Articles | Volume 26, issue 11
https://doi.org/10.5194/hess-26-2969-2022
https://doi.org/10.5194/hess-26-2969-2022
Research article
 | 
15 Jun 2022
Research article |  | 15 Jun 2022

A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China

Huajin Lei, Hongyu Zhao, and Tianqi Ao

Related authors

Effects of spatial resolution of digital terrain obtained by drone on mountainous urban fluvial flood modelling
Xingyu Zhou, Lunwu Mou, Tianqi Ao, Xiaorong Huang, and Haiyang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-404,https://doi.org/10.5194/egusphere-2024-404, 2024
Short summary
Technical note: Improving the Initial Conditions of Hydrological Model with Reanalysis Soil Moisture Data
Lingxue Liu, Tianqi Ao, and Li Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2022-452,https://doi.org/10.5194/egusphere-2022-452, 2022
Preprint archived
Short summary
Development and validation of a new MODIS snow-cover-extent product over China
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022,https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021,https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Distributed source pollutant transport module based on BTOPMC: a case study of the Laixi River basin in the Sichuan province of southwest China
Hongbo Zhang, Tianqi Ao, Maksym Gusyev, Hiroshi Ishidaira, Jun Magome, and Kuniyoshi Takeuchi
Proc. IAHS, 379, 323–333, https://doi.org/10.5194/piahs-379-323-2018,https://doi.org/10.5194/piahs-379-323-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024,https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024,https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024,https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary

Cited articles

Ajaaj, A. A., Mishra, A., and Khan, A. A.: Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate, Stoch. Environ. Res. Risk A., 30, 1659–1675, 2016. 
Arshad, A., Zhang, W., Zhang, Z., Wang, S., and Shalamzari, M. J.: Reconstructing high-resolution gridded precipitation data using an improved downscaling approach over the high altitude mountain regions of upper Indus basin (UIB), Sci. Total Environ., 784, 147140, https://doi.org/10.1016/j.scitotenv.2021.147140, 2021. 
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. 
Awange, J. L., Hu, K. X., and Khaki, M.: The newly merged satellite remotely sensed, gauge and reanalysis-based multi-source weighted-ensemble precipitation: evaluation over Australia and Africa (1981–2016), Sci. Total Environ., 670, 448–465, https://doi.org/10.1016/j.scitotenv.2019.03.148, 2019. 
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J. D., and Xuan Thinh, N.: RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements, Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 2020. 
Download
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.