Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1801-2022
https://doi.org/10.5194/hess-26-1801-2022
Research article
 | 
11 Apr 2022
Research article |  | 11 Apr 2022

Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach

Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe

Related authors

Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Invited perspective: What lies beneath a changing Arctic?
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021,https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019,https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Meteorological, soil moisture, surface water, and groundwater data from the St. Denis National Wildlife Area, Saskatchewan, Canada
Edward K. P. Bam, Rosa Brannen, Sujata Budhathoki, Andrew M. Ireson, Chris Spence, and Garth van der Kamp
Earth Syst. Sci. Data, 11, 553–563, https://doi.org/10.5194/essd-11-553-2019,https://doi.org/10.5194/essd-11-553-2019, 2019
Short summary
Evaluating and improving modeled turbulent heat fluxes across the North American Great Lakes
Umarporn Charusombat, Ayumi Fujisaki-Manome, Andrew D. Gronewold, Brent M. Lofgren, Eric J. Anderson, Peter D. Blanken, Christopher Spence, John D. Lenters, Chuliang Xiao, Lindsay E. Fitzpatrick, and Gregory Cutrell
Hydrol. Earth Syst. Sci., 22, 5559–5578, https://doi.org/10.5194/hess-22-5559-2018,https://doi.org/10.5194/hess-22-5559-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023,https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023,https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Changes in Mediterranean flood processes and seasonality
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023,https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023,https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023,https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary

Cited articles

Armstrong, R. N., Pomeroy, J. W., and Martz, L. W.: Variability in evaporation across the Canadian Prairie region during drought and non-drought periods, J. Hydrol., 521, 182–195, 2015. 
Ayers, H. D.: Influence of soil profile and vegetation characteristics on net rainfall supply to runoff, in: Proceedings of Hydrology Symposium No. 1: Spillway Design Floods, NRCC, Ottawa, 198–205, 1959. 
Brannen, R., Spence, C., and Ireson, A.: Influence of shallow groundwater-surface water interactions on the hydrological connectivity and water budget of a wetland complex, Hydrol. Process., 29, 3862–3877, 2015. 
Bush, E. and Lemmen, D. S.: Canada's Changing Climate Report, Government of Canada, Ottawa, ON, p. 444, https://changingclimate.ca/CCCR2019/ (last access: 31 March 2022), 2019. 
DeBeer, C. M., Wheater, H. S., Carey, S. K., and Chun, K. P.: Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis, Hydrol. Earth Syst. Sci., 20, 1573–1598, https://doi.org/10.5194/hess-20-1573-2016, 2016. 
Download
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.