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Abstract. Although many multi-source precipitation prod-
ucts (MSPs) with high spatiotemporal resolution have been
extensively used in water cycle research, they are still sub-
ject to various biases, including false alarm and missed bias.
Precipitation merging technology is an effective means to
alleviate this uncertainty. However, how to efficiently im-
prove precipitation detection efficiency and precipitation in-
tensity simultaneously is a problem worth exploring. This
study presents a two-step merging strategy based on machine
learning (ML) algorithms, including gradient boosting de-
cision tree (GBDT), extreme gradient boosting (XGBoost),
and random forest (RF). It incorporates six state-of-the-
art MSPs (GSMaP, IMERG, PERSIANN-CDR, CMORPH,
CHIRPS, and ERA5-Land) and rain gauges to improve
the accuracy of precipitation identification and estimation
from 2000 to 2017 over China. Multiple environment vari-
ables and spatial autocorrelation are combined in the merg-
ing process. The strategy first employs classification models
to identify wet and dry days and then combines regression
models to predict precipitation amounts based on classified
wet days. The merged results are compared with traditional
methods, including multiple linear regression (MLR), ML re-
gression models, and gauge-based Kriging interpolation. A
total of 1680 (70 %) rain gauges are randomly chosen for
model training and 692 (30 %) for performance evaluation.
The results show that (1) the multi-source merged precipita-
tion products (MSMPs) outperformed all original MSPs in
terms of statistical and categorical metrics, which substan-
tially alleviates the temporal and spatial biases. The modified

Kling–Gupta efficiency (KGE), critical success index (CSI),
and Heidke Skill Score (HSS) of original MSPs are improved
by 15 %–85 %, 17 %–155 %, and 21 %–166 %, respectively.
(2) The spatial autocorrelation plays a significant role in pre-
cipitation merging, which considerably improves the model
accuracy. (3) The performance of MSMPs obtained by the
proposed method is superior to MLR, Kriging interpola-
tion, and ML regression models. The XGBoost algorithm
is recommended more for large-scale data merging owing
to its high computational efficiency. (4) The two-step merg-
ing strategy performs better when higher-density gauges are
used to model training. However, it has strong robustness and
can also obtain better performance than original MSPs even
when the gauge number is reduced to 10 % (237). This study
provides an accurate and reliable method to improve precip-
itation detection accuracy under complex climatic and topo-
graphic conditions. It could be applied to other areas well if
rain gauges are available.

1 Introduction

As one of the critical parameters of the natural water cy-
cle, precipitation helps us realistically understand the inter-
action between hydrological and climate systems. Moreover,
precipitation monitoring is essential for forecasting of ex-
treme hydroclimatic disasters and for management of water
resources (Yilmaz et al., 2005; Tao et al., 2016; Xu et al.,
2018). Accurate precipitation estimates are of practical im-
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portance for social economy as well as for security, agricul-
ture, meteorology, ecology, and other fields (Awange et al.,
2019). Traditional rain gauge measurements can provide re-
liable precipitation data, but this only reflects the precipita-
tion characteristics within a limited radius around the instru-
ments (Collischonn et al., 2008; Jia et al., 2011). The distri-
bution of gauges is scarce and irregular, particularly in the
Tibetan Plateau where this study is based and where precip-
itation has significant spatiotemporal variability (Ma et al.,
2021). Mapping precipitation spatial patterns based on obser-
vations from gauges may cause large uncertainties. By con-
trast, satellite-based precipitation estimates and atmospheric
reanalysis are attractive alternative tools for describing con-
tinuous spatial distribution due to their high spatiotemporal
resolution.

To date, a series of advanced remote sensing techniques
and numerical weather models have been employed to re-
trieve various multi-source precipitation products (MSPs)
(Huffman et al., 2007; Joyce et al., 2004). For instance,
the Tropical Rainfall Measuring Mission (TRMM) algo-
rithm combines detection information from multiple sen-
sors (including microwave imagers, infrared radiometers,
and radars) to provide valuable precipitation information
for tropical and subtropical regions (Huffman et al., 2007).
The Climate Hazards Group InfraRed Precipitation with Sta-
tion (CHIRPS) data (Funk et al., 2015) incorporates infrared
cold cloud duration observations and satellite information
to prepare a long-time and high spatial resolution (0.05◦)
dataset. The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN)
applies a state-of-the-art algorithm to generate global pre-
cipitation based on geostationary longwave infrared imagery
(Hsu et al., 1997). As an extension of TRMM, the Integrated
Multi-satellitE Retrievals for GPM (IMERG) algorithm en-
hances the estimation efficiency of solid and light precipita-
tion, which has finer temporal resolution and wider spatial
coverage than TRMM (Huffman et al., 2019). In addition
to satellite-based precipitation products, the National Cen-
ters for Environment Prediction and National Center for At-
mospheric Research (NCEP/NCAR) and the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) have
yielded many reanalysis products, such as ERA-Interim,
NCEP/NCAR, and ERA5. The latest ERA5-Land provides
a variety of land climate variables over several decades with
an enhanced spatial resolution compared to ERA5 (Hers-
bach et al., 2020). Nevertheless, previous studies have al-
ready demonstrated that MSPs usually suffer from various
degrees of uncertainty caused by retrieval algorithms, com-
plex terrain, sensor resampling frequency, and assimilation
techniques (Nerini et al., 2015; Arshad et al., 2021; Xu et
al., 2022). This uncertainty tends to be more severe at shorter
time scales (such as sub-daily and daily) and varies among
different precipitation products (Lei et al., 2021). Therefore,
how to alleviate the errors of MSPs is a crucial priority in or-

der to improve their application efficiency (Jiang et al., 2012;
Sharifi et al., 2016; Lu et al., 2020).

An important means to improve the accuracy of MSPs
is to combine multi-source products and gauge-based pre-
cipitation information. In this way, the deficiencies caused
by a single or independent data source can be compensated
(Xie and Arkin, 1997; Nie et al., 2015). The widely used
statistical methods include optimal interpolation (OI) (Xie
and Xiong, 2011; Shen et al., 2014; Wu et al., 2018), quan-
tile mapping (QM) (Piani et al., 2010; Katiraie-Boroujerdy
et al., 2020; Tong et al., 2021), geographically weighted
regression (GWR) (Chao et al., 2018; Chen et al., 2020),
inverse-root-mean-square-error weighting (Shen et al., 2014;
Yang et al., 2017), one outlier removed (OOR) (Shen et al.,
2014), Bayesian model averaging (Ma et al., 2017; Yum-
nam et al., 2022), geographical difference analysis (GDA)
(Duan and Bastiaanssen, 2013; Arshad et al., 2021), Kriging-
based methods (Manz et al., 2016), and multi-method cou-
pled approaches (Wu et al., 2018; Lu et al., 2020). Although
the aforementioned approaches have obtained better perfor-
mance in some regions, they are strongly based on solid
mathematical assumptions and suffer various limitations (Wu
et al., 2020). For example, the QM method removes bi-
ases in the statistical periods but cannot capture precipita-
tion wet/dry day lengths and interannual variability (Ajaaj et
al., 2015). The OOR method simply calculates the weight by
the linear average of all values (Ma et al., 2017). Most im-
portantly, with these statistical methods it is difficult to de-
scribe the relationship between the precipitation process and
complex environment variables (Shen et al., 2014; Wu et al.,
2018).

The rapid development of machine learning (ML) tech-
nology can overcome some limitations caused by the afore-
mentioned methods. Compared with traditional approaches,
ML can deal with complex nonlinear relationships with-
out constructing explicit statistical models. Moreover, the
strength of ML comes from its ability to solve different
types of problems, from classification to regression and
prediction, as well as its efficiency in learning and gen-
eralizing a huge number of data (He et al., 2016). Ow-
ing to these features, various ML algorithms are extensively
adopted in precipitation calibration and merging, for exam-
ple, random forest (RF) (Baez-Villanueva et al., 2020; Chen
et al., 2021), quantile regression forest (QRF) (Bhuiyan et
al., 2018, 2019), support vector machine (SVR) (Kumar et
al., 2019), convolutional neural network (CNN) (Le et al.,
2020), deep neural network (DNN) (Tao et al., 2016), arti-
ficial neural network (ANN) (Wehbe et al., 2020; Hong et
al., 2021), long short-term memory network (LSTM) (Tang
et al., 2021; Yang et al., 2022), as well as multi-algorithm
coupling (Wu et al.,2020; Tan et al., 2021; Zhang et al.,
2021). However, most of these studies mainly considered
limited environmental information and spatial correlation re-
lated to precipitation while neglecting the spatial autocor-
relation between gauge observations in merging processes,
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for example, the Euclidean distance in Baez-Villanueva et
al. (2020), geographical coordinates, and inverse distance
weighted (IDW) in Zhang et al. (2021). In addition, the un-
certainty of MSPs is partly caused by unsatisfactory precipi-
tation identification, which not only influences the statistical
length and start/end time of wet/dry days, but further leads
to the overestimation/underestimation of precipitation inten-
sity. Correctly judging whether precipitation events occur is
the key to enhancing precipitation performance fundamen-
tally. Several studies have employed ML methods to discrim-
inate precipitation/non-precipitation; for example, Zhang et
al. (2021) used SVM, RF, ANN, and extreme learning ma-
chine, Tao et al. (2016) and Xiao et al. (2022) applied ANN,
and Pham et al. (2019) used RF and SVM. However, these
studies incorporated gauge observations with several MSPs
or a single source. Each product has its pros and cons, and
sufficient products should be considered to extract valuable
information (Zhang et al., 2021; Lei et al., 2022). In addition,
to the best of our knowledge, the gradient boosting decision
tree (GBDT) and extreme gradient boosting (XGBoost) algo-
rithms have not been well explored in precipitation discrimi-
nating and merging.

To address the aforementioned concerns, this study pro-
poses a two-step merging strategy to incorporate six popular
MSPs (one latest reanalysis and five satellite products) and
relatively high-density rain gauges over China from 2000 to
2017, focusing on enhancing the precipitation discrimination
ability and absorbing the strengths of MSPs. This strategy
is based on XGBoost, GBDT, and RF classification and re-
gression models, and multiple environmental data especially
spatial autocorrelation are taken into consideration. The main
objectives of this study are the following: (1) to explore the
effectiveness of the proposed strategy in all aspects accord-
ing to various metrics; (2) to compare the performance of
the proposed strategy with traditional methods; (3) to assess
the influence of MSP spatial resolution and gauge density on
model performance. This strategy is expected to improve the
accuracy of existing MSPs and explore the potential of more
ML algorithms in precipitation.

2 Study area and materials

2.1 Study area

China, between 73–135◦ E and 15–53◦ N, is selected as the
study area, which is located in eastern Asia and west of the
Pacific Ocean with a land area of 9.6 million km2 (Fig. 1).
The elevation of China gradually increases from southeast
to northwest, resulting in a complex topography including
mountains, plateaus, hills, basins, and plains. China has a
diverse climate, including temperate monsoon climate, sub-
tropical monsoon climate, tropical monsoon climate, temper-
ate continental climate, and plateau mountain climate. The
Tibetan Plateau is dominated by the plateau mountain cli-

mate with a low temperature, strong radiation, abundant sun-
shine, and little precipitation. However, the southern region
has a subtropical monsoon climate characterized by warm
winters, hot summers, and abundant rainfall. Annual precip-
itation over China has high spatial variability, varying be-
tween 50 and 2000 mm from west to east. Moreover, the
distribution of precipitation amounts and events throughout
the year is also extremely uneven. Much more precipitation
(70 %–80 %) occurs during the warm season (May to Octo-
ber) than during the cold season (November to April), which
is the primary factor for this study to conduct model training
according to different seasons. In addition, China is mainly
divided into nine river basins, from east to south, including
the Continental basin (CB), Songliao River basin (SLRB),
Yellow River basin (YERB), Haihe River basin (HARB),
Southwest basin (SWB), Yangtze River basin (YARB), Huai
He River basin (HURB), Southeast basin (SEB), and Pearl
River basin (PRB) (Fig. 1). The runoff of most basins comes
mainly from precipitation, while CB is mainly from snow
and glacier meltwater.

2.2 Materials

2.2.1 Rain gauge observations

A relatively dense network of 2372 rain gauges over main-
land China from 2000 to 2017 is collected in this study, pro-
vided by the China Meteorological Administration (CMA).
The daily precipitation data have undergone strict quality
control by CMA. These quality control processes include
removing extreme values, internal consistency checks, and
spatial consistency checks (Shen et al., 2010). Therefore,
gauges can be used after simple processing, such as convert-
ing units. It should be noted that there is a temporal mismatch
(12 h) between daily gauge-based precipitation (Beijing time
from 20:00 to 20:00, UTC+08:00) and MSPs (from 00:00
to 24:00 UTC). Considering that not all products have a
sub-daily-scale temporal resolution, we recalculate daily ob-
servations using sub-daily precipitation (i.e., 08:00 to 20:00
and 20:00 to 08:00) to be consistent with MSPs. Gauges are
mainly distributed in eastern China but sparsely located in
western China, especially in the hinterland of the Qinghai–
Tibet Plateau (TP) (as shown in Fig. 1). The gauge density
used in this study is higher than in some previous studies (Wu
et al., 2020; Yin et al., 2021; Zhang et al., 2021). The average
control area for a single gauge is approximately 4000 km2

(9.6×106 km2/2372). Nevertheless, it is far from meeting the
requirement of the World Climate Organization that the con-
trol area should be about 600 km2 for plains and even smaller
for mountain regions (WMO, 2008).

2.2.2 MSPs

Six continuously updated products are selected for integra-
tion, including a reanalysis product and five satellite precipi-
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Figure 1. The topography of China and distribution of rain gauges.

tation products retrieved from multiple sensors. Limited by
the availability of MSPs, the period of this study is from
June 2000 to December 2017 (hereafter: 2000–2017). Spe-
cific information about MSPs is summarized in Table 1.

IMERG is the level 3 product of the Global Precipitation
Measurement (GPM) algorithm. The IMERG algorithm in-
corporates the multi-source information from the GPM mi-
crowave imager, Visible and Infrared Radiometer (VIRS),
and space-borne Ku/Ka-band dual-frequency radar. IMERG
provides three types of products, including Early, Late, and
Final Run products, which are retrieved around 4 h, 12 h,
and 4 months, respectively, after satellite monitoring. The
IMERG Final Run product outperforms the Early and Late
products because it combines the Global Precipitation Clima-
tology Centre (GPCC) gauge observations. The latest version
6 Final Run product is therefore chosen in this study. More-
over, the Global Satellite Mapping of Precipitation (GSMaP)
GSMaP_Gauge applied in this study incorporates Climate
Prediction Center (CPC) gauge data analysis (Kubota et al.,
2007), which is more accurate than other GSMaP products
such as GSMaP near real-time (NRT).

PERSIANN-Climate Data Record (PERCDR) has a long
record from 1983 to the present. The PERSIANN algo-

rithm is mainly based on Gridded Satellite (GridSat-BI)
IR data and National Centers for Environmental Predic-
tion (NCEP) Stage IV radar data (Ashouri et al., 2015),
which does not fuse microwave information. The reliabil-
ity of PERCDR is improved by using GPCC for calibra-
tion. The CHIRPS v.2 product is also used in this study.
It has higher spatial resolution than other MSPs, integrat-
ing satellite imagery, global climatology, and gauge obser-
vations. In addition, the Climate Prediction Center Mor-
phing Technique (CMORPH) version 1 dataset (Joyce et
al., 2004) covers products from three categories: CMORPH
RAW, CMORPH bias-corrected (CRT), and CMORPH
gauge blended datasets (BLD). CMORPH CRT is selected
in this study due to its superior quality.

ERA5-Land (herein ERA5L) is an enhanced land atmo-
spheric reanalysis dataset of the fifth-generation ERA5 pro-
duced by ECMWF. It provides various land surface variables
for more than 70 years with continuous updates. ERA5L de-
scribes the evolution of the water and energy cycles on the
land in a consistent manner (Hersbach et al., 2020). ERA5L
adopts cycle 41r2 of ECMWF’s Integrated Forecast System
(IFS). Compared with ERA5 and the older ERA-Interim,
ERA5L employed a better 4-dimensional variational (4D-
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Table 1. The seven MSPs used in this study.

MSPs Temporal–spatial Spatial Input sources Retrieval algorithm
resolution coverage

GSMaP 1 h, 0.1◦ 60◦ S–60◦ N PMW, IR, and gauge Kalman filtering technique
IMERG 0.5 h, 0.1◦ 60◦ S–60◦ N PMW, IR, and gauge Goddard profiling algorithm
PERCDR 3 h, 0.25◦ 60◦ S–60◦ N IR and gauge Adaptive ANN
CHIRPS daily, 0.05◦ 50◦ S–50◦ N IR, gauge, and reanalysis Kalman filter model
CMORPH 3 h, 0.25◦ 60◦ S–60◦|,N PMW, IR, and gauge Morphing technique
ERA5L 1 h, 0.1◦ Global Reanalysis and gauge IFS Cy41r2 4D-Var

var) assimilation technique, with an enhanced horizontal res-
olution (9 km) and higher spatial resolution (0.1◦). As one
of the art-of-the-art reanalysis data, ERA5L has been widely
used in many fields (Xin et al., 2021; Xu et al., 2022).

The information sources employed in MSPs show signif-
icant differences, especially in terms of whether microwave
signals are incorporated or not (Table 1). Moreover, various
algorithms are adopted to retrieve precipitation in different
MSPs. For instance, the Kalman filtering technique is em-
ployed for GSMaP, the Goddard profiling algorithm 2014
is used for IMERG, and the morphing technique is applied
for CMORPH (Table 1). Each algorithm and signal source
has its pros and cons, and it is necessary to combine them
to maximize their advantages. Although several products al-
ready combine gauge observation data (e.g., GPCC and CPC)
to reduce bias, only a few gauges within China are used. De-
spite the relatively high gauge density used in this study, this
has little impact on the independence of gauges and the relia-
bility of results (Shen et al., 2013). The number and location
of gauges used in GPCC over China is shown in Appendix A.

2.2.3 Environment variables

The environment variables used in this study include DEM,
longitude, latitude, wind speed, relative humidity, soil mois-
ture, cloud cover, and air temperature.

DEM is downloaded from the Shuttle Radar Topographic
Mission (SRTM) with a resolution of 90 m. Wind speed,
relative humidity, soil moisture, and air temperature are
obtained from the NASA Global Land Data Assimila-
tion System Noah Land Surface Model (GLDAS_NOAH),
with 3 h and 0.25◦ resolutions (Rodell et al., 2004). Cloud
cover is collected from ERA5 because it is not included
in GLDAS_NOAH, with hourly and 0.25◦ resolutions. Al-
though normalized differential vegetation index (NDVI) is
often used as a critical auxiliary variable to predict precipita-
tion, it is susceptible to soil type and human activities. NDVI
is more suitable for monthly or annual applications due to
its temporal resolution (Ghorbanpour et al., 2021; Shen and
Yong, 2021; Tan et al., 2021). Inversely, the response of air
temperature and soil moisture to daily precipitation is better
than NDVI, especially in the desert and bare land (Bhuiyan et
al., 2018). In addition, the interactions between cloud prop-

erties and precipitation are equally important (Sharifi et al.,
2019).

3 Methodology

3.1 Data preprocessing

In this study, the period of model training and precipitation
interpolation is from 2000 to 2017 at the daily scale. To
maintain the temporal and spatial consistency of the data,
all MSPs and environment variables at a sub-daily scale
are aggregated to daily data. The spatial resolution of DEM
(90 m) and CHIRPS (0.05◦) is upscaled to 0.1◦, while the
resolution of the PERCDR, CMORPH, cloud cover, and
GLDAS_NOAH is downscaled to 0.1◦ using the bilinear in-
terpolation method. In this study, the gauges are divided into
two groups: 70 % of rain gauges (1680) are spatially and ran-
domly selected as training and calibrating samples, and the
remaining 30 % (692) as validation samples. Due to the ir-
regular distribution of rain gauges over China, random sam-
pling is carried out for each river basin to ensure the spatial
representativeness of the validation gauges.

Inspired by previous research (Baez-Villanueva et al.,
2020; Zhang et al., 2021), we consider a covariate describ-
ing spatial autocorrelation between rain gauges in this study.
The semivariogram based on ordinary Kriging is adopted to
calculate spatial autocorrelation factors, i.e., Kriging-based
prediction (KP). Compared with other predict models, such
as inverse distance interpolation (IDW), the Kriging-based
semivariogram considers not only the spatial relationship be-
tween predicted and neighboring known points but also the
statistical autocorrelation between known points. The ordi-
nary Kriging assumes the model as follows:

z∗ (x0)=

n∑
i=1

λiz(xi) , (1)

where z∗(x0) is the predicted value of the unknown x0 point.
z(xi) and λi are the known value of neighboring rain gauge xi
and its weight. Unbiasedness and minimum estimation vari-
ance are the conditions for choosing weights. The weight de-
pends on the distance between the known points, the pre-
dicted position, and the overall spatial arrangement based on
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the known points. Spatial autocorrelation must be quantified
before spatial arrangement can be applied in weights. The
calculation processes of KP are as follows:

1. Calculate the distance and semivariogram between
known points,

γ (h)=
1
2

[
z(xi)− z

(
xj
)]
, (2)

where γ (h) is the semivariogram of xi and xj , h is the
distance, z is the value of known of points.

2. A theoretical model is used to fit semivariogram and
distances. The nugget, sill, and range can be obtained
according to the fitted semivariogram. The commonly
used semivariogram models are spherical, exponential,
Gaussian, and linear models. Compared with the pre-
diction performance of KP by different models, the
spherical model with better performance is selected in
this study. For more information on comparison results,
please refer to Appendix B. The spherical model is as
follows:

γ (h)=


0 h= 0

C0+C
(

3
2 ·

b
a
−

1
2 ·

b3

a3

)
0< h≤ a

C0+C h > a

, (3)

where γ (h) is semivariogram, h is the distance, C0, C,
and a is the nugget, sill, and range, respectively.

3. Calculate the semivariogram between the unknown
point and known points, and form a matrix to solve the
weights:
γ (h11) · · · γ (h1n) 1
...

. . .
...

...

γ (hn1) · · · γ (hnn) 1
1 · · · 1 0

 ·

λ1
...

λn
µ



=


γ (h10)
...

λn
γ (hn)

 , (4)

where µ is Lagrange parameter.

4. Predict the value of the unknown point using Eq. (1)
according to the weights obtained from Eq. (4).

3.2 A two-step merging strategy

The specific process of the two-step merging strategy is il-
lustrated in Fig. 2. The RF, GBDT, and XGBoost are cho-
sen to incorporate six MSPs (GSMaP, IMERG, PERCDR,
CMORPH, CHIRPS, and ERA5L) and rain gauges. Al-
though the RF method has been extensively employed in

most previous studies, few studies compared it with GBDT
and XGBoost models in precipitation merging. The environ-
ment variables, including soil moisture, cloud cover, relative
humidity, air temperature, DEM, longitude, latitude, and spa-
tial autocorrelation (KP), are selected as auxiliary variables
(i.e., covariate) of the merging of step 1 and step 2. The val-
ues of multiple covariables and MSPs extracted according
to gauge locations are taken as independent variables, while
gauge observations are taken as the dependent variable. Fur-
thermore, according to the annual distribution characteristics
of precipitation, we group all input datasets into two seasons,
warm season (May and October) and cold season (November
to April), and models are trained independently in each sea-
son.

The two-step merging strategy explored in this study can
be generally described in two stages (Fig. 2) as follows:

1. Precipitation classification. The biases of precipitation
products mainly come from overestimating/underesti-
mating the amounts of hit events and failing to cor-
rectly distinguish precipitation occurrence, including
false alarm and missed events (Lei et al., 2022). There-
fore, the first step aims to classify precipitation in order
to reduce the missed events and false alarm bias. The
gauge observations are distinguished into wet/dry days
according to the 0.1 mm d−1 threshold value (Lei et al.,
2021; Yu et al., 2020; Jiang et al., 2021) and used as the
benchmark for classification. The wet day is set as 1 and
the dry day is set as 0. The feature values of MSPs and
covariables corresponding to each grid are applied to
construct XGBoost, GBDT, and RF classification mod-
els. The model determines whether a day in the grid is a
wet day or a dry day according to the classification prob-
ability. Hence, the classification result contains only wet
and dry days (0, 1) of each grid and does not involve pre-
cipitation intensity. In addition, the model is constructed
in warm and cold seasons using divided independent
datasets, which leads to six classification models (i.e.,
two seasons with three models).

2. Precipitation regression. Precipitation regression fo-
cuses on improving the precipitation intensity of hit
events. The MSPs and covariables values correspond-
ing to the wet day of gauge observations are extracted,
which are used to construct and train XGBoost, GBDT,
and RF regression models. Similarly, six regression
models are trained. The trained regression models are
then applied to predict the precipitation amounts of wet
days (value equals 1) classified in step (1), while dry
days remain 0. The final multi-source merged precipi-
tation products (MSMPs) are obtained by predicted in
each grid and day prediction. MSMPs in the whole pe-
riod are derived from the combination of cold and warm
seasons, which are termed “PXGB2”, “PGBDT2”, and
“PRF2”, respectively.
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Figure 2. Flowchart of the merging strategy used in this study (LAT is latitude, LON is longitude, RH is relative humidity, SM is soil
moisture, TEM is temperature, and WS is wind speed).

To highlight the superiority of the two-step merging strat-
egy, we compare it with single ML regression, multiple lin-
ear regression (MLR), and gauge-based Kriging interpola-
tion methods. Moreover, the best-performing algorithm is se-
lected by intercomparing the three ML models in the two-
step merging strategy. The detailed merging algorithms are
introduced in Sects. 3.2.1–3.2.4.

3.2.1 RF

The RF model was proposed by Breiman (2001) and is
widely applied to deal with regression, classification, and
other tasks (Rodriguez-Galiano et al., 2012; Nguyen et al.,
2021). The general structure of RF is shown in Fig. 3. RF is
an ensemble learning algorithm composed of multiple deci-
sion trees and generally outperforms a single tree. For regres-
sion problems, the model returns predictions by averaging all

individual decision trees. For classification problems, each
tree in the forest is judged and classified separately, and the
output of RF is the class of a majority vote on classification
trees (Ho, 1998).

The bootstrap aggregation (i.e., bagging) technique is ap-
plied by the RF training algorithm for tree learners, which
is designed to improve the accuracy and stability of ML al-
gorithms in classification and regression processes. The bag-
ging algorithm utilizes the out-of-bag (OOB) error to mea-
sure the prediction error of RF. It creates two indepen-
dent datasets. One dataset, the bootstrap sample (approxi-
mately two thirds of all samples), is selected as “in-the-bag”
data through sampling and replacement, while the remain-
ing OOB dataset (one-third) that is not selected during the
sampling process is used to calculate the model’s OOB er-
ror (Breiman, 2001). The advantages of RF can be mainly
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Figure 3. Overview of RF structure.

summarized in four points: (1) processing high-dimensional
data (a mass of features) without dimensionality reduction
and feature selection; (2) measuring the importance of fea-
tures and how they interact with each other; (3) avoiding
overfitting and easy to implement; and (4) balancing errors
for asymmetric datasets, which is critical in the cold season
when wet and dry days are unevenly distributed. In addition,
several important parameters in RF are the number of de-
cision trees (n_estimators), the maximum depth of each de-
cision tree (max_depth), and the minimum number of sam-
ples required to split an internal node (min_samples_split). A
trial-and-error procedure is used to optimize model parame-
ters due to the large sample size used in this study (approxi-
mately 14 million pieces of data) and the limitation of com-
puting resources. The optimal parameters of model training
during the warm season and cold season are displayed in Ta-
ble C1 in the Appendix.

3.2.2 GBDT

The GBDT is an iterative decision tree model created
by Breiman (1997) and subsequently developed by Fried-
man (2002), which is also called the “multiple additive re-
gression tree” (MART) (shown in Fig. 4). The additive al-
gorithm is utilized for classification or regression to con-
tinuously reduce residuals generated in the training process.
GBDT uses the forward distribution algorithm and selects
the classification and regression tree (CART) learner as a
weak base learner. GBDT generates numerous weak learn-
ers through multiple iterations, and each learner is trained
based on the residual of the previous learner. It finally inte-

grates the multiple weak learners into a single strong learner
by weighting the summation of each tree.

The main difference between RF and GBDT is that RF can
be trained in parallel to reduce variances, while GBDT re-
duces the biases by fitting the residual of former trees. Due
to the strong connection between weak learners, GBDT is
difficult to be paralleled. Generally speaking, GBDT has su-
perior generalization ability and robustness, which is less af-
fected by training sample size and can deal with various data
flexibly, including outliers and irrelevant features. Moreover,
the prediction accuracy of GBDT is high in the case of rela-
tively little parameter adjustment time. The main parameters
of GBDT include the number of boosting stages to be per-
formed (n_estimators), the learning rate that shrinks the con-
tribution of each tree by learning_rate (learning_rate), and
the maximum depth of trees (max_depth). The n_estimators
and learning rate are highly correlated with the performance
of the model. The optimal parameters are shown in Table C2.

3.2.3 XGBoost

The XGBoost model was proposed by Chen and
Guestrin (2016) based on the structure of GBDT. XG-
Boost also combines multiple weak learners into a strong
one, and the base learner in XGBoost can be either CART or
linear classifier. XGBoost possesses the strength of GBDT
and has several additional improvements: First, GBDT only
uses the first-order derivative information in optimization,
while XGBoost performs second-order Taylor expansion on
the cost function to obtain the first-order and second-order
derivatives, thus acquiring more accurate loss functions.
Second, XGBoost introduces a regularization term into
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Figure 4. Overview of the GBDT structure.

the cost function to effectively control the complexity of
the model. From the perspective of bias–variance tradeoff,
it reduces the variance of the model, making the learned
model more straightforward and preventing overfitting.
Third, XGBoost allows users to define custom optimization
goals and evaluation criteria, increasing its flexibility.
Moreover, XGBoost implements parallel processing when
selecting the best split node for enumeration, substantially
improving the computational efficiency compared with
gradient boosting machine (GBM). The critical parameters
of XGBoost are n_estimators, learning rate, max_depth, and
scale_pos_weight. The default value of scale_pos_weight
is 1, indicating the positive and negative samples are in
equilibrium. This is not applicable for precipitation classi-
fication in the cold season. More attention should be paid
to scale_pos_weight when model training. The optimal
parameters are shown in Table C3.

3.2.4 MLR

The MLR is the first type of regression algorithm used ex-
tensively in many fields, assuming a stable linear relation-
ship between a dependent variable and multiple independent
variables. Compared with nonlinear relationships, the MLR
is easier to fit and each explanatory variable’s statistical prop-
erty is more intuitive. MLR is usually fitted using the ordi-
nary least square method to minimize the sum of squares of
residuals predicted by the model and observed by the sample.
The overall model for MLR is

Y = β0+β1X1+β2X2+ . . . +βiXi, i = 1, . . ., n, (5)

where n is the number of explanatory variables, Y is the de-
pendent variable predicted by X1, X2 . . . ,Xn. β0 is the inter-
cept, and β1, β2, . . . βi are regression coefficients.

3.3 Performance evaluation and comparison

In this study, the performance of all products is evaluated
using 692 randomly selected independent gauges from 2000
to 2017. The evaluation metrics mainly involve categorical
and statistical metrics. The categorical metrics focus on ana-
lyzing the ability of products to capture precipitation events,
including the probability of detection (POD), false alarm ra-
tio (FAR), critical success index (CSI), precision (precision),
frequency bias (FB), Heidke Skill Score (HSS), and classifi-
cation accuracy (accuracy). The POD, also called “hit bias”,
represents the probability of precipitation events correctly
detected. FAR and “precision” describe the ratio of falsely
and correctly detected events among total detected precipita-
tion events, respectively. The sum of FAR and precision is 1.
The CSI incorporates POD and FAR, which demonstrates the
overall ability of precipitation detection. The FB is the ratio
of POD and FAR; it shows the balanced ability of products
in detecting precipitation events. FB< 1 indicates that pre-
cipitation events are underestimated, and FB> 1 indicates
that they are overestimated. The FB equals 1, meaning that
the number of missed events equals false alarm events. HSS
compares the predicted performance with random chance.
The negative HSS shows random chance is better than the
model predicted. The range of HSS is −∞ to 1, the perfect
value is 1.
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POD=
H

H +M
, (6)

FAR=
F

H +F
, (7)

Precision=
H

H +F
, (8)

CSI=
H

H +M +F
, (9)

FB=
POD

Precision
=
H +F

H +M
, (10)

HSS=
2(HN −FM)

(H +M) · (M +N)+ (H +F) · (F +N)
. (11)

“Accuracy” shows the proportion of total days that are cor-
rectly classified as wet and dry days. One point that needs
to be emphasized is that this study takes accuracy as the
evaluation metric to describe the accuracy of ML classifica-
tion models (RF, GBDT, and XGBoost) in training processes,
thereby determining the optimal parameters of the model.

Accuracy=
H +N

H +M +F +N
× 100%, (12)

where H is the total number of precipitation events simul-
taneously observed and predicted, M is the total number of
precipitation events observed but not predicted, F is the to-
tal number of precipitation events predicted but not detected,
N is the total number of no-precipitation events. The optimal
value of POD, precision, CSI, accuracy, and FB is 1, while
FAR is 0.

The statistical metrics are used to evaluate the error in es-
timating precipitation intensity, including root mean square
error (RMSE), the modified Kling–Gupta efficiency (KGE)
and its components – Pearson correlation coefficient (CC),
bias (β), and variability ratio (γ ). The CC measures the mag-
nitude of the correlation between the model-predicted and
observed values. The RMSE accesses the error between pre-
dicted and observed values. The KGE combining the CC,
β, and γ reflects the overall goodness of fit between model-
predicted and observed values. β > 1 indicates precipitation
amount is overestimated and vice versa. The formulas for
these metrics are expressed as follows:

KGE= 1−
√
(CC− 1)2+ (β − 1)2+ (γ − 1)2, (13)

CC=

n∑
i=1

(
Poi −Po

)(
Pmi −Pm

)
√

n∑
i=1

(
Poi −Po

)2
·
(
Pmi −Pm

)2 , (14)

β =
µm

µo
, (15)

γ =
SDm/µm

SDo/µo
, (16)

Table 2. The classification accuracy of wet/dry days during the
warm season and cold season.

RF GBDT XGBoost

Cold season 93.6 93.5 93.6
Warm season 89.9 89.8 89.9
Whole period 91.8 91.7 91.8

RMSE=

√√√√1
n

n∑
i=1

(Pmi −Poi)
2, (17)

where Po and Pm are the value of gauge observed and
predicted precipitation, respectively. N is the total number
of samples; µm and µo are the mean value of gauge ob-
served and predicted precipitation, respectively; and SDo and
SDm are the standard deviation of gauge observed and pre-
dicted precipitation, respectively. The optimal value for CC,
KGE, β, γ is 1, while for MAE and RMSE it is 0.

4 Results

4.1 Evaluation of the precipitation detection ability of
MSMPs

The classification accuracy of different ML models for
wet/dry days is shown in Table 2. The general performances
are considerable. The accuracy for the three models is higher
than 91 % in the whole period, which is 91.8 %, 91.7 %, and
91.8 % for RF, GBDT, and XGBoost, respectively. The accu-
racy in the cold season is better than that in the warm season.
There is no significant difference among the three classifica-
tion algorithms. The main reason is that the input variables
used in this study are sufficient in variety and quantity.

To evaluate the efficiency of the proposed strategy in pre-
cipitation detection ability, the MSMPs (PGBDT2, PXGB2,
and PRF2), gauge-based Kriging interpolated (Kriging), and
original precipitation products (MSPs) are assessed and com-
pared based on independent gauge observations. The six cat-
egorical metrics (POD, FAR, CSI, precision, FB, and HSS)
are shown in Fig. 5 and the average values of all gauges are
presented in Table 3. The overall accuracy of three MSMPs
substantially outperforms other products. The best values of
all metrics (except for POD) are generated in MSMPs. Krig-
ing has the highest POD with a value of 0.95 (Fig. 5a), fol-
lowed by ERA5L (0.94) and GSMaP (0.93). However, the
POD of PGBDT2, PXGB2, and PRF2 is 0.84, 0.85, and 0.85,
respectively. The FAR (Fig. 5b) of MSMPs is 0.13, decreased
by 59 %–75 % compared with the original MSPs (0.32–
0.52). In addition, PRF2 obtains the highest CSI with a value
of 0.76, much better than the original MSPs (0.3–0.65) and
Kriging (0.66) (Fig. 5c). In terms of precision (Fig. 5d), the
MSMPs show an obvious improvement. The precision in-
creases from 0.48–0.68 (MSPs) to 0.87 (MSMPs). For FB

Hydrol. Earth Syst. Sci., 26, 2969–2995, 2022 https://doi.org/10.5194/hess-26-2969-2022



H. Lei et al.: A two-step merging strategy for incorporating multi-source precipitation products 2979

Table 3. The average value of categorical metrics of multiple products compared with gauge observations during the whole period.

Metrics CHIRPS CMORPH PERCDR GSMaP IMERG ERA5L Kriging PGBDT2 PXGB2 PRF2

POD 0.36 0.70 0.75 0.93 0.78 0.94 0.95 0.84 0.85 0.85
FAR 0.36 0.37 0.52 0.32 0.41 0.45 0.32 0.13 0.13 0.13
CSI 0.30 0.48 0.39 0.65 0.50 0.54 0.66 0.75 0.75 0.76
Precision 0.64 0.63 0.48 0.68 0.59 0.55 0.68 0.87 0.87 0.87
FB 0.61 1.20 1.83 1.39 1.38 1.75 1.45 0.96 0.99 0.98
HSS 0.30 0.48 0.31 0.66 0.49 0.49 0.67 0.79 0.79 0.80

Note: the values in bold are the best performing of each metric.

(Fig. 5e), MSPs and Kriging deviate from 1, and PERCDR
has the worst value (1.83). Although ERA5L achieves a
high POD, its FB is 1.75, indicating ERA5L has seriously
overestimated wet days and misclassified many precipitation
events. Fortunately, MSMPs strike a good balance between
hit and false alarm rates. The FB of MSMPs is closer to 1,
which is 0.96 for PGBDT2, 0.99 for PXGB2, and 0.98 for
PRF2. In terms of HSS (Fig. 5f), except for Kriging (0.67)
and GSMaP (0.66), the HSS of MSPs is lower than 0.5 (0.3–
0.49). By contrast, the MSMPs (0.79–0.8) improve by 20 %–
163 %.

The general performance of most MSPs (e.g., CMORPH,
PERCDR, and IMERG) in the warm season is better than
that in the cold season (Fig. 5). However, the difference in
the performance of MSMPs between warm and cold seasons
is smaller than that of MSPs, demonstrating that the ability
of MSMPs is more balanced throughout the year. Moreover,
the variation in metrics of the original MSPs is considerable
in the cold season, particularly FAR and precision. The box-
plots of FAR (Fig. 5b) and of precision (Fig. 5d) for CHIRPS,
CMORPH, and PERCDR have wider ranges, which shows
these values have an uneven spatial distribution. By contrast,
MSMPs have more concentrated ranges of boxplots in most
metrics. These results emphasize the necessity of prioritizing
precipitation state recognition in the merging process, which
can greatly improve the precipitation capture efficiency of
MSPs.

Figure 6 shows the average value of six categorical met-
rics for 10 products under different precipitation intensities,
including no precipitation (< 0.1 mm d−1), light precipita-
tion ([0.1, 5)), moderate precipitation ([5, 20)), heavy precip-
itation ([20, 50)), and violent precipitation (> 50 mm d−1).
Overall, MSMPs have the best performance regardless of
precipitation intensities, followed by Kriging and GSMaP,
signifying that ML classification techniques improve the de-
tection capability of all precipitation thresholds, not only for
light and moderate precipitation events. The performance of
all products for no precipitation is considerably better than
other precipitation intensities. For instance, the FAR, CSI,
and HSS of MSMPs are 0.07, 0.88, and 0.79–0.8, respec-
tively, in no precipitation. Most MSPs have a poor ability
to capture light and moderate precipitation (0.1–20 mm d−1).

The CSI of MSPs ranges between 0.07 and 0.43 and HSS
is 0.06–0.54, while the HSS of MSMPs varies between 0.58
and 0.6. In addition, the FB fluctuates greatly in light pre-
cipitation, with the lowest value of 0.34 for CHIRPS and the
largest value of 2.09 for PERCDR (Fig. 6e). The MSMPs
show the best FB values of 0.85. The accuracy begins to
decrease when precipitation intensity is above 20 mm d−1

(i.e., heavy and violent precipitation). For violent precipi-
tation (> 50 mm d−1), the reduction in accuracy of MSMPs
and Kriging is relatively small compared with the original
MSPs. MSMPs have the highest POD (0.39–0.4), CSI (0.33),
and HSS (0.47). However, the FAR and precision show a dif-
ferent trend with better accuracy in violent precipitation than
in moderate and heavy precipitation (Fig. 6b and d). In addi-
tion, although the POD of ERA5L and Kriging outperform
MSMPs for whole events, they are inferior to MSMPs in
moderate, heavy, and violent precipitation. Generally, XG-
Boost and RF models are slightly superior to GBDT when
dividing precipitation thresholds (Fig. 6a). Kriging exhibits
better performance than most original MSPs. Nevertheless,
it is only based on gauge observations and does not com-
bine other climate variables associated with precipitation
processes. When MSPs, gauge, and multiple covariates are
considered, the MSMPs are more accurate than Kriging.

4.2 Evaluation of the precipitation amounts of MSMPs

To explore the accuracy of the precipitation amounts of
MSMPs, five statistical metrics (RMSE, KGE, and its com-
ponents CC, β, and γ ) are employed to compare original
MSPs and Kriging with PGBDT2, PXGB2, and PRF2 based
on daily observations. According to the comparison results
(Fig. 7, Table 4), the MSMPs perform better than all original
MSPs. The KGE of MSPs is improved by 15 %–85 % in the
whole period (Fig. 7a). The KGE is 0.74–0.76 for MSMPs,
0.62 for Kriging, and 0.34–0.66 for MSPs. MSMPs have
a strong correlation with gauge observations in the warm
season (CC: 0.83), cold season (CC: 0.9), and the whole
period (CC: 0.85) (Fig. 7b), which is substantially better
than MSPs (warm: 0.45–0.75; cold: 0.45–0.83; whole: 0.47–
0.76). In addition, β shows that all MSPs and Kriging over-
estimate precipitation amounts (Fig. 7c). This overestima-
tion is more prominent in the cold season, with values rang-
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Figure 5. Boxplots of six categorical metrics (POD (a), FAR (b), CSI (c), precision (d), FB (e), and HSS (f)) for 10 products, including six
MSPs, one gauge-based interpolated data, and three ML-based merged data.
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Figure 6. The performance of six categorical metrics (POD (a), FAR (b), CSI (c), precision (d), FB (e), and HSS (f)) of 10 products under
various daily precipitation thresholds.

ing between 5 % and 38 %. By contrast, MSMPs show sig-
nificant improvements and obtain better results in all sea-
sons. Although GSMaP and CMORPH have better perfor-
mance than PRF2 during the warm season and the whole pe-
riod, they suffer from a large magnitude of overestimation
(Kriging: 6 %; CMORPH: 13 %) in the cold season. In terms
of γ , the average variability ratio of CHIRPS, CMORPH, and

IMERG is more consistent with 1 compared with MSMPs
(Fig. 7d). However, they show more discreteness, particularly
for CHIRPS. In comparison, the distribution of MSMPs val-
ues is more compact. The results indicate that MSMPs can
merge the complementary advantages of original data and
reduce errors to a large extent, especially in the cold season.
For RMSE (Fig. 7e), the values in the warm season are higher
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Figure 7. Boxplots of five statistical metrics (KGE (a), CC (b), β (c), γ (d)), RMSE (d)) and for 10 products.

than those in the cold season. This is because precipitation is
mainly concentrated in the warm season, and higher precip-
itation amounts often lead to larger RMSE. The RMSE for
MSMPs decreases by 16 %–52 % compared with the origi-
nal MSPs (4.99–8.85 mm d−1). Among MSMPs, PXGB2 ex-
hibits the smallest RMSE with a value of 4.2 mm d−1.

Figure 8 illustrates the spatial distribution of RMSE and
KGE for GSMaP, Kriging, and PXGB2 in the whole period.

The reason for showing only these three products is that they
perform better among original products and MSMPs. The
spatial comparison among them is more representative and
brief. The RMSE gradually increases from north to south,
which is consistent with the precipitation change pattern
(Fig. 8a). The RMSE for the PXGB2 in south China has
better performance than Kriging and GSMaP. For PXGB2,
approximately 48 % of the gauges have an RMSE less than
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Table 4. The average values of statistic metrics of multiple products compared with gauge observations during the whole period (the unit of
RMSE is mm d−1).

Metrics CHIRPS CMORPH PERCDR GSMaP IMERG ERA5L Kriging PGBDT2 PXGB2 PRF2

KGE 0.41 0.58 0.34 0.66 0.64 0.48 0.62 0.76 0.76 0.74
CC 0.47 0.66 0.51 0.76 0.71 0.66 0.78 0.85 0.85 0.85
β 1.09 1.05 1.14 1.02 1.09 1.2 1.07 1.02 1.03 1.06
γ 1.1 0.95 0.71 0.82 0.9 0.74 0.78 0.85 0.84 0.83
RMSE 8.85 6.29 7.22 4.99 5.94 6.36 4.81 4.22 4.20 4.22

Note: the values in bold are the best performing of each metric.

4 mm d−1. The percentage of gauges with an RMSE higher
than 8 mm d−1 is 14 % for GSMaP, 8 % for Kriging, and
4 % for PXGB2. In addition, the spatial distribution of KGE
shows that the low values are mainly gathered in the north-
west (Fig. 8d–f). For PXGB2, about 36 % of the gauges have
a KGE higher than 0.8, compared with only 15 % for GSMaP
and 30 % for Kriging. The PXGB2 improves KGE perfor-
mance over the northwest region and narrows the gap be-
tween the southeast and northwest regions. These results in-
dicate that the two-step merging approach could mitigate the
spatial variability of products and is less susceptible to to-
pography.

4.3 Variable importance in ML models

Variable importance can quantitatively explain the contribu-
tion of variables to improving model accuracy and can iden-
tify crucial input variables. The permutation feature impor-
tance is utilized to calculate variable importance values of
models. The basic idea of this method is to randomly shuf-
fle the order of a specific variable while keeping other vari-
ables unchanged and compute the difference in accuracy (the
evaluation metric is accuracy for the classification model,
mean squared error for the regression model) with the orig-
inal model. As shown in Fig. 9, the importance of variables
for GBDT, XGBoost, and RF and their ranks are different,
which is related to the inherent structure of each model. This
phenomenon also exists between classification and regres-
sion models. Nonetheless, KP is always the most important
variable in each model, proving that the Kriging-based pre-
dictor considering the spatial autocorrelation between rain
gauges is helpful in improving model efficiency. For all mod-
els, the top three variables in importance are KP, GSMaP,
and IMERG. The CMORPH, PERCDR, ERA5L, and tem-
perature are considered next in significance. The importance
of ERA5L and temperature in XGBoost and RF classification
models is more obvious than that in regression models. Addi-
tionally, longitude, latitude, DEM, cloud cover, and relative
humidity exhibit a relatively low influence on precipitation
merging. The impacts of CHIRPS, soil moisture, and wind
speed on prediction results are negligible. However, this does
not mean that these predictors are not important for precip-
itation in whole regions. The slight importance of the latter

variables may be affected by data quality and the correla-
tion degree with precipitation. For example, CHIRPS is the
worst performing product among original MSPs. Overall, it
is necessary to employ multiple covariables in classification
and regression models since complex precipitation processes
cannot be thoroughly described by a single variable.

5 Discussion

5.1 Comparison of the different merging strategies

From the aspect of merging processes, different models and
training samples could affect the accuracy of the integrated
dataset. Therefore, three additional merging scenarios are
considered for quantitative comparison with the proposed
strategy to highlight the impact of sample division and al-
gorithm selection on fusion results. Figure 10 gives a brief
overview of four scenarios and their corresponding merged
precipitation products. Scenario 1 is the method adopted in
this study; scenario 2 separately trains the model in each
season based on four regression models (GBDT, XGBoost,
RF, and MLR), and the corresponding results are PGBDT_R,
PXGB_R, PRF_R, and PMLR; scenario 3 applies classifi-
cation and regression models during the entire period, and
the results are PGBDT_E, PXGB_E, and PRF_E; while sce-
nario 4 solely employs four regression models during the
entire period, and the results are PGBDT_ER, PXGB_ER,
PRF_ER, and PMLR_ER.

Figure 11 shows the evaluation results (CC, CSI, KGE,
FB, and HSS) of four scenarios between 14 MSMPs with
independent gauge observations. The performance of sce-
nario 1 is apparently better than the other scenarios. For
scenario 2, although the statistical metrics (CC and KGE)
are only slightly worse than scenario 1, the categorical met-
rics (CSI, FB, and HSS) are considerably weakened. In
the whole period (Fig. 11a), the HSS is between 0.64 and
0.68 for scenario 2, much lower than 0.79–0.8 for scenario 1.
Moreover, the FB of scenario 2 is larger than 1.38 (Fig. 11a),
indicating that the number of precipitation events is over-
estimated. A similar phenomenon also occurs in warm and
cold seasons (Fig. 11b and c). Furthermore, the MLR per-
forms worse than the three ML models. The results of sce-
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Figure 8. Spatial distribution of RMSE (a–c) and KGE (d–f) for GSMaP (a, d), Kriging (b, e), and PXGB2 (c, f) in the whole period
from 2000 to 2017 using independent rain gauges over mainland China.

nario 2 demonstrate that only relying on regression mod-
els to merge precipitation can describe precipitation inten-
sity but not capture precipitation occurrence well. In sce-
nario 3, the overall performance is superior to scenario 2
but inferior to scenario 1. The CSI (Fig. 11c) for scenario 1
and scenario 3 ranges from 0.73 to 0.74 and from 0.70 to
0.72, respectively. Scenario 3 suggests that merging precip-
itation in different seasons could balance the performance
differences within a year. Scenario 4 shows the worst per-
formance regardless of season, with poor CSI, FB, and HSS.
Especially for the PMLR-ER dataset, its accuracy is even
worse than GSMaP and Kriging. This is because with MLR
it is difficult to describe the complex relationship between
precipitation and other variables. The four scenarios can

be ranked by prediction accuracy from best to worst: sce-
nario 1> scenario 3> scenario 2> scenario 4. The approach
(i.e., scenario 1) employed in this study is proved to be more
accurate than other traditional strategies.

5.2 Models efficiency

The GBDT, XGBoost, and RF models show similar improve-
ments in the two-step merging strategy. Nevertheless, differ-
ent models have their inherent advantages and disadvantages.
There is an apparent disproportion between positive and neg-
ative samples (wet and dry days) when training the classifi-
cation model, which directly impacts the model’s classifica-
tion accuracy. In this study, the proportion of positive and
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Figure 9. Permutation feature importance of three (GBDT, XGBoost, and RF) classification models (a–c) and three regression model (d–f)
in the warm season (LAT is latitude, LON is longitude, RH is relative humidity, SM is soil moisture, TEM is temperature, and WS is wind
speed).

negative samples in the cold season is approximately 1 : 3.2.
In terms of this imbalance problem, RF and XGBoost al-
gorithms have built-in parameters for adjusting. However,
GBDT requires additional oversampling methods such as the
synthetic minority oversampling technique (SMOTE) to be
solved, which increases the complexity of model training.
Moreover, it can be inferred from the results of Table 3 and
Figs. 5 and 11 that the FB of XGBoost outperforms RF in all
seasons, indicating XGBoost has better equilibrium ability
for disproportional samples. In addition, Fig. 12 displays the
computational costs of training for three models under dif-
ferent sample sizes. The result shows that the training time
of GBDT and RF is much higher than XGBoost, which is
mainly related to the model structure and parallel training.
XGBoost parallels the feature granularity rather than the tree
granularity. The most time-consuming part of decision tree
learning is sorting feature values to determine the optimal
split node. XGBoost ranks the values before training and then

saves them into a block structure, which is repeatedly used
in subsequent iterations. In this way, the training time can
be greatly reduced (Chen et al., 2016; Wang et al., 2019).
Therefore, considering the complexity, accuracy, and com-
putational costs of the model, XGBoost is an optimal choice
for predicting daily precipitation over China.

5.3 The influence of gauge density and spatial
resolution

The density of rain gauges can influence the performance
of the merged product as well as the gauge-based interpo-
lated product. Gauges with different densities are used to
train the model and for interpolation, including 10 %, 30 %,
50 %, and 70 % of total gauges. Figure 13 shows that the
higher gauge density leads to a better performance of the
merged and interpolated products. However, PXGB2 is less
affected by the density compared with Kriging. The de-
creased magnitude of Kriging accuracy is more significant
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Figure 10. Four scenarios with different sample periods and different models.

Figure 11. Five evaluation metrics (CC, CSI, KGE, FB, and HSS) for different products under four scenarios during the whole period (a),
warm season (b), and cold season (c).
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Figure 12. Comparison of computation time of three ML classifi-
cation models.

than that of PXGB2 as the gauge number is reduced. For in-
stance, the deterioration in the KGE is 0.04 for PXGB2 (0.76
to 0.72) but 0.32 for Kriging (0.63 to 0.31), which is also
smaller than that reported by Baez-Villanueva et al. (2020)
and Zhang et al. (2021). The precipitation capture efficiency
of PXGB2 decreases slightly and always shows a better per-
formance. The CSI and HSS of PXGB2 vary from 0.73 to
0.76 and from 0.77 to 0.79, respectively. The FB is rel-
atively stable under different gauge numbers. In addition,
even when gauge density is reduced to 10 % (237 gauges,
i.e., 40 000 km2 per gauge), PXGB2 also outperforms Krig-
ing at 70 % (1680 gauges) and the best original MSPs (i.e.,
GSMaP). In comparison, the performance of Kriging is in-
ferior to GSMaP when gauge density is less than 50 %, es-
pecially at 10 %, which shows the gauge-based interpolation
method is more suitable for high gauge density regions and
could lead to considerable uncertainties in low gauge density
regions. In general, these results demonstrate that the pro-
posed method is effective and robust, and it is expected to
be applied to improve precipitation accuracy in areas with
scarce data.

This study uses a simple interpolation method to resam-
ple products to keep a consistent spatial resolution and avoid
additional uncertainties, as many previous studies have done
(Chao et al., 2018; Zhang et al., 2021; Baez-Villanueva et
al., 2020; Wu et al., 2020; Wang et al., 2020; Hong et al.,
2021). Figure 14 shows the performance of PXGB2 obtained
by training models with precipitation products under differ-
ent spatial resolutions (0.05, 0.1, and 0.25◦). It demonstrates
that there are only slight differences between various reso-
lutions during the whole period as well as during warm and
cold seasons, which is consistent with the results of a previ-
ous study (Baez-Villanueva et al., 2020). Therefore, it can be
considered that unifying the spatial resolution of all products
to 0.1◦ has a negligible impact on the merging results in this
study.

5.4 Comparison with previous studies

The study combines classification and regression models to
improve the accuracy of MSPs, which pays special atten-
tion to optimizing precipitation detection ability and reduc-
ing the error caused by missed events and false alarms. This
research has made significant progress based on the achieve-
ments of previous studies. In terms of precipitation occur-
rence, the classification accuracy (91.8 %) is better than the
ANN model (86.5 %) applied by Xiao et al. (2022) and the
RF model (77.5 %) employed by Pham et al. (2019). The
POD of MSMPs is lower than GSMaP and ERA5L, which
is similar to the results of Xiao et al. (2022). In addition, Yin
et al. (2021) improved the CC of the original product by 11 %
and the RMSE by 7 % over China, which is slightly inferior
to the improvement in this study (CC and RMSE improved
by 12 % and 16 %, respectively). Furthermore, the overall
performance of MSMPs is substantially better and could pro-
vide more accurate precipitation information for hydrologi-
cal research. The CC of MSMPs is up to 0.85, much higher
than 0.78 reported by Zhang et al. (2021), 0.61 by Yin et
al. (2021), and 0.72 by Wu et al. (2020) over China. Although
the validation method and period vary in the different studies,
their conclusions still have reference value. The better per-
formance found in this study is mainly due to the considera-
tion of precipitation products from multiple sources, environ-
ment variables, and relatively higher gauge density. Most im-
portantly, the spatial autocorrelation considered in this study
plays an important role in the merging process. Compared
with considerations of spatial distance (Baez-Villanueva et
al., 2020), geographical coordinates, and spatial correlation
(Zhang et al., 2021), it not only can describe spatial auto-
correlation between gauges but also between rain gauges and
predicted points. In addition, some previous studies based on
statistical methods were complex and difficult to reproduce
for researchers in other fields (Yang et al., 2017; Ma et al.,
2021; Yin et al., 2021). For instance, Yang et al. (2017) com-
bined the MSPs and gauges by bias correction, gauge obser-
vation gridding, and data merging. In comparison, the pro-
posed method only relies on ML and does not involve other
statistical methods, which is easy to implement and has broad
transferability.

5.5 Limitations and uncertainties

Although this proposed merging strategy has achieved out-
standing performance, some issues still need to be discussed
and further improved in future studies. The gauge observa-
tions are taken as the reference in model training and eval-
uation. However, the strategy suffers from uncertainties in-
duced by diverse climates, complex topography, and mea-
suring instruments (Ma et al., 2015; Lei et al., 2021). These
uncertainties are more obvious in the gauges located in re-
gions with snow and glacier coverage and would be prop-
agated to merged precipitation results. Moreover, gauges at
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Figure 13. Performance of PXGB2 and Kriging products using training dataset with different rain gauge densities (10 %, 30 %, 50 %, 70 %).
The dotted orange line in (a)–(f) shows the average of the best original product (GSMaP). The dotted gray line in (f) represents the reference
line with a value of 1.

high altitudes are sparsely distributed and have strong spatial
heterogeneity, making it challenging to describe precipitation
distribution accurately. In future studies, the input datasets
could be divided into more groups according to different ter-
rains or altitude zones, and precipitation data in high-altitude
regions could be corrected by combining topographic fac-
tors, snowfall, and glacier mass balance data to mitigate their
uncertainties.

This study assumes that the rain gauge represents the areal
precipitation pattern in its corresponding grid, but this as-
sumption is not fully satisfied in practical applications, es-
pecially in the Tibetan Plateau. This spatial scale mismatch
problem between precipitation gridded data and single gauge
observations can be alleviated by downscaling coarse prod-
ucts to a finer resolution. Some studies have downscaled all
monthly products before merging them with gauge observa-
tions (Chen et al., 2018, 2021). However, downscaling daily
precipitation is challenging because it is difficult to describe
the relationship between precipitation and environment vari-
ables (Chen et al., 2021). More effective downscaling algo-
rithms are worth exploring in the future.

Due to the limitations of gauge observations, the bench-
mark and MSPs used in this study are not near real-time

products. The merged products are more suitable for study-
ing hydrometeorological changes in long time series than in
the middle or short term. Multi-source precipitation prod-
ucts with near real-time and finer temporal resolution can
be continuously merged, such as IMERG Early Run and
GSMaP_NRT, to improve the accuracy of precipitation for
flood prediction if rain gauges are available. In addition, al-
though the trained model has spatial transferability, there is
uncertainty when applied to precipitation prediction outside
the training period.

6 Conclusion

This study proposes a two-step merging strategy including
GBDT, XGBoost, and RF classification and regression algo-
rithms to merge MSPs, multiple environment variables, and
rain gauges from 2000 to 2017 over China. The performance
of three merged products (MSMPs) is validated based on 692
randomly selected independent gauges and compared with
original MSP, Kriging, and other traditional merging scenar-
ios (e.g., ML regression and MLR). Several statistical and
categorical metrics are employed to quantitatively describe
the precipitation detection capability and precipitation uncer-
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Figure 14. The performance ((a) KGE and (b) CSI) of PXGB2 prepared by MSPs with different spatial resolutions (0.05, 0.1, and 0.25◦)
during the whole period, warm season, and cold season.

tainties. The main findings of this study can be summarized
as follows:

1. The precipitation capture ability of MSPs has been sub-
stantially improved. The MSMPs are better than all
original MSPs and Kriging regardless of the precipita-
tion intensity. The CSI for MSPs and Kriging is 0.30–
0.65 and 0.66, while MSMPs are increased to 0.75–
0.76. The HSS is also improved by 21 %–16 % (0.79–
0.8) compared with MSPs (0.30–0.66).

2. The statistical biases of precipitation amounts induced
by hit events are obviously alleviated. The improvement
of CC, KGE, and RMSE is 12 %–81 %, 15 %–85 %,
and 16 %–52 %, respectively. The spatial difference in
precipitation accuracy between northwest and southeast
China is also narrowed.

3. It is essential to incorporate spatial autocorrelation in
the merging strategy. KP is the most important co-
variable in precipitation merging, followed by GSMaP,
IMERG, and ERA5L. The degree of importance for co-
variables in models also relates to their inherent accu-
racy.

4. Compared with traditional MLR and ML regression
models, the proposed method in this study has superior
performance in all aspects. Moreover, the MSMPs pre-
dicted by considering annual precipitation characteristic
distribution are better than those in the whole period.

5. The higher gauge density used in model training could
lead to a better performance of the proposed method.
However, this method could also remarkably improve
original products even with few gauges.

6. The comprehensive ability of RF and XGBoost is
slightly better than GBDT. Considering the computa-
tion efficiency, it is recommended to use XGBoost to
prepare merged precipitation products.

The two-step merging strategy proposed in this study
achieves satisfactory performance over China. It is robust and
efficient in such a region characterized by complex terrain,
variable climate, and uneven distribution of gauges. There-
fore, this method has great referential significance and can
also achieve excellent results when applied in other regions
and countries.

Appendix A: The number and location of stations used
in GPCC over China

From the latest GPCC dataset, the number of China’s In-
ternational Exchange Stations used in GPCC has fluctuated
between 360 and 370 (in Fig. A1, the number is 362 in
July 2015), which has increased in recent years. Before 2017,
only about 200 of China’s stations are used in GPCC. De-
spite the use of these stations, satellite precipitation products
are corrected based on monthly GPCC, making it insufficient
to improve daily performance.
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Figure A1. The number and location of stations used in GPCC over
China.

Appendix B: Comparison of different semivariogram
models

The widely used semivariogram models include spherical,
exponential, Gaussian, power, and linear. We have discussed
the different Kriging-based prediction (KP) results based on
five semivariogram models. The expression of the five mod-
els is as follows:

1. Spherical model:

γ (h)=


0 h= 0

C0+C
(

3
2 ·

b
a
−

1
2 ·

b3

a3

)
0< h≤ a

C0+C h > a

.

(B1)

2. Exponential model:

γ (h)=

{
0 h= 0
C0+C

(
1− exp

(
−h
r

))
h > 0

, (B2)

where γ (h) is semivariogram, h is the distance, C0, C,
and a is the nugget, sill, and range, respectively.

Table B1. The performance of KPs estimated from five models.

Metrics Spherical Exponential Gaussian Power Linear

CC 0.806 0.810 0.782 0.799 0.803
RMSE 4.530 4.486 4.862 4.625 4.582
RB 0.028 0.032 0.044 0.040 0.006
FAR 0.276 0.284 0.269 0.302 0.282
POD 0.931 0.943 0.895 0.942 0.937
CSI 0.688 0.687 0.674 0.670 0.685
KGE 0.692 0.685 0.684 0.661 0.675
β 1.028 1.032 1.044 1.040 1.006
γ 0.830 0.816 0.876 0.798 0.814
precision 0.724 0.716 0.731 0.698 0.718
HSS 0.708 0.706 0.696 0.686 0.705

Note: the values in bold represent the best performing KPs.

3. Gaussian model:

γ (h)=

{
0 h= 0

C0+C
(

1− exp
(
h2

r2

))
h > 0 , (B3)

where the range is 2√3a.

4. Power model:

γ (h)= ha 0< a ≤ 2 . (B4)

5. Linear model:

γ (h)=


0 h= 0
C0+C

(
h
a

)
0< h≤ a

C0+C h > a

. (B5)

In order to compare the performance of the five semivari-
ogram models, the KP of 2372 gauges is estimated and vali-
dated. The accuracy of KP will directly influence the model
training and merging results. The evaluated results of differ-
ent models are show in Table B1.

It can be seen from Table B1 that the overall performance
of five models is good. The performance of the spherical
model shows the best CC, RMSE, and RB. The exponential
model shows the best CSI, KGE, precision, and HSS. The
difference between the semivariogram models is relatively
small and the spherical model with a slightly better perfor-
mance is adopted in this study.
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Appendix C: Model parameters

Table C1. The optimal parameters of RF model training.

Period n_estimators max_depth min_samples_split

Classification
Warm 150 60 7
Cold 150 Default 7

Regression
Warm 200 Default 10
Cold 200 70 4

Table C2. The optimal parameters of GBDT model training.

Period n_estimators max_depth learning_rate

Classification
Warm 100 9 0.2
Cold 100 7 0.4

Regression
Warm 100 10 0.1
Cold 200 9 0.1

Table C3. The optimal parameters of XGBoost model training.

Period n_estimators max_depth learning_rate scale_pos_weight

Classification
Warm 100 10 0.2 1.1
Cold 150 10 0.2 1.2

Regression
Warm 300 10 0.05 1
Cold 150 9 0.1 1

Data availability. The rain gauge observations are ob-
tained from the China Meteorological Data Service Center
(http://data.cma.cn; CMA, 2018). The IMERG data are from
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_
3IMERGDF.06/ (Huffman et al., 2019). The GSMaP data are
from http://sharaku.eorc.jaxa.jp/GSMaP/index.htm (JAXA, 2022).
The CHIRPS data are from https://data.chc.ucsb.edu/products/
CHIRPS-2.0/ (Funk et al., 2014). The PERCDR data are from
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
(UC-IRVINE/CHRS, 2022). The CMORPH data are from https:
//ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/ (Climate
Prediction Center, 2022). The ERA5-Land data are from https://cds.
climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30
(NCEP/NCAR and ECMWF, 2022). The GLDAS_NOAH data are
from https://doi.org/10.5067/E7TYRXPJKWOQ (Beaudoing and
Rodell, 2022).
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