Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6029-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6029-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Institute of Earth Surface Dynamics, Lausanne, University of Lausanne, Switzerland
Institute of Geography (GIUB), University of Bern, 3012 Bern, Switzerland
Stuart N. Lane
Institute of Earth Surface Dynamics, Lausanne, University of Lausanne, Switzerland
Bettina Schaefli
Institute of Earth Surface Dynamics, Lausanne, University of Lausanne, Switzerland
Institute of Geography (GIUB), University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
Related authors
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2024-631, https://doi.org/10.5194/egusphere-2024-631, 2024
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-1201, https://doi.org/10.5194/egusphere-2024-1201, 2024
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early maturing potato varieties might help to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2024-631, https://doi.org/10.5194/egusphere-2024-631, 2024
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020, https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary
Short summary
We develop a Bayesian mixing model to address the issue of small sample sizes to describe different sources in hydrological mixing applications. Using composite likelihood functions, the model accounts for an often overlooked bias arising due to unweighted mixing. We test the model efficacy using a series of statistical benchmarking tests and demonstrate its real-life applicability by applying it to a Swiss Alpine catchment to obtain the proportion of groundwater recharged from rain vs. snow.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-683, https://doi.org/10.5194/hess-2019-683, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rainfall observation remains a challenge particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall-runoff response of a 13.4 km2 alpine catchment is purely data-based and rely on measures from a network of 12 low-cost raingauges over 3 months. It assesses the importance of high-density rainfall observations to inform hydrological processes and help to design a permanent raingauge network.
Adrien Michel, Tristan Brauchli, Michael Lehning, Bettina Schaefli, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, https://doi.org/10.5194/hess-24-115-2020, 2020
Short summary
Short summary
This study constitutes the first comprehensive analysis of river
temperature in Switzerland combined with discharge and key meteorological variables, such as air temperature and precipitation. It is also the first study to discuss the large-scale seasonal behaviour of stream temperature in Switzerland. This research shows the clear increase of river temperature in Switzerland over the last few decades and may serve as a solid reference for future climate change scenario simulations.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-551, https://doi.org/10.5194/hess-2019-551, 2019
Revised manuscript not accepted
Short summary
Short summary
We explored what genetic material collected from water (eDNA) tells us about the flow of mountain streams, which are particularly valuable for habitat and water resources, but highly variable. We saw that when flow increased, more diverse eDNA was transported, especially in the main channel and tributaries. Whereas in the springs, we saw more diverse eDNA when the electrical conductivity of the water increased, likely indicating more underground surface contact.
Ana Clara Santos, Maria Manuela Portela, Andrea Rinaldo, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, https://doi.org/10.5194/hess-22-2377-2018, 2018
Short summary
Short summary
This paper assesses the performance of an analytical modeling framework for probability distributions for summer streamflow of 25 Swiss catchments that present a wide range of hydroclimatic regimes, including snow- and icemelt-influenced streamflows. Two versions of the model were tested: linear and nonlinear. The results show that the model performs well for summer discharges under all analyzed regimes and that model performance varies with mean catchment elevation.
Anna Costa, Peter Molnar, Laura Stutenbecker, Maarten Bakker, Tiago A. Silva, Fritz Schlunegger, Stuart N. Lane, Jean-Luc Loizeau, and Stéphanie Girardclos
Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018, https://doi.org/10.5194/hess-22-509-2018, 2018
Short summary
Short summary
We explore the signal of a warmer climate in the suspended-sediment dynamics of a regulated and human-impacted Alpine catchment. We demonstrate that temperature-driven enhanced melting of glaciers, which occurred in the mid-1980s, played a dominant role in suspended sediment concentration rise, through increased runoff from sediment-rich proglacial areas, increased contribution of sediment-rich meltwater, and increased sediment supply in proglacial areas due to glacier recession.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
B. Schaefli, L. Nicótina, C. Imfeld, P. Da Ronco, E. Bertuzzo, and A. Rinaldo
Geosci. Model Dev., 7, 2733–2746, https://doi.org/10.5194/gmd-7-2733-2014, https://doi.org/10.5194/gmd-7-2733-2014, 2014
Short summary
Short summary
This paper presents the Spatially Explicit Hydrologic Response of the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for hydrologic simulation at the catchment scale. It simulates the mobilization of water at the subcatchment scale and the transport to the outlet through a convolution with the river network. We discuss the parameter estimation and model performance for discharge simulation in the high Alpine Dischmabach catchment (Switzerland).
S. N. Lane
Hydrol. Earth Syst. Sci., 18, 927–952, https://doi.org/10.5194/hess-18-927-2014, https://doi.org/10.5194/hess-18-927-2014, 2014
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Identification, mapping, and eco-hydrological signal analysis for groundwater-dependent ecosystems (GDEs) in Langxi River basin, north China
Solutions and case studies for thermally driven reactive transport and porosity evolution in geothermal systems (reactive Lauwerier problem)
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci., 28, 4623–4642, https://doi.org/10.5194/hess-28-4623-2024, https://doi.org/10.5194/hess-28-4623-2024, 2024
Short summary
Short summary
Research on groundwater-dependent ecosystems (GDEs) started earlier, but because there is no good identification and classification method, most of the related research is concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China, with well-developed karsts, was selected as the study area, and a four-diagnostic-criteria framework for identifying the GDEs based on remote sensing, GIS data dredging, and hydrogeological surveys was proposed.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci., 28, 4559–4576, https://doi.org/10.5194/hess-28-4559-2024, https://doi.org/10.5194/hess-28-4559-2024, 2024
Short summary
Short summary
Common practices in water resource management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void space. A mathematical model is developed to study the effects of such thermal fluid injection on the evolution of water composition, aquifer porosity, and permeability. The model is then applied to two important case studies.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen,
R.: Impact of transient groundwater storage on the discharge of Himalayan
rivers, Nature Geoscience, 5, 127–132, https://doi.org/10.1038/ngeo1356, 2012. a
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Science Reviews, 21, 1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002. a, b
Baraer, M., Mckenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez,
J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the outflow
from ungauged glacierized catchments: A multi-site study in the tropical
Cordillera Blanca, Peru, Hydrol. Process., 29, 2561–2581,
https://doi.org/10.1002/hyp.10386, 2015. a, b
Barandun, M., Huss, M., Usubaliev, R., Azisov, E., Berthier, E., Kääb, A., Bolch, T., and Hoelzle, M.: Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations, The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, 2018. a
Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo,
A.: Using SAS functions and high-resolution isotope data to unravel travel
time distributions in headwater catchments, Water Resour. Res., 53,
1864–1878, https://doi.org/10.1002/2016WR020117, 2017. a
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a, b, c
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from
snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, https://doi.org/10.1038/nclimate2246, 2014. a
Berne, A., Uijlenhoet, R., and Troch, P. A.: Similarity analysis of subsurface
flow response of hillslopes with complex geometry, Water Resour. Res.,
41, 1–10, https://doi.org/10.1029/2004WR003629, 2005. a, b
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012. a
Boussinesq, J.: Recherches théoriques sur l'écoulement des nappes
d'eau infiltrées dans le sol et sur le débit des sources,
J. Math. Pure. Appl., 10, 5–78, http://eudml.org/doc/235283 (last access: 10 May 2022), 1904. a
Bovis, M. J.: Rock-slope deformation at Affliction Creek, southern Coast
Mountains, British Columbia, Canadian Journal of Earth Sciences, 27,
243–254, https://doi.org/10.1139/e90-024, 1990. a
Brighenti, S., Tolotti, M., Bruno, M. C., Wharton, G., Pusch, M. T., and
Bertoldi, W.: Ecosystem shifts in Alpine streams under glacier retreat and
rock glacier thaw: A review, Sci. Total Environ., 675,
542–559, https://doi.org/10.1016/j.scitotenv.2019.04.221, 2019. a
Burri, M., Allimann, M., Chessex, R., Piaz, G. V. D., Valle, G. D., Bois,
L. D., Gouffon, Y., A., G., Hagen, T., Krummenacher, D., and Looser, M.-O.:
Chanrion (CN 1346) avec partie nord de la feuille Mont Vélan (CN 1366),
Atlas géologique de la Suisse 1:25 000, Swisstopo, ISBN 3906723321, https://prod-swishop-s3.s3.eu-central-1.amazonaws.com/public/product-documents/GA25-ERL-101.pdf (last access: 25 August 2022), 1999. a
Caballero, Y., Jomelli, V., Chevallier, P., and Ribstein, P.: Hydrological
characteristics of slope deposits in high tropical mountains (Cordillera
Real, Bolivia), CATENA, 47, 101–116, https://doi.org/10.1016/S0341-8162(01)00179-5,
2002. a, b, c
Carrivick, J. L. and Heckmann, T.: Short-term geomorphological evolution of
proglacial systems, Geomorphology, 287, 3–28,
https://doi.org/10.1016/j.geomorph.2017.01.037, 2017. a, b
Carrivick, J. L., Heckmann, T., Turner, A., and Fischer, M.: An assessment of
landform composition and functioning with the first proglacial systems
dataset of the central European Alps, Geomorphology, 321, 117–128,
https://doi.org/10.1016/j.geomorph.2018.08.030, 2018. a
Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H. J., Peters,
N. E., and Freer, J. E.: Consistency between hydrological models and field
observations: linking processes at the hillslope scale to hydrological
responses at the watershed scale, Hydrol. Process., 23, 311–319,
https://doi.org/10.1002/hyp.7154, 2009. a
Clow, D., Schrott, L., Webb, R., Campbell, D., Torizzo, A., and Dornblaser, M.:
Ground Water Occurrence and Contributions to Streamflow in an Alpine
Catchment, Colorado Front Range, Ground Water, 41, 937–950,
https://doi.org/10.1111/j.1745-6584.2003.tb02436.x, 2003. a, b
Crossman, J., Bradley, C., Boomer, I., and Milner, A.: Water flow dynamics of
groundwater-fed streams and their ecological significance in a glacierized
catchment, Arct. Antarct. Alp. Res., 43, 364–379,
https://doi.org/10.1657/1938-4246-43.3.364, 2011. a
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., and Al-Malki, A.:
Evaluation of aquifer thickness by analysing recession hydrographs.
Application to the Oman ophiolite hard-rock aquifer, J. Hydrol.,
274, 248–269, https://doi.org/10.1016/S0022-1694(02)00418-3, 2003. a
Engel, M., Penna, D., Bertoldi, G., Dell'Agnese, A., Soulsby, C., and Comiti,
F.: Identifying run-off contributions during melt-induced run-off events in
a glacierized alpine catchment, Hydrol. Process., 30, 343–364,
https://doi.org/10.1002/hyp.10577, 2016. a
Engel, M., Penna, D., Bertoldi, G., Vignoli, G., Tirler, W., and Comiti, F.: Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment, Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019, 2019. a
Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L.,
Page, M. L., and Escadafal, R.: Snow hydrology in Mediterranean mountain
regions: A review, J. Hydrol., 551, 374–396,
https://doi.org/10.1016/j.jhydrol.2017.05.063, 2017. a
Fischer, M., Huss, M., Barboux, C., and Hoelzle, M.: The New Swiss Glacier
Inventory SGI2010: Relevance of Using High-Resolution Source Data in Areas
Dominated by Very Small Glaciers, Arct. Antarct. Alp. Res.,
46, 933–945, https://doi.org/10.1657/1938-4246-46.4.933, 2014. a
Flowers, G. E.: Modelling water flow under glaciers and ice sheets,
P. Roy. Soc. A.-Math. Phy., 471, 20140907, https://doi.org/10.1098/rspa.2014.0907, 2015. a
Gabbi, J., Farinotti, D., Bauder, A., and Maurer, H.: Ice volume distribution and implications on runoff projections in a glacierized catchment, Hydrol. Earth Syst. Sci., 16, 4543–4556, https://doi.org/10.5194/hess-16-4543-2012, 2012. a, b
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response, J. Glaciol., 60,
1199–1207, https://doi.org/10.3189/2014JoG14J011, 2014. a
GLAMOS: The Swiss Glaciers 1880-2018/19, Glaciological Reports
No 1–140, Yearbooks of the Cryospheric Commission of the Swiss Academy of
Sciences (SCNAT), published since 1964 by VAW/ETH Zurich,
https://doi.org/10.18752/glrep_series, 1881–2020. a, b
Glas, R., Lautz, L., McKenzie, J., Mark, B., Baraer, M., Chavez, D., and
Maharaj, L.: A review of the current state of knowledge of proglacial
hydrogeology in the Cordillera Blanca, Peru, WIREs Water, 5, e1299,
https://doi.org/10.1002/wat2.1299, 2018. a
Gordon, R. P., Lautz, L. K., McKenzie, J. M., Mark, B. G., Chavez, D., and
Baraer, M.: Sources and pathways of stream generation in tropical proglacial
valleys of the Cordillera Blanca, Peru, J. Hydrol., 522, 628–644,
https://doi.org/10.1016/j.jhydrol.2015.01.013, 2015. a, b
Grämiger, L. M., Moore, J. R., Gischig, V. S., Ivy-Ochs, S., and Loew,
S.: Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles, J. Geophys. Res.-Earth, 122, 1004–1036, https://doi.org/10.1002/2016JF003967, 2017. a
Lauterjung, H. and Schmidt, G.: Planning of Water and Hydropower Intake Structures, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, ISBN 3528020423, https://www.ircwash.org/sites/default/files/Lauterjung-1989-Planning.pdf (last access: 20 August 2022), 1989. a
Haeberli, W. and Weingartner, R.: In full transition: Key impacts of vanishing
mountain ice on water-security at local to global scales, Water Security,
11, 100074, https://doi.org/10.1016/j.wasec.2020.100074, 2020. a
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment
evacuation by glaciers: A review of field data and their implications,
Global Planet, Change, 12, 213–235,
https://doi.org/10.1016/0921-8181(95)00021-6, 1996. a
Harbor, J.: Influence of subglacial drainage conditions on the velocity
distribution within a glacier cross section, Geology, 25, 739–742,
https://doi.org/10.1130/0091-7613(1997)025<0739:IOSDCO>2.3.CO;2, 1997. a
Harman, C. and Sivapalan, M.: A similarity framework to assess controls on
shallow subsurface flow dynamics in hillslopes, Water Resour. Res.,
45, 1–12, https://doi.org/10.1029/2008WR007067, 2009a. a, b, c
Harman, C. and Sivapalan, M.: Effects of hydraulic conductivity variability on
hillslope-scale shallow subsurface flow response and storage-discharge
relations, Water Resour. Res., 45, 1–15, https://doi.org/10.1029/2008WR007228,
2009b. a
Harman, C. J., Sivapalan, M., and Kumar, P.: Power law catchment-scale
recessions arising from heterogeneous linear small-scale dynamics, Water Resour. Res., 45, 1–13, https://doi.org/10.1029/2008WR007392, 2009. a
Hartmann, A., Semenova, E., Weiler, M., and Blume, T.: Field observations of soil hydrological flow path evolution over 10 millennia, Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, 2020. a
Hauer, F. R., Locke, H., Dreitz, V. J., Hebblewhite, M., Lowe, W. H., Muhlfeld,
C. C., Nelson, C. R., Proctor, M. F., and Rood, S. B.: Gravel-bed river
floodplains are the ecological nexus of glaciated mountain landscapes,
Sci. Adv., 2, 1–14, https://doi.org/10.1126/sciadv.1600026, 2016. a
Hayashi, M.: Alpine Hydrogeology: The Critical Role of Groundwater in Sourcing
the Headwaters of the World, Groundwater, 58, 498–510,
https://doi.org/10.1111/gwat.12965, 2020. a, b, c, d
Heckmann, T. and Morche, D.: Geomorphology of Proglacial Systems, in: Geography
of the Physical Environment, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-94184-4, 2019. a
Heckmann, T., Mccoll, S., and Morche, D.: Retreating ice: Research in
pro-glacial areas matters, Earth Surf. Process. Land., 41,
271–276, https://doi.org/10.1002/esp.3858, 2016. a
Hindshaw, R. S., Tipper, E. T., Reynolds, B. C., Lemarchand, E., Wiederhold,
J. G., Magnusson, J., Bernasconi, S. M., Kretzschmar, R., and Bourdon, B.:
Hydrological control of stream water chemistry in a glacial catchment (Damma
Glacier, Switzerland), Chem. Geol., 285, 215–230,
https://doi.org/10.1016/j.chemgeo.2011.04.012, 2011. a
Hogarth, W. L., Li, L., Lockington, D. A., Stagnitti, F., Parlange, M. B.,
Barry, D. A., Steenhuis, T. S., and Parlange, J.-Y.: Analytical
approximation for the recession of a sloping aquifer, Water Resour. Res., 50, 8564–8570, https://doi.org/10.1002/2014WR016084, 2014. a
Hood, J. L. and Hayashi, M.: Characterization of snowmelt flux and groundwater
storage in an alpine headwater basin, J. Hydrol., 521, 482–497,
https://doi.org/10.1016/j.jhydrol.2014.12.041, 2015. a, b
Hugentobler, M., Loew, S., Aaron, J., Roques, C., and Oestreicher, N.:
Borehole monitoring of thermo-hydro-mechanical rock slope processes adjacent
to an actively retreating glacier, Geomorphology, 362, 107190,
https://doi.org/10.1016/j.geomorph.2020.107190, 2020. a
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x, 2018. a
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague,
J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G.,
Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without
permanent snow and ice, Earth's Future, 5, 418–435,
https://doi.org/10.1002/2016EF000514, 2017. a, b, c
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T.,
Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M.,
Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S.,
Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S.,
Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and
Baillie, J. E. M.: Importance and vulnerability of the world's water
towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020. a
Jefferson, A., Nolin, A., Lewis, S., and Tague, C.: Hydrogeologic controls on
streamflow sensitivity to climate variation, Hydrol. Process., 22,
4371–4385, https://doi.org/10.1002/hyp.7041, 2008. a
Käser, D. and Hunkeler, D.: Contribution of alluvial groundwater to the
outflow of mountainous catchments, Water Resour. Res., 52, 680–697,
https://doi.org/10.1002/2014WR016730, 2016. a, b, c
Kirchner, J. W.: Catchments as simple dynamical systems: Catchment
characterization, rainfall-runoff modeling, and doing hydrology backward,
Water Resour. Res., 45, W02429, https://doi.org/10.1029/2008WR006912, 2009. a, b, c
Kirchner, J. W., Godsey, S. E., Solomon, M., Osterhuber, R., McConnell, J. R., and Penna, D.: The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA, Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, 2020. a
Klein, G., Vitasse, Y., Rixen, C., Marty, C., and Rebetez, M.: Shorter snow
cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than
to later snow onset, Clim. Change, 139, 637–649,
https://doi.org/10.1007/s10584-016-1806-y, 2016. a
Kobierska, F., Jonas, T., Griessinger, N., Hauck, C., Huxol, S., and
Bernasconi, S. M.: A multi-method field experiment to determine local
groundwater flow in a glacier forefield, Hydrol. Process., 29,
817–827, https://doi.org/10.1002/hyp.10188, 2015a. a, b, c
Kobierska, F., Jonas, T., Kirchner, J. W., and Bernasconi, S. M.: Linking baseflow separation and groundwater storage dynamics in an alpine basin (Dammagletscher, Switzerland), Hydrol. Earth Syst. Sci., 19, 3681–3693, https://doi.org/10.5194/hess-19-3681-2015, 2015b. a, b, c
Kurylyk, B. L. and Hayashi, M.: Inferring hydraulic properties of alpine
aquifers from the propagation of diurnal snowmelt signals, Water Resour. Res., 53, 4271–4285, https://doi.org/10.1002/2016WR019651, 2017. a, b
Lane, S. N. and Nienow, P. W.: Decadal‐Scale Climate Forcing of Alpine
Glacial Hydrological Systems, Water Resour. Res., 55, 2478–2492,
https://doi.org/10.1029/2018WR024206, 2019. a, b
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J. N.:
Sediment export, transient landscape response and catchment-scale
connectivity following rapid climate warming and Alpine glacier recession,
Geomorphology, 277, 210–227, https://doi.org/10.1016/j.geomorph.2016.02.015, 2017. a
Langston, G., Bentley, L. R., Hayashi, M., McClymont, A., and Pidlisecky, A.:
Internal structure and hydrological functions of an alpine proglacial
moraine, Hydrol. Process., 25, 2967–2982, https://doi.org/10.1002/hyp.8144, 2011. a, b
Langston, G., Hayashi, M., and Roy, J. W.: Quantifying groundwater-surface
water interactions in a proglacial moraine using heat and solute tracers,
Water Resour. Res., 49, 5411–5426, https://doi.org/10.1002/wrcr.20372, 2013. a
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y.,
Bärtschi, H., and Schmassmann, E.: The New Swiss Glacier Inventory
SGI2016: From a Topographical to a Glaciological Dataset, Front. Earth
Sci., 9, 1–22, https://doi.org/10.3389/feart.2021.704189, 2021. a
Mackay, J. D., Barrand, N. E., Hannah, D. M., Krause, S., Jackson, C. R.,
Everest, J., MacDonald, A. M., and Ó Dochartaigh, B.: Proglacial
groundwater storage dynamics under climate change and glacier retreat,
Hydrol. Process., 34, 5456–5473, https://doi.org/10.1002/hyp.13961, 2020. a, b
Magnusson, J., Jonas, T., and Kirchner, J. W.: Temperature dynamics of a
proglacial stream: Identifying dominant energy balance components and
inferring spatially integrated hydraulic geometry, Water Resour. Res.,
48, 1–16, https://doi.org/10.1029/2011WR011378, 2012. a
Magnusson, J., Kobierska, F., Huxol, S., Hayashi, M., Jonas, T., and Kirchner,
J. W.: Melt water driven stream and groundwater stage fluctuations on a
glacier forefield (Dammagletscher, Switzerland), Hydrol. Process., 28,
823–836, https://doi.org/10.1002/hyp.9633, 2014. a, b, c, d
Maier, F., van Meerveld, I., Greinwald, K., Gebauer, T., Lustenberger, F.,
Hartmann, A., and Musso, A.: Effects of soil and vegetation development on
surface hydrological properties of moraines in the Swiss Alps, Catena, 187, 104353, https://doi.org/10.1016/j.catena.2019.104353, 2020. a
Maier, F., van Meerveld, I., Meerveld, I., Weiler, M., van Meerveld, I.,
Meerveld, I., and Weiler, M.: Long‐Term Changes in Runoff Generation
Mechanisms for Two Proglacial Areas in the Swiss Alps I: Overland Flow,
Water Resour. Res., 57, 1–30, https://doi.org/10.1029/2021WR030221, 2021. a, b
Maisch, M., Haeberli, W., Hoelzle, M., and Wenzel, J.: Occurrence of rocky and
sedimentary glacier beds in the Swiss Alps as estimated from
glacier-inventory data, Ann. Glaciol., 28, 231–235,
https://doi.org/10.3189/172756499781821779, 1999. a
Maizels, J.: Sediments and landforms of modern proglacial terrestrial
environments, Modern and Past Glacial Environments, 4, 279–316 pp., https://doi.org/10.1016/B978-075064226-2/50012-X, 2002. a
Malard, F., Tockner, K., and Ward, J. V.: Shifting dominance of subcatchment
water sources and flow paths in a glacial floodplain, Val Roseg,
Switzerland, Arct. Antarct. Alp. Res., 31, 135–150,
https://doi.org/10.2307/1552602, 1999. a
McClymont, A. F., Roy, J. W., Hayashi, M., Bentley, L. R., Maurer, H., and
Langston, G.: Investigating groundwater flow paths within proglacial moraine
using multiple geophysical methods, J. Hydrol., 399, 57–69,
https://doi.org/10.1016/j.jhydrol.2010.12.036, 2011. a
Miller, H. R. and Lane, S. N.: Biogeomorphic feedbacks and the ecosystem
engineering of recently deglaciated terrain, Prog. Phys. Geog.,
43, 24–45, https://doi.org/10.1177/0309133318816536, 2018. a, b
Milner, A. M., Brown, L. E., and Hannah, D. M.: Hydroecological response of
river systems to shrinking glaciers, Hydrol. Process., 23, 62–77,
https://doi.org/10.1002/hyp.7197, 2009. a
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E.,
Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen,
D., Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson,
J. S., Robinson, C. T., Tranter, M., and Brown, L. E.: Glacier shrinkage
driving global changes in downstream systems, Proc. Natl.
Acad. Sci., 114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017. a
Müller, T.: Weather dataset from Otemma glacier forefield, Switzerland
(from 14 July 2019 to 18 November 2021) (v1.2021.02), Zenodo [data set],
https://doi.org/10.5281/zenodo.6106778, 2022a. a, b
Müller, T.: Water table elevation and groundwater temperature from the
outwash plain of the Otemma glacier forefield (Switzerland) from 2019 to 2021 (v1.2022.03), Zenodo [data set], https://doi.org/10.5281/zenodo.6355474,
2022b. a
Müller, T.: Electrical Resistivity Tomography (ERT) datasets from the
Otemma glacier forefield and outwash plain (v1.2022.03), Zenodo [data set],
https://doi.org/10.5281/zenodo.6342767, 2022c. a, b, c
Müller, T. and Miesen, F.: Stream discharge, stage, electrical
conductivity & temperature dataset from Otemma glacier forefield,
Switzerland (from July 2019 to October 2021) (v1.2021.02), Zenodo [data
set], https://doi.org/10.5281/zenodo.6202732, 2022. a, b
Ó Dochartaigh, B. É., MacDonald, A. M., Black, A. R., Everest, J., Wilson, P., Darling, W. G., Jones, L., and Raines, M.: Groundwater–glacier meltwater interaction in proglacial aquifers, Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, 2019. a, b, c
Oestreicher, N., Loew, S., Roques, C., Aaron, J., Gualandi, A., Longuevergne,
L., Limpach, P., and Hugentobler, M.: Controls on Spatial and Temporal
Patterns of Slope Deformation in an Alpine Valley, J. Geophys. Res.-Earth, 126, e2021JF006353, https://doi.org/10.1029/2021JF006353, 2021. a
Parriaux, A. and Nicoud, G.: Hydrological behaviour of glacial deposits in
mountainous areas, IAHS Publication, 190, 291–312,
http://infoscience.epfl.ch/record/116598 (last access: 30 August 2022), 1990. a
Penna, D., Engel, M., Bertoldi, G., and Comiti, F.: Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment, Hydrol. Earth Syst. Sci., 21, 23–41, https://doi.org/10.5194/hess-21-23-2017, 2017. a
Planet Team: Planet Application Program Interface: In Space for Life on
Earth, https://api.planet.com (last access: 30 August 2022), 2017. a
Robinson, Z. P., Fairchild, I. J., and Russell, A. J.: Hydrogeological
implications of glacial landscape evolution at Skeiðarársandur, SE
Iceland, Geomorphology, 97, 218–236, https://doi.org/10.1016/j.geomorph.2007.02.044, 2008. a
Roncoroni, M., Brandani, J., Battin, T. I., and Lane, S. N.: Ecosystem
engineers: Biofilms and the ontogeny of glacier floodplain ecosystems, Wiley Interdisciplinary Reviews: Water, 6, e1390, https://doi.org/10.1002/wat2.1390, 2019. a
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An
open-source library for modelling and inversion in geophysics, Computers and Geosciences, 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017. a
Rupp, D. E. and Selker, J. S.: Drainage of a horizontal Boussinesq aquifer
with a power law hydraulic conductivity profile, Water Resour. Res.,
41, 1–8, https://doi.org/10.1029/2005WR004241, 2005. a, b
Rupp, D. E. and Selker, J. S.: On the use of the Boussinesq equation for
interpreting recession hydrographs from sloping aquifers, Water Resour. Res., 42, 1–15, https://doi.org/10.1029/2006WR005080, 2006. a, b, c
Santos, A. C., Portela, M. M., Rinaldo, A., and Schaefli, B.: Analytical flow duration curves for summer streamflow in Switzerland, Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, 2018. a
Schilling, O. S., Parajuli, A., Tremblay Otis, C., Müller, T. U.,
Antolinez Quijano, W., Tremblay, Y., Brennwald, M. S., Nadeau, D. F.,
Jutras, S., Kipfer, R., and Therrien, R.: Quantifying Groundwater Recharge
Dynamics and Unsaturated Zone Processes in Snow-Dominated Catchments via
On-Site Dissolved Gas Analysis, Water Resour. Res., 57, 1–24,
https://doi.org/10.1029/2020WR028479, 2021. a, b
Somers, L. D., Gordon, R. P., McKenzie, J. M., Lautz, L. K., Wigmore, O.,
Glose, A. M., Glas, R., Aubry-Wake, C., Mark, B., Baraer, M., and Condom, T.:
Quantifying groundwater–surface water interactions in a proglacial valley,
Cordillera Blanca, Peru, Hydrol. Process., 30, 2915–2929,
https://doi.org/10.1002/hyp.10912, 2016. a
Staudinger, M., Stoelzle, M., Seeger, S., Seibert, J., Weiler, M., and Stahl,
K.: Catchment water storage variation with elevation, Hydrol. Process., 31, 2000–2015, https://doi.org/10.1002/hyp.11158, 2017. a
Stewart, M. K.: Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand, Hydrol. Earth Syst. Sci., 19, 2587–2603, https://doi.org/10.5194/hess-19-2587-2015, 2015. a, b
SwissTopo: swissALTI3D – The high precision digital elevation model of
Switzerland,
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html (last
access: 11 May 2021), 2019. a
SwissTopo: SWISSIMAGE 10 cm – The Digital Color Orthophotomosaic of
Switzerland,
https://www.swisstopo.admin.ch/en/geodata/images/ortho/swissimage10.html
(last access: 30 March 2021), 2020. a
Temme, A. J. A. M.: The Uncalm Development of Proglacial Soils in the European
Alps Since 1850, Springer, Cham, 315–326 pp.,
https://doi.org/10.1007/978-3-319-94184-4_18, 2019. a
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G., Lyon, S. W.,
Paniconi, C., Pauwels, V. R., Rupp, D. E., Selker, J. S., Teuling, A. J.,
Uijlenhoet, R., and Verhoest, N. E.: The importance of hydraulic groundwater
theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves
Parlange, Water Resour. Res., 49, 5099–5116,
https://doi.org/10.1002/wrcr.20407, 2013. a
Tromp-Van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in
subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, 1–11, https://doi.org/10.1029/2004WR003800, 2006. a, b
Van Tiel, M., Van Loon, A. F., Seibert, J., and Stahl, K.: Hydrological response to warm and dry weather: do glaciers compensate?, Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, 2021.
a
Verhoest, N. E. C. and Troch, P. A.: Some analytical solutions of the
linearized Boussinesq equation with recharge for a sloping aquifer, Water Resour. Res., 36, 793–800, https://doi.org/10.1029/1999WR900317, 2000. a
Vincent, A., Violette, S., and Aðalgeirsdóttir, G.: Groundwater in
catchments headed by temperate glaciers: A review, Earth-Science Reviews,
188, 59–76, https://doi.org/10.1016/j.earscirev.2018.10.017, 2019. a, b
Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D.,
Soruco, A., Villacis, M., Yarleque, C., Elison Timm, O., Condom, T.,
Salzmann, N., and Sicart, J. E.: Rapid decline of snow and ice in the
tropical Andes – Impacts, uncertainties and challenges ahead,
Earth-Science Reviews, 176, 195–213, https://doi.org/10.1016/j.earscirev.2017.09.019, 2018. a, b
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geography Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007. a
Wagner, T., Kainz, S., Helfricht, K., Fischer, A., Avian, M., Krainer, K., and
Winkler, G.: Assessment of liquid and solid water storage in rock glaciers
versus glacier ice in the Austrian Alps, Sci. Total Environ.,
800, 149593, https://doi.org/10.1016/j.scitotenv.2021.149593, 2021. a, b
Ward, J. V., Malard, F., Tockner, K., and Uehlinger, U.: Influence of ground
water on surface water conditions in a glacial flood plain of the Swiss
Alps, Hydrol. Process., 13, 277–293,
https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3<277::AID-HYP738>3.0.CO;2-N, 1999. a, b
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A.,
Benischke, R., Leis, A., Morawetz, R., Schreilechner, M. G., and Hergarten,
S.: Identification and assessment of groundwater flow and storage components
of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern
Alps (Austria), Hydrogeol. J., 24, 937–953,
https://doi.org/10.1007/s10040-015-1348-9, 2016. a, b, c
Wittenberg, H. and Sivapalan, M.: Watershed groundwater balance estimation
using streamflow recession analysis and baseflow separation, J. Hydrol., 219, 20–33, https://doi.org/10.1016/S0022-1694(99)00040-2, 1999. a
Yao, Y., Zheng, C., Andrews, C. B., Scanlon, B. R., Kuang, X., Zeng, Z., Jeong,
S. J., Lancia, M., Wu, Y., and Li, G.: Role of Groundwater in Sustaining
Northern Himalayan Rivers, Geophys. Res. Lett., 48, 1–10,
https://doi.org/10.1029/2020GL092354, 2021. a
Zuecco, G., Carturan, L., De Blasi, F., Seppi, R., Zanoner, T., Penna, D.,
Borga, M., Carton, A., and Dalla Fontana, G.: Understanding hydrological
processes in glacierized catchments: Evidence and implications of highly
variable isotopic and electrical conductivity data, Hydrol. Process.,
33, 816–832, https://doi.org/10.1002/hyp.13366, 2019. a
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
This research provides a comprehensive analysis of groundwater storage in Alpine glacier...