Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1481-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1481-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting changes in hydrological processes of the Volta River basin under global warming
International Water Management Institute (IWMI), CSIR Campus, No. 6
Agostino Neto Road, Accra, Ghana
Institute of Earth Surface Dynamics (IDYST), Faculty of Geosciences
and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Institute of Geography (GIUB), University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
Mathieu Vrac
Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Université Paris-Saclay Centre d'Etudes de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
Natalie Ceperley
Institute of Geography (GIUB), University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
Sander J. Zwart
International Water Management Institute (IWMI), CSIR Campus, No. 6
Agostino Neto Road, Accra, Ghana
Josh Larsen
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
Simon J. Dadson
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
Grégoire Mariéthoz
Institute of Earth Surface Dynamics (IDYST), Faculty of Geosciences
and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Bettina Schaefli
Institute of Earth Surface Dynamics (IDYST), Faculty of Geosciences
and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Institute of Geography (GIUB), University of Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
Related authors
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025, https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Short summary
Properties of extreme meteorological and climatological events are changing under human-caused climate change. Extreme event attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogue method, which compares the observed event to similar events in the past.
Florentin Hofmeister, Xinyang Fan, Madlene Pfeiffer, Ben Marzeion, Bettina Schaefli, and Gabriele Chiogna
EGUsphere, https://doi.org/10.5194/egusphere-2025-3256, https://doi.org/10.5194/egusphere-2025-3256, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We use the WRF model for dynamically downscaling a global reanalysis product for the period 1850 to 2015 for the central European Alps. We demonstrate a workflow for transferring coarse-resolution (2 km) WRF temperature and precipitation to a much finer spatial resolution (25 m) of a physics-based hydrological model (WaSiM) and evaluate the results in a multi-data approach covering different simulation periods. Our results highlight the need for plausible and consistent elevation gradients.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025, https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Short summary
This study compares the dynamical structures that characterise long-lasting (persistent) and short hot spells in Western Europe. We find differences in large-scale atmospheric flow patterns during the events and particular soil moisture evolutions, which can account for the variation in event duration. There is variability in how drivers combine in individual events. Understanding persistent heat extremes can help improve their representation in models and ultimately their prediction.
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam., 16, 1085–1102, https://doi.org/10.5194/esd-16-1085-2025, https://doi.org/10.5194/esd-16-1085-2025, 2025
Short summary
Short summary
We introduce a novel approach to compare Earth system model output using a causality-based approach. The analysis of interactions between atmospheric, oceanic and biogeochemical variables in the North Atlantic subpolar gyre highlights the dynamics of each model. This method reveals potential underlying causes of model differences, offering a tool for enhanced model evaluation and improved understanding of complex Earth system dynamics under past and future climates.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025, https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides, such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management of landslide risk.
Ségolène Crossouard, Soulivanh Thao, Thomas Dubos, Masa Kageyama, Mathieu Vrac, and Yann Meurdesoif
EGUsphere, https://doi.org/10.5194/egusphere-2025-1418, https://doi.org/10.5194/egusphere-2025-1418, 2025
Short summary
Short summary
Current atmospheric models are limited by the computational time required for physical processes, known as physical parameterizations. To address this, we developed neural network-based emulators to replace these parameterizations in the IPSL climate model, using a simplified aquaplanet setup. We found that incorporating some physical knowledge, such as latent variables, into the learning process can improve predictions.
Yoann Robin, Mathieu Vrac, Aurélien Ribes, Occitane Barbaux, and Philippe Naveau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1121, https://doi.org/10.5194/egusphere-2025-1121, 2025
Short summary
Short summary
We describe an improved method and the associated free licensed package ANKIALE (ANalysis of Klimate with bayesian Inference: AppLication to extreme Events) for estimating the statistics of temperature extremes. This method uses climate model simulations (including multiple scenarios simultaneously) to provide a prior of the real-world changes, constrained by the observations. The method and the tool are illustrated via an application to temperature over Europe until 2100, for four scenarios.
Xinyang Fan, Florentin Hofmeister, Bettina Schaefli, and Gabriele Chiogna
EGUsphere, https://doi.org/10.5194/egusphere-2025-1500, https://doi.org/10.5194/egusphere-2025-1500, 2025
Preprint archived
Short summary
Short summary
We adopt a fully-distributed, physics-based hydrological modeling approach, to understand streamflow variations and their interactions with groundwater in a high-elevation glaciated environment. We demonstrate opportunities and challenges of integrating point-scale groundwater observations into a distributed model. This study sheds new lights on surface-subsurface processes in high alpine environments and highlights the importance of improving subsurface representation in hydrological modeling.
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
Hydrol. Earth Syst. Sci., 29, 1807–1827, https://doi.org/10.5194/hess-29-1807-2025, https://doi.org/10.5194/hess-29-1807-2025, 2025
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early-maturing potato varieties might help them to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier-maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, and Joshua R. Larsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1214, https://doi.org/10.5194/egusphere-2025-1214, 2025
Short summary
Short summary
Investigating changing snow in response to global warming can be done with a simple model and only temperature and precipitation data, simplifying snow dynamics with assumptions and parameters. We provide a large-scale and long-term evaluation of this approach and its performance across diverse climates. Temperature thresholds are more robust over cold climates but melt parameters are more robust over warmer climates with deep snow. The model performs well across climates despite its simplicity.
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252, https://doi.org/10.5194/egusphere-2025-252, 2025
Short summary
Short summary
The tracking of Tropical cyclones (TCs) remains a matter of interest for the investigation of observed and simulated tropical cyclones. In this study, Random Forest (RF), a machine learning approach, is considered to track TCs. RF associates TC occurrence or absence to different atmospheric configurations. Compared to trackers found in the literature, it shows similar performance for tracking TCs, better control over false alarm, more flexibility and reveal key variables allowing to detect TCs.
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966, https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Short summary
To study floods and droughts are likely to change in the future, we use climate projections from climate models. However, we first need to adjust the systematic biases of these projections at the catchment scale before using them in hydrological models. Our study compares statistical methods that can adjust these biases, but specifically for climate projections that enable a quantification of internal climate variability. We provide recommendations on the most appropriate methods.
Joséphine Schmutz, Mathieu Vrac, Bastien François, and Burak Bulut
EGUsphere, https://doi.org/10.5194/egusphere-2025-461, https://doi.org/10.5194/egusphere-2025-461, 2025
Short summary
Short summary
In recent years, Europe has faced severe hot and dry events affecting biodiversity, agriculture, and health. Understanding past significant variation in their occurrence is key for adaptation. This paper identifies emerging hotspots in Europe and North Africa. Since the 1970s, the Iberian Peninsula, Maghreb, and Central Europe have seen more frequent events, driven by rising temperature maxima, while Eastern Europe has experienced a decline due to changes in drought.
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
The Cryosphere, 19, 423–458, https://doi.org/10.5194/tc-19-423-2025, https://doi.org/10.5194/tc-19-423-2025, 2025
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102, https://doi.org/10.5194/hess-2024-102, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Fatemeh Zakeri, Gregoire Mariethoz, and Manuela Girotto
EGUsphere, https://doi.org/10.5194/egusphere-2024-1943, https://doi.org/10.5194/egusphere-2024-1943, 2024
Short summary
Short summary
This study introduces a method for estimating High-Resolution Snow Water Equivalent (HR-SWE) using Low-Resolution Climate Data (LR-CD). By applying a data-driven approach, we utilize historical weather patterns from LR-CD to estimate HR-SWE maps. Our approach uses statistical relationships between LR-CD and HR-SWE data to provide HR-SWE estimates for dates when HR-SWE data is unavailable. This method improves water resource management and climate impact assessments in regions with limited data.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024, https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary
Short summary
We aim to combine multiple global climate models (GCMs) to enhance the robustness of future projections. We introduce a novel approach, called "α pooling", aggregating the cumulative distribution functions (CDFs) of the models into a CDF more aligned with historical data. The new CDFs allow us to perform bias adjustment of all the raw climate simulations at once. Experiments with European temperature and precipitation demonstrate the superiority of this approach over conventional techniques.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024, https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary
Short summary
Modern and fossil pollen data contain precious information for reconstructing the climate and environment of the past. However, these data are only achieved for single locations with no continuity in space. We present here a systematic atlas of 194 digital maps containing the spatial estimation of contemporary pollen presence over Europe. This dataset constitutes a free and ready-to-use tool to study climate, biodiversity, and environment in time and space.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 16, 5265–5279, https://doi.org/10.5194/gmd-16-5265-2023, https://doi.org/10.5194/gmd-16-5265-2023, 2023
Short summary
Short summary
Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training image. The use of these methods relies on the possibility of finding optimal training images and parametrization of the simulation algorithms. Here, we propose finding an optimal set of parameters using only the training image as input. The main advantage of our approach is to remove the risk of overfitting an objective function.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Jason Bula, Marc-Henri Derron, and Gregoire Mariethoz
Geosci. Instrum. Method. Data Syst., 9, 385–396, https://doi.org/10.5194/gi-9-385-2020, https://doi.org/10.5194/gi-9-385-2020, 2020
Short summary
Short summary
We developed a method to acquire dense point clouds with a low-cost Velodyne Puck lidar system, without using expensive Global Navigation Satellite System (GNSS) positioning or IMU. We mounted the lidar on a motor to continuously change the scan direction, leading to a significant increase in the point cloud density. The system was compared with a more expensive system based on IMU registration and a SLAM algorithm. The alignment between acquisitions with those two systems is within 2 m.
Cited articles
Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019.
Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., and Chung, E.-S.: Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics, Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, 2019.
Aich, V., Liersch, S., Vetter, T., Huang, S., Tecklenburg, J., Hoffmann, P., Koch, H., Fournet, S., Krysanova, V., Müller, E. N., and Hattermann, F. F.: Comparing impacts of climate change on streamflow in four large African river basins, Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014, 2014.
Aich, V., Liersch, S., Vetter, T., Fournet, S., Andersson, J. C., Calmanti,
S., van Weert, F. H., Hattermann, F. F., and Paton, E. N.: Flood projections
within the Niger River Basin under future land use and climate change,
Sci. Total Environ., 562, 666–677,
https://doi.org/10.1016/j.scitotenv.2016.04.021, 2016.
Akinsanola, A. A., Zhou, W., Zhou, T., and Keenlyside, N.: Amplification of
synoptic to annual variability of West African summer monsoon rainfall under
global warming, npj Climate and Atmospheric Science, 3, 1–10,
https://doi.org/10.1038/s41612-020-0125-1, 2020.
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol.
Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1,
2015.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Berghuijs, W. R., Larsen, J. R., Van Emmerik, T. H., and Woods, R. A.: A
global assessment of runoff sensitivity to changes in precipitation,
potential evaporation, and other factors, Water Resour. Res., 53,
8475–8486, https://doi.org/10.1002/2017WR021593, 2017.
Berthou, S., Rowell, D. P., Kendon, E. J., Roberts, M. J., Stratton, R. A.,
Crook, J. A., and Wilcox, C.: Improved climatological precipitation
characteristics over West Africa at convection-permitting scales, Clim.
Dynam., 53, 1–21, https://doi.org/10.1007/s00382-019-04759-4,
2019.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., and Borga, M.:
Changing climate shifts timing of European floods, Science, 357, 588–590,
https://doi.org/10.1126/science.aan2506, 2017.
Budyko, M.: Climate and life, International Geophysics Series, 18, Academic Press, ISBN 9780080954530, 507 pp., 1974.
Byrne, M. P. and O'Gorman, P. A.: The response of precipitation minus
evapotranspiration to climate warming: Why the “wet-get-wetter,
dry-get-drier” scaling does not hold over land, J. Climate, 28,
8078–8092, https://doi.org/10.1175/JCLI-D-15-0369.1, 2015.
Chagnaud, G., Panthou, G., Vischel, T., and Lebel, T.: A synthetic view of
rainfall intensification in the West African Sahel, Environ. Res.
Lett., 17, 044005, https://doi.org/10.1088/1748-9326/ac4a9c, 2022.
Chen, L., Singh, V. P., Guo, S., Fang, B., and Liu, P.: A new method for
identification of flood seasons using directional statistics, Hydrolog.
Sci. J., 58, 28–40, https://doi.org/10.1080/02626667.2012.743661, 2013.
Dembélé, M.: Database for the manuscript “Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite datasets”, Zenodo [data set], https://doi.org/10.5281/zenodo.3531873, 2019.
Dembélé, M., Oriani, F., Tumbulto, J., Mariethoz, G., and Schaefli,
B.: Gap-filling of daily streamflow time series using Direct Sampling in
various hydroclimatic settings, J. Hydrol., 569, 573–586,
https://doi.org/10.1016/j.jhydrol.2018.11.076, 2019.
Dembélé, M.: Spatially explicit hydrological modelling for water
accounting under climate change in the Volta River Basin in West Africa,
PhD, University of Lausanne, Lausanne, Switzerland, 271 pp.,
https://doi.org/10.13140/RG.2.2.15664.58885, 2020.
Dembélé, M., Ceperley, N., Zwart, S. J., Mariéthoz, G., and
Schaefli, B.: Potential of Satellite and Reanalysis Evaporation Datasets for
Hydrological Modelling under Various Model Calibration Strategies, Adv.
Water Resour., 143,
103667,
https://doi.org/10.1016/j.advwatres.2020.103667, 2020a.
Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G.,
and Schaefli, B.: Improving the Predictive Skill of a Distributed
Hydrological Model by Calibration on Spatial Patterns With Multiple
Satellite Data Sets, Water Resour. Res., 56, e2019WR026085, https://doi.org/10.1029/2019wr026085, 2020b.
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020c.
Diallo, I., Giorgi, F., Deme, A., Tall, M., Mariotti, L., and Gaye, A. T.:
Projected changes of summer monsoon extremes and hydroclimatic regimes over
West Africa for the twenty-first century, Clim. Dynam., 47, 3931–3954,
https://doi.org/10.1007/s00382-016-3052-4, 2016.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher,
N.: More extreme precipitation in the world's dry and wet regions, Nat.
Clim. Change, 6, 508–513,
https://doi.org/10.1038/nclimate2941, 2016.
Donohue, R., Roderick, M., and McVicar, T. R.: Can dynamic vegetation
information improve the accuracy of Budyko's hydrological model?, J.
Hydrol., 390, 23–34,
https://doi.org/10.1016/j.jhydrol.2010.06.025, 2010.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Assessing the
differences in sensitivities of runoff to changes in climatic conditions
across a large basin, J. Hydrol., 406, 234–244,
https://doi.org/10.1016/j.jhydrol.2011.07.003, 2011.
Dosio, A., Jones, R. G., Jack, C., Lennard, C., Nikulin, G., and Hewitson,
B.: What can we know about future precipitation in Africa? Robustness,
significance and added value of projections from a large ensemble of
regional climate models, Clim. Dynam., 53, 5833–5858, https://doi.org/10.1007/s00382-019-04900-3, 2019.
Dosio, A., Turner, A. G., Tamoffo, A. T., Sylla, M. B., Lennard, C., Jones,
R. G., Terray, L., Nikulin, G., and Hewitson, B.: A tale of two futures:
contrasting scenarios of future precipitation for West Africa from an
ensemble of regional climate models, Environ. Res. Lett., 15,
064007, https://doi.org/10.1088/1748-9326/ab7fde, 2020.
Dosio, A., Jury, M. W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht,
F. A., Klutse, N. A., Lennard, C., Pinto, I., and Sylla, M. B.: Projected
future daily characteristics of African precipitation based on global
(CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models, Clim.
Dynam., 57, 1–24, https://doi.org/10.1007/s00382-021-05859-w, 2021.
Duethmann, D., Blöschl, G., and Parajka, J.: Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?, Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, 2020.
ESA: Land Cover CCI Product User Guide Version 2. Tech. Rep., https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (last access: 16 March 2022), 2017.
ESGF: ESGF Node at DKRZ, https://esgf-data.dkrz.de, last access: 22 March 2020.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G.,
Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., and Hoffman, F. M.:
Taking climate model evaluation to the next level, Nat. Clim. Change, 9,
102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019.
Fitzpatrick, R. G., Parker, D. J., Marsham, J. H., Rowell, D. P., Guichard,
F. M., Taylor, C. M., Cook, K. H., Vizy, E. K., Jackson, L. S., and Finney,
D.: What drives the intensification of mesoscale convective systems over the
West African Sahel under climate change?, J. Climate, 33, 3151–3172,
https://doi.org/10.1175/JCLI-D-19-0380.1, 2020.
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., and Hoell, A.: The climate hazards
infrared precipitation with stations – a new environmental record for
monitoring extremes, Scientific Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information
needs at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175–183, https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level-cordex-framework (last access: 16 March 2022), 2009.
Giuntoli, I., Vidal, J.-P., Prudhomme, C., and Hannah, D. M.: Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models, Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, 2015.
Greve, P. and Seneviratne, S. I.: Assessment of future changes in water
availability and aridity, Geophys. Res. Lett., 42, 5493–5499,
https://doi.org/10.1002/2015GL064127, 2015.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/ngeo2247,
2014.
Greve, P., Burek, P., and Wada, Y.: Using the Budyko framework for
calibrating a global hydrological model, Water Resour. Res., 56,
e2019WR026280, https://doi.org/10.1029/2019WR026280, 2020.
Gunkel, A. and Lange, J.: Water scarcity, data scarcity and the Budyko
curve – An application in the Lower Jordan River Basin, J.
Hydrol.-Regional Studies, 12, 136–149,
https://doi.org/10.1016/j.ejrh.2017.04.004, 2017.
Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., and Wiltshire, A. J.: Climate change impact on available water resources obtained using multiple global climate and hydrology models, Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, 2013.
Hakala, K., Addor, N., and Seibert, J.: Hydrological modeling to evaluate
climate model simulations and their bias correction, J. Hydrometeorol., 19,
1321–1337, https://doi.org/10.1175/JHM-D-17-0189.1, 2018.
Hakala, K., Addor, N., Teutschbein, C., Vis, M., Dakhlaoui, H., and Seibert,
J.: Hydrological modeling of climate change impacts, in: Encyclopedia of Water, edited by: Maurice, P., John Wiley and Sons, Inc, 1–20,
https://doi.org/10.1002/9781119300762.wsts0062, 2019.
Hanus, S., Hrachowitz, M., Zekollari, H., Schoups, G., Vizcaino, M., and Kaitna, R.: Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria, Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, 2021.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99,
https://doi.org/10.13031/2013.26773, 1985.
Hattermann, F. F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly,
C., Fekete, B., Flörke, F., Gosling, S. N., and Hoffmann, P.: Sources of
uncertainty in hydrological climate impact assessment: a cross-scale study,
Environ. Res. Lett., 13, 015006,
https://doi.org/10.1088/1748-9326/aa9938, 2018.
Hausfather, Z. and Peters, G. P.: Emissions–the “business as usual” story
is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020.
Hawkins, E. and Sutton, R.: Connecting climate model projections of global
temperature change with the real world, B. Am.
Meteorol. Soc., 97, 963–980,
https://doi.org/10.1175/BAMS-D-14-00154.1, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor.
Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Jin, L., Whitehead, P. G., Addo, K. A., Amisigo, B., Macadam, I., Janes, T.,
Crossman, J., Nicholls, R. J., McCartney, M., and Rodda, H. J.: Modeling
future flows of the Volta River system: Impacts of climate change and
socio-economic changes, Sci. Total Environ., 637, 1069–1080,
https://doi.org/10.1016/j.scitotenv.2018.04.350, 2018.
Jung, G., Wagner, S., and Kunstmann, H.: Joint climate–hydrology modeling:
an impact study for the data-sparse environment of the Volta Basin in West
Africa, Hydrol. Res., 43, 231–248,
https://doi.org/10.2166/nh.2012.044, 2012.
Karambiri, H., García Galiano, S., Giraldo, J., Yacouba, H., Ibrahim,
B., Barbier, B., and Polcher, J.: Assessing the impact of climate
variability and climate change on runoff in West Africa: the case of Senegal
and Nakambe River basins, Atmos. Sci. Lett., 12, 109–115,
https://doi.org/10.1002/asl.317, 2011.
Kasei, R. A.: Modeling impacts of climate change on water resources in the Volta Basin, West Africa, Bonn, 2010, PhD Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn,
https://nbn-resolving.org/urn:nbn:de:hbz:5N-19772 last access: 16 March 2022, 2010.
Kebe, I., Sylla, M. B., Omotosho, J. A., Nikiema, P. M., Gibba, P., and
Giorgi, F.: Impact of GCM boundary forcing on regional climate modeling of
West African summer monsoon precipitation and circulation features, Clim.
Dynam., 48, 1503–1516,
https://doi.org/10.1007/s00382-016-3156-x, 2017.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
convection-permitting regional climate models improve projections of future
precipitation change?, B. Am. Meteorol. Soc., 98,
79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S.,
Rowell, D. P., and Senior, C. A.: Enhanced future changes in wet and dry
extremes over Africa at convection-permitting scale, Nat. Commun.,
10, 1–14, https://doi.org/10.1038/s41467-019-09776-9, 2019.
Kiesel, J., Stanzel, P., Kling, H., Fohrer, N., Jähnig, S. C., and
Pechlivanidis, I.: Streamflow-based evaluation of climate model
sub-selection methods, Climatic Change, 163, 1267–1285,
https://doi.org/10.1007/s10584-020-02854-8, 2020.
Kling, H., Stanzel, P., and Fuchs, M.: Regional assessment of the hydropower
potential of rivers in West Africa, Energ. Proced., 97, 286–293,
https://doi.org/10.1016/j.egypro.2016.10.002, 2016.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., and Endo, H.: The JRA-55 reanalysis:
General specifications and basic characteristics, J.
Meteorol. Soc. Jpn.-Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will
affect global water availability through compounding changes in seasonal
precipitation and evaporation, Nat. Commun., 11, 1–10,
https://doi.org/10.1038/s41467-020-16757-w, 2020.
Krysanova, V., Donnelly, C., Gelfan, A., Gerten, D., Arheimer, B.,
Hattermann, F., and Kundzewicz, Z. W.: How the performance of hydrological
models relates to credibility of projections under climate change,
Hydrolog. Sci. J., 63, 696–720,
https://doi.org/10.1080/02626667.2018.1446214, 2018.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed
hydrologic model parameterization on water fluxes at multiple scales and
locations, Water Resour. Res., 49, 360–379,
https://doi.org/10.1029/2012wr012195, 2013.
Kvålseth, T. O.: Coefficient of variation: the second-order alternative,
J. Appl. Stat., 44, 402–415,
https://doi.org/10.1080/02664763.2016.1174195, 2017.
Laaha, G. and Blöschl, G.: Seasonality indices for regionalizing low
flows, Hydrol. Process., 20, 3851–3878,
https://doi.org/10.1002/hyp.6161, 2006.
Lange, S.: EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI), GFZ Data Services, https://doi.org/10.5880/pik.2016.004, 2016.
Liersch, S., Drews, M., Pilz, T., Salack, S., Sietz, D., Aich, V., Larsen,
M. A. D., Gädeke, A., Thiery, W., and Huang, S.: One simulation,
different conclusions – the baseline period makes the difference!,
Environ. Res. Lett., 15, 104014,
https://doi.org/10.1088/1748-9326/aba3d7, 2020.
Mahé, G. and Paturel, J.-E.: 1896–2006 Sahelian annual rainfall
variability and runoff increase of Sahelian Rivers, C. R.
Geosci., 341, 538–546,
https://doi.org/10.1016/j.crte.2009.05.002, 2009.
Mahé, G., Lienou, G., Descroix, L., Bamba, F., Paturel, J.-E., Laraque,
A., Meddi, M., Habaieb, H., Adeaga, O., and Dieulin, C.: The rivers of
Africa: witness of climate change and human impact on the environment,
Hydrol. Process., 27, 2105–2114,
https://doi.org/10.1002/hyp.9813, 2013.
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021.
Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex,
H., Allan, R. P., Stein, T., Nkonde, E., and Senkunda, S.: A new, long-term
daily satellite-based rainfall dataset for operational monitoring in Africa,
Scientific Data, 4, 170063,
https://doi.org/10.1038/sdata.2017.63, 2017.
Mardia, K. V.: Statistics of directional data, Academic Press, London, 380 pp., ISBN 9781483218663, 1972.
Mardia, K. V.: Statistics of directional data, J. Roy.
Stat. Soc. B, 37, 349–371,
https://doi.org/10.1111/j.2517-6161.1975.tb01550.x, 1975.
McCartney, M., Forkuor, G., Sood, A., Amisigo, B., Hattermann, F., and Muthuwatta, L.: The water resource implications of changing climate in the Volta River Basin, Colombo, Sri Lanka: International Water Management Institute (IWMI), IWMI Research Report 146, https://doi.org/10.5337/2012.219, 40 pp., 2012.
McVicar, T. R., Roderick, M. L., Donohue, R. J., and Van Niel, T. G.: Less
bluster ahead? Ecohydrological implications of global trends of terrestrial
near-surface wind speeds, Ecohydrology, 5, 381–388,
https://doi.org/10.1002/eco.1298, 2012.
Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M.,
Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and
Arnold, J. R.: Effects of hydrologic model choice and calibration on the
portrayal of climate change impacts, J. Hydrometeorol., 16, 762–780,
https://doi.org/10.1175/JHM-D-14-0104.1, 2015.
Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti, R.: An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles, Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, 2020.
Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, 2020.
Milly, P. C. and Dunne, K. A.: Potential evapotranspiration and continental
drying, Nat. Clim. Change, 6, 946–949,
https://doi.org/10.1038/nclimate3046, 2016.
Miralles, D. G., Brutsaert, W., Dolman, A., and Gash, J. H.: On the use of the term “evapotranspiration”, Water Resour. Res., 56, e2020WR028055, https://doi.org/10.1029/2020WR028055, 2020.
Mishra, V., Kumar, R., Shah, H. L., Samaniego, L., Eisner, S., and Yang, T.:
Multimodel assessment of sensitivity and uncertainty of evapotranspiration
and a proxy for available water resources under climate change, Climatic
Change, 141, 451–465,
https://doi.org/10.1007/s10584-016-1886-8, 2017.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., and Kram, T.: The
next generation of scenarios for climate change research and assessment,
Nature, 463, 747–756, https://doi.org/10.1038/nature08823,
2010.
Nicholson, S. E., Funk, C., and Fink, A. H.: Rainfall over the African
continent from the 19th through the 21st century, Global Planet. Change, 165,
114–127, https://doi.org/10.1016/j.gloplacha.2017.12.014, 2018.
Nikiema, P. M., Sylla, M. B., Ogunjobi, K., Kebe, I., Gibba, P., and Giorgi,
F.: Multi-model CMIP5 and CORDEX simulations of historical summer
temperature and precipitation variabilities over West Africa, International
J. Climatol., 37, 2438–2450,
https://doi.org/10.1002/joc.4856, 2017.
Novella, N. S. and Thiaw, W. M.: African rainfall climatology version 2 for
famine early warning systems, J. Appl. Meteorol.
Climatol., 52, 588–606, https://doi.org/10.1175/JAMC-D-11-0238.1, 2013.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: the concept of shared socioeconomic pathways,
Climatic Change, 122, 387–400,
https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., and
Kok, K.: The roads ahead: Narratives for shared socioeconomic pathways
describing world futures in the 21st century, Global Environ. Chang.,
42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004,
2017.
Okafor, G., Annor, T., Odai, S., and Agyekum, J.: Volta basin precipitation
and temperature climatology: evaluation of CORDEX-Africa regional climate
model simulations, Theor. Appl. Climatol., 137, 2803–2827,
https://doi.org/10.1007/s00704-018-2746-4, 2019.
Oyerinde, G. T., Wisser, D., Hountondji, F. C., Odofin, A. J., Lawin, A. E.,
Afouda, A., and Diekkrüger, B.: Quantifying uncertainties in modeling
climate change impacts on hydropower production, Climate, 4, 34, https://doi.org/10.3390/cli4030034, 2016.
Panthou, G., Vischel, T., Lebel, T., Blanchet, J., Quantin, G., and Ali, A.:
Extreme rainfall in West Africa: A regional modeling, Water Resour.
Res., 48, W08501, https://doi.org/10.1029/2012WR012052, 2012.
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le
Quéré, C., Marland, G., Raupach, M. R., and Wilson, C.: The
challenge to keep global warming below 2 ∘C, Nat. Clim. Change, 3, 4–6,
https://doi.org/10.1038/nclimate1783, 2013.
Philippon, N., Doblas-Reyes, F., and Ruti, P.: Skill, reproducibility and
potential predictability of the West African monsoon in coupled GCMs, Clim.
Dynam., 35, 53–74, https://doi.org/10.1007/s00382-010-0856-5,
2010.
Prudhomme, C. and Williamson, J.: Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections, Hydrol. Earth Syst. Sci., 17, 1365–1377, https://doi.org/10.5194/hess-17-1365-2013, 2013.
Rameshwaran, P., Bell, V. A., Davies, H. N., and Kay, A. L.: How might
climate change affect river flows across West Africa?, Climatic Change, 169,
1–27, https://doi.org/10.1007/s10584-021-03256-0, 2021.
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., and
Partyka, G. S.: Land surface precipitation in MERRA-2, J. Climate,
30, 1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1, 2017.
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., and Fricko, O.: The shared
socioeconomic pathways and their energy, land use, and greenhouse gas
emissions implications: an overview, Global Environ. Chang., 42,
153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Ritchie, J. and Dowlatabadi, H.: Why do climate change scenarios return to
coal?, Energy, 140, 1276–1291,
https://doi.org/10.1016/j.energy.2017.08.083, 2017.
Robin, Y., Vrac, M., Naveau, P., and Yiou, P.: Multivariate stochastic bias corrections with optimal transport, Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, 2019.
Ross, A. C. and Najjar, R. G.: Evaluation of methods for selecting climate
models to simulate future hydrological change, Climatic Change, 157,
407–428, https://doi.org/10.1007/s10584-019-02512-8, 2019.
Roudier, P., Ducharne, A., and Feyen, L.: Climate change impacts on runoff in West Africa: a review, Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, 2014.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523, https://doi.org/10.1029/2008wr007327,
2010.
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017.
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Schweppe, R., Schäfer, D., Schrön, M., Brenner, J., Demirel, C. M., Kaluza, M., Jing, M., Langenberg, B., and Attinger, S.: mesoscale Hydrologic Model (v5.9), Zenodo [code], https://doi.org/10.5281/zenodo.1299584, 2018.
Savenije, H. H.: The importance of interception and why we should delete the
term evapotranspiration from our vocabulary, Hydrol. Process., 18,
1507–1511, https://doi.org/10.1002/hyp.5563, 2004.
Seiller, G. and Anctil, F.: How do potential evapotranspiration formulas
influence hydrological projections?, Hydrolog. Sci. J., 61,
2249–2266, https://doi.org/10.1080/02626667.2015.1100302, 2016.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111,
https://doi.org/10.1175/JCLI3790.1, 2006.
Sidibe, M., Dieppois, B., Eden, J., Mahé, G., Paturel, J.-E., Amoussou,
E., Anifowose, B., Van De Wiel, M., and Lawler, D.: Near-term impacts of
climate variability and change on hydrological systems in West and Central
Africa, Clim. Dynam., 54, 2041–2070,
https://doi.org/10.1007/s00382-019-05102-7, 2020.
Sood, A., Muthuwatta, L., and McCartney, M.: A SWAT evaluation of the effect
of climate change on the hydrology of the Volta River basin, Water Int., 38,
297–311, https://doi.org/10.1080/02508060.2013.792404, 2013.
Sposito, G.: Understanding the Budyko equation, Water, 9, 236, https://doi.org/10.3390/w9040236, 2017.
Stanzel, P., Kling, H., and Bauer, H.: Climate change impact on West African
rivers under an ensemble of CORDEX climate projections, Climate Services,
11, 36–48, https://doi.org/10.1016/j.cliser.2018.05.003, 2018.
Sultan, B. and Gaetani, M.: Agriculture in West Africa in the twenty-first
century: climate change and impacts scenarios, and potential for adaptation,
Front. Plant Sci., 7, 1262,
https://doi.org/10.3389/fpls.2016.01262, 2016.
Sylla, M. B., Nikiema, P. M., Gibba, P., Kebe, I., and Klutse, N. A. B.:
Climate change over West Africa: Recent trends and future projections, in:
Adaptation to climate change and variability in rural West Africa, in: edited by: Yaro, J. and Hesselberg, J., Springer,
25–40, https://doi.org/10.1007/978-3-319-31499-0_3, 2016.
Sylla, M. B., Faye, A., Klutse, N. A. B., and Dimobe, K.: Projected
increased risk of water deficit over major West African river basins under
future climates, Climatic Change, 151, 247–258,
https://doi.org/10.1007/s10584-018-2308-x, 2018a.
Sylla, M. B., Pal, J. S., Faye, A., Dimobe, K., and Kunstmann, H.: Climate
change to severely impact West African basin scale irrigation in 2 ∘C and 1.5 ∘C global warming scenarios, Sci. Rep.-UK, 8, 1–9,
https://doi.org/10.1038/s41598-018-32736-0, 2018b.
Tarek, M., Brissette, F., and Arsenault, R.: Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies, Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, 2021.
Tarnavsky, E., Grimes, D., Maidment, R., Black, E., Allan, R. P., Stringer,
M., Chadwick, R., and Kayitakire, F.: Extension of the TAMSAT
satellite-based rainfall monitoring over Africa and from 1983 to present,
J. Appl. Meteorol. Clim., 53, 2805–2822,
https://doi.org/10.1175/JAMC-D-14-0016.1, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456, 12–29,
https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Todzo, S., Bichet, A., and Diedhiou, A.: Intensification of the hydrological cycle expected in West Africa over the 21st century, Earth Syst. Dynam., 11, 319–328, https://doi.org/10.5194/esd-11-319-2020, 2020.
Trenberth, K. E.: Changes in precipitation with climate change, Clim.
Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
UNEP-GEF: Volta Basin Transboundary Diagnostic Analysis, UNEP-GEF Volta
Project, Ghana, 154, http://gefvolta.iwlearn.org/project-resources/studies-reports/tda-final/regional-tda/volta-basin-tda-english (last access: 16 March 2022), 2013.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J.-F.: The
representative concentration pathways: an overview, Climatic Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015.
Vetter, T., Reinhardt, J., Flörke, M., Van Griensven, A., Hattermann,
F., Huang, S., Koch, H., Pechlivanidis, I. G., Plötner, S., and Seidou,
O.: Evaluation of sources of uncertainty in projected hydrological changes
under climate change in 12 large-scale river basins, Climatic Change, 141,
419–433, https://doi.org/10.1007/s10584-016-1794-y, 2017.
Vlach, V., Ledvinka, O., and Matouskova, M.: Changing low flow and
streamflow drought seasonality in Central European headwaters, Water, 12,
3575, https://doi.org/10.3390/w12123575, 2020.
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012.
Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction, Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018.
Vrac, M. and Thao, S.: R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling, Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, 2020.
Wang, C., Wang, S., Fu, B., and Zhang, L.: Advances in hydrological
modelling with the Budyko framework: A review, Prog. Phys. Geog., 40, 409–430,
https://doi.org/10.1177/0309133315620997, 2016.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour.
Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638,
2014.
Williams, T. O., Mul, M. L., Biney, C. A., and Smakhtin, V.: The Volta River
Basin: Water for food, economic growth and environment, edited by: Williams, T. O., Mul, M., Biney, C. A., and Smakhtin, V., Routledge, 302 pp., https://doi.org/10.4324/9781315707334,
2016.
Wu, M., Schurgers, G., Rummukainen, M., Smith, B., Samuelsson, P., Jansson, C., Siltberg, J., and May, W.: Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change, Earth Syst. Dynam., 7, 627–647, https://doi.org/10.5194/esd-7-627-2016, 2016.
Xue, Y., De Sales, F., Lau, W.-M., Boone, A., Feng, J., Dirmeyer, P., Guo,
Z., Kim, K.-M., Kitoh, A., and Kumar, V.: Intercomparison and analyses of
the climatology of the West African Monsoon in the West African Monsoon
Modeling and Evaluation project (WAMME) first model intercomparison
experiment, Clim. Dynam., 35, 3–27,
https://doi.org/10.1007/s00382-010-0778-2, 2010.
Yang, D., Yang, Y., and Xia, J.: Hydrological cycle and water resources in a
changing world: A review, Geography and Sustainability, 2, 115–122,
https://doi.org/10.1016/j.geosus.2021.05.003, 2021.
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in climate
projections, Nat. Clim. Change, 9, 44–48,
https://doi.org/10.1038/s41558-018-0361-0, 2019.
Yang, Y., Roderick, M. L., Yang, D., Wang, Z., Ruan, F., McVicar, T. R.,
Zhang, S., and Beck, H. E.: Streamflow stationarity in a changing world,
Environ. Res. Lett., 16, 064096,
https://doi.org/10.1088/1748-9326/ac08c1, 2021.
Yeboah, K. A., Akpoti, K., Kabo-bah, A. T., Ofosu, E. A., Siabi, E. K.,
Mortey, E. M., and Okyereh, S. A.: Assessing climate change projections in
the Volta Basin using the CORDEX-Africa climate simulations and statistical
bias-correction, Environmental Challenges, 6, 100439,
https://doi.org/10.1016/j.envc.2021.100439, 2022.
Yira, Y., Diekkrüger, B., Steup, G., and Bossa, A. Y.: Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations, Hydrol. Earth Syst. Sci., 21, 2143–2161, https://doi.org/10.5194/hess-21-2143-2017, 2017.
Young, A. R., Round, C. E., and Gustard, A.: Spatial and temporal variations in the occurrence of low flow events in the UK, Hydrol. Earth Syst. Sci., 4, 35–45, https://doi.org/10.5194/hess-4-35-2000, 2000.
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Climate change impacts on water resources in the Volta River basin are investigated under...