the LSTM, it can be seen that the distribution
of NSE values is significantly inferior. When each method is
directly compared to the LSTM model (values added as la-
bels on top x axis in Fig. 4), it can be seen that the LSTM
model outperforms each of the 18 model–regionalization–
approach combinations in at least 93 % of the studied basins.
The LSTM outperforms the BEST-HM in 86 % of the basins.

In an attempt to explain the higher performance of the
LSTM, a few metrics were analyzed. First, the relationship
between the LSTM testing NSE (in LOOCV) and each catch-
ment descriptor was evaluated, as presented in Fig. 5.

It can be seen from Fig. 5 that most catchment descriptors
have little to no linear correlation to the LSTM testing NSE.
There is no notable structure, which seems to indicate that
the LSTM does not favour one type of catchment over an-
other. In essence, this points to the LSTM being robust over
the study area and makes it more likely to be applicable to
other ungauged basins in the study domain or having similar
hydroclimatological and geomorphological properties, sup-
porting results from Fig. 4.

The results in Figs. 3 and 4 show aggregated distributions
but do not provide specific information for a comparison at
each site. To allow visualizing the spatial distributions of the
methods’ performance, maps (Fig. 6) and scatterplots (Fig. 7)
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Figure 3. Performance of hydrological models calibrated at each of the 148 study basins individually against the performance of the LSTM
model in leave-one-out cross-validation (LOOCV) where the ungauged basin in question is not included in the set of basins used to train
the LSTM and where the LSTM is trained and validated on 80 % and 20 % of the gauged basins, respectively. The hydrological models’
performance displayed is hence a calibration performance, while the LSTM performance is the testing performance (on ungauged locations).
The models are evaluated using all available streamflow data in the period 1979 to 2018. The results are compared between LSTM models
(y axis) and three hydrological models (x axis), i.e. (a) GR4JCN, (b) HMETS, and (c) HSAMI.

Table 2. LSTM hyperparameter variations used to evaluate the model structure robustness.

Run ID Training window LSTM units Other notes
length (d)

1 365 128 Simplest LSTM model in this study.

2 365 2× 128 Simplest two-layer LSTM model.

3 270 256 Uses a shorter data window for training.

4a–4e 365 256 LSTM model repetitions with only the random seed changed for uncertainty
analysis.

5 365 2× 256 Two layers of LSTMs, each with 256 LSTM units.

6 365 512 –

7 365 2× 512 Base case considered and used as the comparison for the hydrological mod-
els. Two layers of LSTMs, each with 512 LSTM units. Most complex LSTM
model in this study.

8a–8b 365 256 Same model as 4a–4e but removing the catchments that were most difficult
to train on to simulate the removal of “bad” catchments as performed with the
hydrological model regionalization. Two repetitions with different initial seeds
are performed.

of the regionalization method leading to the best median for
each hydrological model as well as the difference between
those and the LSTM in testing mode are shown hereafter.

Figure 6 again emphasizes the overall superior perfor-
mance of the LSTM model (right column panels), while no
clear spatial patterns can be detected in terms of hydrological
model performance (left column panels). Figure 6 also shows
that some catchments perform poorly in regionalization for
all hydrological models but have large improvements when
using the LSTM model. The exact opposite is observed on a
few catchments, and reasons for this are given in Sect. 5.2.

Overall, the results indicate that the LSTM outperforms
the best regionalization methods on 93 %, 97 %, and 95 % of
the catchments for GR4JCN, HMETS, and HSAMI, respec-
tively (Figs. 4 and 7). This is important, considering that a
strong performing hydrological model with the best regional-
ization method is still outperformed on average by an LSTM
that, while internally and structurally quite complex, required
very little work to set up and train compared to the work re-
quired to setup, calibrate, and regionalize the hydrological
models on the 148 donor catchments.

Finally, the sensitivity of the hyperparameter selection (i.e.
LSTM model structure in this case) is shown in Fig. 8. It
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Figure 4. Box plots of the regionalization results for GR4JCN (blue), HMETS (orange), and HSAMI (green) using the spatial proximity (SP;
dark) and physical similarity (PS; light) regionalization methods on all (ALL) or a selection (SEL) of catchments based on performance and
application of inverse distance weighting (IDW) on the 148 catchments. All hydrological model-based regionalization methods implemented
a multi-donor approach using five donors. Two additional box plots present the best value from all hydrological model approaches (out of 18)
for each catchment (BEST HM; red) and for the LSTM model (purple). The results displayed for the LSTM are the same results as they were
used in Fig. 3. The models are evaluated on all available streamflow data available during the period 1979 to 2018. The box of each box plot
indicates the 25th and 75th percentile; the center line is the median; the whiskers represent the maximum and minimum non-outlier values,
which are set at 1.5 times the interquartile range and cover 99.3 % of the distribution. Values above each box plot represent the percentage of
basins for which the LSTM model performs better than the hydrology-model based regionalization method.

can be seen that the results generally increase in performance
with more complex model structure. They are also all better
than the hydrological model-based regionalization methods
(see Fig. 4). The only exception is that of the 8a–8b mod-
els with removal of catchments that were more difficult to
train on for the general training, which strongly impacted re-
sults. Nonetheless, even these sub-optimal LSTM parameter-
izations outperform the hydrological model-based regional-
ization methods.

The five runs that were repeated to assess variability due to
the model random state also showed small variability, which
seems to show that the LSTM does not always converge to
the same parameterization for its weights and biases. It is
also important to note that the training (80 %) and validation
(20 %) basins are categorized as such randomly, so the train-
ing step is performed on different catchments for each of the
five runs of numbers 4a–4e. This can also explain a large part
of the variance in the results within this sub-group. Also, it
seems that filtering out the poor catchments, i.e. those that
displayed the lowest training NSE values when training over
the entire dataset, caused many basins to underperform and
is not recommended.

5 Discussion

This section will discuss the regionalization results with
the hydrological models and the LSTM model in Sect. 5.1,
and the LSTM structure and hyperparameter selection in
Sect. 5.2.

5.1 Comparison of hydrological model-based and
LSTM regionalization

This study confirms the recent trends in the literature ac-
cording to which LSTMs are able to predict streamflow in
ungauged basins with performance levels competing or sur-
passing that of hydrological model-based methods. The re-
sults obtained in this study show that over 148 catchments,
the LSTM was able to clearly outperform six regionaliza-
tion approaches based on results derived from three different
hydrological models on almost all catchments (Fig. 4). Fur-
thermore, the LSTM was able to simulate streamflow bet-
ter than specifically calibrated hydrological models for many
catchments (Figs. 3 and 6), further demonstrating the poten-
tial skill in applying an LSTM model, not only in region-
alization studies, but in hydrological modelling overall. In-
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Figure 5. Scatter between LSTM testing NSE and the various catchment descriptors used in this study (Table 1) for each of the 148 catch-
ments studied. Correlation coefficients r are displayed in the title of the figure.

deed, the well-trained LSTM was able to simulate stream-
flow better than hydrological models that had access to the
streamflow observations, which implies that the LSTM was
able to build relationships that were more accurate than those
programmed in the hydrological models themselves. This
also means that the very flexible LSTM framework can be
adapted to various regions and automatically train its weights
on new data to represent different physical processes.

Therefore, besides its apparent versatility and perfor-
mance, the LSTM also has the advantage that it removes
one large problem in classical model-based regionalization,

which is the necessity to select the best donor catchment(s).
The LSTM simply ingests all the available information and
then builds its internal structure from the data to match the
observations. This is a significant advantage, since it can be
seen in Fig. 4 that the choice of a regionalization method
plays an important role and the number of donors to use also
has an impact on regionalization model performance (Ar-
senault and Brissette, 2014). Other regionalization methods
often use multiple linear regression techniques to link pa-
rameter values to catchment descriptors (Oudin et al., 2008)
or use kriging to interpolate parameters over the spatial do-
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Figure 6. Spatial distribution of regionalization skill of the hydrological models (a, c, e) and difference between the LSTM testing and
hydrological model regionalization skill (b, d, f) for the three models, GR4JCN (a, b), HMETS (c, d), and HSAMI (e, f). Circle sizes
represent the relative sizes of the catchments and are placed at the catchment centers. The regionalization method with the best overall
median for each hydrological model was selected for the comparison (here PS ALL for all three models). Blue colours in panels (b, d, f)
indicate the LSTM is outperforming the hydrological model, while red colours indicate the opposite.

main (Parajka et al., 2005). These methods are limited by
the type of relationship they can model. Furthermore, hav-
ing a wide array of catchments could possibly lead to diffi-
culties in modelling parameter–descriptor relationships. For
example, in this study, one catchment has a much larger area
than almost all the others. For a hydrological model-based
regionalization approach, this might skew the regressions be-
tween catchment descriptors and model parameters. LSTMs,
on the other hand, are strongly non-linear and are thus not
bound to these limitations. They could also use these data
to better predict streamflow processes at scales between the
small and large catchments. This is because neural networks
in general, including LSTM-based neural networks, are par-
ticularly good for interpolating within the domain they are

trained to represent, but can be unpredictable while extrap-
olating outside of the parameters of their training dataset.
Therefore, adding catchments with a wide array of properties
confers the ability to establish relationships that other meth-
ods simply cannot attain by widening the domain on which
the model can interpolate. Furthermore, for the similar prox-
imity and physical similarity methods, the driving hypothe-
sis is that more similar (or nearer) catchments should also
behave similarly in hydrological terms. However, Oudin et
al. (2010) showed that this was not necessarily the case. The
application of LSTMs to regionalization thus also bypasses
this hypothesis completely, which is another significant ad-
vantage. Finally, on a related note, the parameter identifiabil-
ity is made more difficult as more catchment predictors are
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Figure 7. Hydrological model regionalization NSE compared against the LSTM model in testing for (a) GR4JCN, (b) HMETS, and
(c) HSAMI. The regionalization method with the best overall median for each hydrological model was selected for the comparison (here PS
ALL for all three models). One point per catchment is displayed in each panel, for a total of 148 points.

Figure 8. Distribution of LSTM performance in leave-one-out cross-validation (LOOCV) over the 148 basins using different hyperparame-
ters. The distribution used in this study is model number 7. Details about the hyperparameter variations can be found in Table 2.

included. Determining which should be used can have an im-
pact on the hydrology model regionalization methods. How-
ever, the LSTM model can automatically parse and adjust the
weights of catchment descriptors, discarding (or heavily re-
ducing the weight of) descriptors with little predictive power.

However, LSTMs are also limited and disadvantaged in a
few aspects. First, the nature of the LSTM model makes it ex-
tremely difficult or practically impossible to follow the data
through the model and to attempt to identify relationships be-
tween model states and physical processes, or to determine
why the model predicted a certain value of streamflow. With
hydrological models, each physical quantity and flux of the
water cycle is estimated and can be tracked through time to
determine if any problems occur. They also allow users to

extract diagnostic variables during the simulation to evalu-
ate other hydrological variables at the ungauged site, such
as snow water equivalent, groundwater storage, and other
such variables of interest. Therefore, the LSTM can only es-
timate values it was trained on. Recent studies (Lees et al.,
2022; Kratzert et al., 2019a, b) have shown that for an LSTM
trained on a catchment, it was possible to derive hydrological
processes from the states and weights of the LSTM model.
This has yet to be applied to a large-sample LSTMs in re-
gionalization, but it is possible that some research will eluci-
date this in the near future. Furthermore, some studies have
started investigating the possibility of adding physical con-
straints within the LSTM structure (such as ensuring mass
balance) (Frame et al., 2022; Hoedt et al., 2021), which might
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pave the way to a better understanding of the underlying re-
lationships built within the LSTM structure.

Another limitation is the need for long observation data
time series to adequately train the LSTM models compared
to traditional hydrological models. Shorter time series do not
provide enough training examples for the LSTM models to
learn the patterns and relationships required to provide the
desired hydrological simulations (Ayzel and Heistermann,
2021; Gauch et al., 2021b), whereas hydrological models can
be fitted using relatively fewer observation data points (Per-
rin et al., 2007) as they already contain information in the
form of the expected physics. However, the required length
of data for proper training might also depend on the number
of contributing catchments in a large-sample dataset such as
in this study (Gauch et al., 2021b) because the LSTM model
training operates on pooled data from many catchments, in-
creasing the sample sizes significantly. In this study, only
catchments with long records of meteorologic and stream-
flow observations were used, which probably favours the
LSTM models in all cases. In the case where only a few
years of data per catchment were available, it is possible
that the traditional hydrological models could outperform the
LSTMs when modelling a single catchment. Of course, in a
large-sample application, the LSTM can then be trained us-
ing data from multiple catchments, so the amount of data per
catchment that are required for LSTMs to outperform tradi-
tional hydrological models likely also depend on the number
of catchments used in training. Also, it is important to note
that hydrological models could, in theory, be regionalized
even if they have different spatial discretization schemes. For
example, a larger basin could be discretized and modelled
in a semi-distributed fashion, and parameters could still be
regionalized. However, for an LSTM model, the size of the
inputs must remain the same throughout the training and re-
gionalization process for all catchments. Therefore, it would
not be possible to use a single weather station on a small
catchment and then use a few weather stations on a larger
catchment for LSTMs, since all catchments must share the
same input format. Finally, another potential problem with
LSTMs is that of structure design and hyperparameterization,
as described in the next section.

5.2 LSTM structure design and hyperparameter
selection

One of the unresolved problems in deep learning in general is
that of neural network architecture design. Different types of
model layers are available from the packages in commercial
and open-source software, and choosing which ones to im-
plement for a given problem is not a trivial task. In the case
of time-series simulations, LSTMs have shown to be excel-
lent, but other RNNs such as gated recurrent units (GRU),
which can be faster and use less memory than LSTMs, have
also been used in the literature to this end (Ayzel and Heister-
mann, 2021). Then, the user must decide the depth and scope

of the model. Currently, unless a user has a lot of experi-
ence with their data and neural network building, the best
approach as recommended in the literature is to try multi-
ple structures and optimize the hyperparameters to develop
the best performing model (Jin et al., 2019). This means that
many trials using various numbers of layers, and the com-
plexity of each layer, must be performed, which can quickly
become an intractable problem. Some software tools can help
explore possible structures automatically, but the problem re-
mains that the required complexity of such models depends
on the data characteristics.

In this study, the largest models with 1×512 units, 2×256
units, and 2× 512 units did not perform statistically dif-
ferently from one another, even though the two-layer 512-
unit model is much longer to train than the others. This
might be because of limitations in the amount of provided
data, or due to the structure not maximizing the informa-
tion content. In any case, for this regionalization study, larger
models did not seem to bring performance increases be-
yond 512 units, which is double the value used in Kratzert
et al. (2019b). However, an increase from 256 to 512 units
did provide marginal performance gains, but these must be
weighed against the associated increases in model training
time. For this study, we opted to preserve the more complex
model even though the gains were marginal due to not be-
ing limited by time or being in an operational context. In
such cases, a simpler model (either 1×256 or 1×512 units)
would have been perfectly acceptable. Alternatively, more
computing power could be deployed to accelerate training
in such cases. It is important to note that for this study, re-
gionalization was performed on 148 catchments, whereas in
a real-world application, the target would most likely be a
single catchment of interest, therefore reducing the computa-
tion effort by 2 orders of magnitude. Finally, the application
of regularization on the bias, kernel, and weights did not im-
prove the testing skill in regionalization (results not shown).
Regularization can sometimes help improve the model ro-
bustness by setting very small weights to zero, thus remov-
ing connections that could lead to overfitting. The remaining
weights are therefore theoretically more likely to be those
that represent the data structure and transformation to obtain
the streamflow. However, in this study, regularization failed
to improve results. It is possible that this is due to the in-
herent uncertainty of streamflow making it difficult for the
model to simulate the flows as if they were unbiased and
error-free at the pseudo-ungauged sites. Nonetheless, using
dropout layers during training did manage to improve ro-
bustness by randomly dropping some neurons during train-
ing. While dropout rates were varied from 0.1 to 0.7, trial
and error allowed finding a robust dropout layer of 0.3 for
the LSTM layers and 0.1 for the dense layers, which offered
the best performance in this regionalization study.
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6 Conclusion

This study revisited past research on streamflow prediction
in ungauged basins by comparing classical regionalization
methods to the state-of-the-art LSTM deep learning model.
Three hydrological models using widely-used regionaliza-
tion approaches were tested on 148 catchments in north-
east North America, and their results were compared to a
simple LSTM model. The results in this study showed that
the LSTM model generally outperformed the hydrological
model-based methods using the same available data. Further-
more, multiple LSTM hyperparameterizations showed the
same improvements over the hydrological models, which at-
tests to the LSTMs capacity to infer relationships between
meteorologic data, catchment descriptors, and streamflow,
even without any explicit knowledge on hydrological pro-
cesses.

The catchments in this study were all from the same re-
gion, but given the learning ability of the model, it should
be possible to train models on large-sample hydrological
datasets and feed more data to the models in order to max-
imize the ability to infer the hydrological processes by
LSTMs and other recurrent neural networks. Kratzert et al.
(2019b) already showed that this was possible over the con-
tinental United States, thus future work could continue in this
direction and use larger and more diverse catchments across
the world. Multiple such datasets already exist on continen-
tal or national scales, such as the HYSETS database in North
America (Arsenault et al., 2020a) and the CAMELS datasets
in the United States (Addor et al., 2017), Chile (Alvarez-
Garreton et al., 2018), France (Delaigue et al., 2022), and UK
(Coxon et al., 2020), which are prime candidates for training
of regional hydrological models. Since deep learning mod-
els can make use of catchments with limited availability by
pooling them with all the other available datasets, this makes
LSTMs especially attractive for regionalization studies.

This study also showed that the LSTM model was able to
provide streamflow time series at ungauged sites using rela-
tionships inferred from other sites, and that in many cases,
the estimated streamflow was more accurate than that ob-
tained from the hydrological models specifically calibrated
on the data. The LSTM model therefore seems to have a bet-
ter representation of the rainfall–runoff process as learned
from the data directly than the hydrological models have in
their conceptualization.

Given the previous studies in the literature and the re-
sounding results obtained in this study, it is likely that the era
of machine learning is here to stay in the field of streamflow
prediction in ungauged basins. Hydrological models can still
provide important details on the inner workings of the hydro-
logical cycle in these types of studies, but if the only variable
to predict is streamflow, then hydrological models are most
likely not going to be able to contend as viable alternatives in
the near future. Future research should investigate the possi-
bility of including larger datasets during training to improve

the feature representation and robustness across varying hy-
droclimatological conditions.
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