Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extrapolating continuous vegetation water content to understand sub-daily backscatter variations
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
Susan C. Steele-Dunne
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
Saeed Khabbazan
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
Jasmeet Judge
Center for Remote Sensing, Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA
Nick C. van de Giesen
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
Related authors
Rogier van der Velde, Harm-Jan F. Benninga, Bas Retsios, Paul C. Vermunt, and M. Suhyb Salama
Earth Syst. Sci. Data, 15, 1889–1910, https://doi.org/10.5194/essd-15-1889-2023, https://doi.org/10.5194/essd-15-1889-2023, 2023
Short summary
Short summary
From 2009, a network of 20 profile soil moisture and temperature monitoring stations has been operational in the Twente region, east of the Netherlands. In addition, field campaigns have been conducted covering four growing seasons during which soil moisture was measured near 12 monitoring stations. We describe the monitoring network and field campaigns, and we provide an overview of open third-party datasets that may support the use of the Twente datasets.
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024, https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
Short summary
For users of hydrological models, model suitability often hinges on how well simulated outputs match observed discharge. This study highlights the importance of including discharge observation uncertainty in hydrological model performance assessment. We highlight the need to account for this uncertainty in model comparisons and introduce a practical method suitable for any observational time series with available uncertainty estimates.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, Luke Smallmann, Susan Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zähle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek El-Madany, Mirco Migliavacca, Marika Honkanen, Yann Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaetan Pique, Amanda Ojasalo, Shaun Quegan, Peter Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1534, https://doi.org/10.5194/egusphere-2024-1534, 2024
Short summary
Short summary
When it comes to climate change, the land surfaces are where the vast majority of impacts happen. The task of monitoring those across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us see what changes on our lands.
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024, https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Short summary
Floods are significant natural disasters that affect people and property. This study uses a simplified terrain index and the latest lidar-derived digital elevation maps (DEMs) to investigate flood inundation extent quality. We examined inundation quality influenced by different spatial resolutions and other variables. Results showed that lidar DEMs enhance inundation quality, but their resolution is less impactful in our context. Further studies on reservoirs and urban flooding are recommended.
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023, https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
Short summary
Citizen scientists often submit high-quality data, but a robust method for assessing data quality is needed. This study develops a semi-automated program that characterizes the mistakes made by citizen scientists by grouping them into communities of citizen scientists with similar mistake tendencies and flags potentially erroneous data for further review. This work may help citizen science programs assess the quality of their data and can inform training practices.
Rogier van der Velde, Harm-Jan F. Benninga, Bas Retsios, Paul C. Vermunt, and M. Suhyb Salama
Earth Syst. Sci. Data, 15, 1889–1910, https://doi.org/10.5194/essd-15-1889-2023, https://doi.org/10.5194/essd-15-1889-2023, 2023
Short summary
Short summary
From 2009, a network of 20 profile soil moisture and temperature monitoring stations has been operational in the Twente region, east of the Netherlands. In addition, field campaigns have been conducted covering four growing seasons during which soil moisture was measured near 12 monitoring stations. We describe the monitoring network and field campaigns, and we provide an overview of open third-party datasets that may support the use of the Twente datasets.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022, https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Short summary
This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Elahe Jamalinia, Phil Vardon, and Susan Steele-Dunne
Proc. IAHS, 382, 481–485, https://doi.org/10.5194/piahs-382-481-2020, https://doi.org/10.5194/piahs-382-481-2020, 2020
Short summary
Short summary
This proof-of-concept study shows that near surface displacement due to interaction with the atmosphere has a strong relation with the water availability in the slope and therefore the Factor of Safety (FoS).
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019, https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Short summary
Wise management of water resources requires data. Nevertheless, the amount of water data being collected continues to decline. We evaluated potential citizen science approaches for measuring flows of headwater streams and springs. After selecting salt dilution as the preferred approach, we partnered with Nepali students to cost-effectively measure flows and water quality with smartphones at 264 springs and streams which provide crucial water supplies to the rapidly expanding Kathmandu Valley.
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Koen Hilgersom, Marcel Zijlema, and Nick van de Giesen
Geosci. Model Dev., 11, 521–540, https://doi.org/10.5194/gmd-11-521-2018, https://doi.org/10.5194/gmd-11-521-2018, 2018
Short summary
Short summary
This study models the local inflow of groundwater at the bottom of a stream with large density gradients between the groundwater and surface water. Modelling salt and heat transport in a water body is very challenging, as it requires large computation times. Due to the circular local groundwater inflow and a negligible stream discharge, we assume axisymmetry around the inflow, which is easily implemented in an existing model, largely reduces the computation times, and still performs accurately.
Hubertus M. Coerver, Martine M. Rutten, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 22, 831–851, https://doi.org/10.5194/hess-22-831-2018, https://doi.org/10.5194/hess-22-831-2018, 2018
Short summary
Short summary
Global hydrological models aim to model hydrological processes, like flows in a river, on a global scale, as opposed to traditional models which are regional. A big challenge in creating these models is the inclusion of impacts on the hydrological cycle caused by humans, for example by the operation of large (hydropower) dams. The presented study investigates a new way to include these impacts by dams into global hydrological models.
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Natthachet Tangdamrongsub, Susan C. Steele-Dunne, Brian C. Gunter, Pavel G. Ditmar, Edwin H. Sutanudjaja, Yu Sun, Ting Xia, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, https://doi.org/10.5194/hess-21-2053-2017, 2017
Short summary
Short summary
This paper investigates the assimilation of terrestrial water storage variation estimates derived from GRACE data using an EnKF 3D approach. The spatially correlated errors in GRACE data derived from its full error variance–covariance matrices were taken into account. The experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 % over the Hexi Corridor. The inclusion of error correlations provided an equal or greater improvement in the estimates.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
K. E. R. Pramana, M. W. Ertsen, and N. C. van de Giesen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9489-2015, https://doi.org/10.5194/hessd-12-9489-2015, 2015
Revised manuscript not accepted
J. Hoogeveen, J.-M. Faurès, L. Peiser, J. Burke, and N. van de Giesen
Hydrol. Earth Syst. Sci., 19, 3829–3844, https://doi.org/10.5194/hess-19-3829-2015, https://doi.org/10.5194/hess-19-3829-2015, 2015
Short summary
Short summary
GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and is calibrated and validated against information published in global databases. The paper describes methodology, input and output data, calibration and validation of the model.
N. Tangdamrongsub, S. C. Steele-Dunne, B. C. Gunter, P. G. Ditmar, and A. H. Weerts
Hydrol. Earth Syst. Sci., 19, 2079–2100, https://doi.org/10.5194/hess-19-2079-2015, https://doi.org/10.5194/hess-19-2079-2015, 2015
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
S. A. P. de Jong, J. D. Slingerland, and N. C. van de Giesen
Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, https://doi.org/10.5194/amt-8-335-2015, 2015
Short summary
Short summary
By using two cylindrical thermometers with different diameters, one can determine what temperature a zero diameter thermometer would have. Such a virtual thermometer would not be affected by solar heating and would take on the temperature of the surrounding air. We applied this principle to atmospheric temperature measurements with fiber optic cables using distributed temperature sensing (DTS). With two unshielded cable pairs, one black pair and one white pair, good results were obtained.
S. V. Weijs, N. van de Giesen, and M. B. Parlange
Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, https://doi.org/10.5194/hess-17-3171-2013, 2013
O. A. C. Hoes, R. W. Hut, N. C. van de Giesen, and M. Boomgaard
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-417-2013, https://doi.org/10.5194/nhessd-1-417-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
Extent of gross underestimation of precipitation in India
A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins
Attribution of global evapotranspiration trends based on the Budyko framework
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau
Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models
The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis
Evaluation of the dual-polarization weather radar quantitative precipitation estimation using long-term datasets
Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands
Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa
Data-driven estimates of evapotranspiration and its controls in the Congo Basin
Ability of an Australian reanalysis dataset to characterise sub-daily precipitation
A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products
Evaluation of soil moisture from CCAM-CABLE simulation, satellite-based models estimates and satellite observations: a case study of Skukuza and Malopeni flux towers
Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation
An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia
Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin
The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa
Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region
Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg
Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region
An improved perspective in the spatial representation of soil moisture: potential added value of SMOS disaggregated 1 km resolution “all weather” product
Temporal- and spatial-scale and positional effects on rain erosivity derived from point-scale and contiguous rain data
The PERSIANN family of global satellite precipitation data: a review and evaluation of products
Exploring seasonal and regional relationships between the Evaporative Stress Index and surface weather and soil moisture anomalies across the United States
Development of soil moisture profiles through coupled microwave–thermal infrared observations in the southeastern United States
Evaluation of multiple climate data sources for managing environmental resources in East Africa
Precipitation downscaling using a probability-matching approach and geostationary infrared data: an evaluation over six climate regions
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US
Regional frequency analysis of extreme rainfall in Belgium based on radar estimates
An assessment of the performance of global rainfall estimates without ground-based observations
Water–food–energy nexus with changing agricultural scenarios in India during recent decades
Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean
The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France
Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil
Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels
Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau
Evaluation of soil moisture downscaling using a simple thermal-based proxy – the REMEDHUS network (Spain) example
The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat
Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012)
Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014
Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia
Downscaling of seasonal soil moisture forecasts using satellite data
Long term soil moisture mapping over the Tibetan plateau using Special Sensor Microwave/Imager
Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate
Gopi Goteti and James Famiglietti
Hydrol. Earth Syst. Sci., 28, 3435–3455, https://doi.org/10.5194/hess-28-3435-2024, https://doi.org/10.5194/hess-28-3435-2024, 2024
Short summary
Short summary
Underestimation of precipitation (UoP) in India is a substantial issue not just within gauge-based precipitation datasets but also within state-of-the-art satellite and reanalysis-based datasets. UoP is prevalent across most river basins of India, including those that have experienced catastrophic flooding in the recent past. This paper highlights not only a major limitation of existing precipitation products for India but also other data-related obstacles faced by the research community.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023, https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022, https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Short summary
This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Tanel Voormansik, Roberto Cremonini, Piia Post, and Dmitri Moisseev
Hydrol. Earth Syst. Sci., 25, 1245–1258, https://doi.org/10.5194/hess-25-1245-2021, https://doi.org/10.5194/hess-25-1245-2021, 2021
Short summary
Short summary
A long set of operational polarimetric weather radar rainfall accumulations from Estonia and Italy are generated and investigated. Results show that the combined product of specific differential phase and horizontal reflectivity yields the best results when compared to rain gauge measurements. The specific differential-phase-based product overestimates weak precipitation, and the horizontal-reflectivity-based product underestimates heavy rainfall in all analysed accumulation periods.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Michael W. Burnett, Gregory R. Quetin, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 24, 4189–4211, https://doi.org/10.5194/hess-24-4189-2020, https://doi.org/10.5194/hess-24-4189-2020, 2020
Short summary
Short summary
Water that evaporates from Africa's tropical forests provides rainfall throughout the continent. However, there are few sources of meteorological data in central Africa, so we use observations from satellites to estimate evaporation from the Congo Basin at different times of the year. We find that existing evaporation estimates in tropical Africa do not accurately capture seasonal variations in evaporation and that fluctuations in soil moisture and solar radiation drive evaporation rates.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Floyd Vukosi Khosa, Mohau Jacob Mateyisi, Martina Reynita van der Merwe, Gregor Timothy Feig, Francois Alwyn Engelbrecht, and Michael John Savage
Hydrol. Earth Syst. Sci., 24, 1587–1609, https://doi.org/10.5194/hess-24-1587-2020, https://doi.org/10.5194/hess-24-1587-2020, 2020
Short summary
Short summary
The paper evaluates soil moisture outputs from three structurally distinct models against in situ data. Our goal is to find how representative the model outputs are for site and region. This is a question of interest as some of the models have a specific regional focus on their inceptions. Much focus is placed on how the models capture the soil moisture signal. We find that there is agreement on seasonal patterns between the models and observations with a tolerable level of model uncertainty.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Webster Gumindoga, Tom H. M. Rientjes, Alemseged Tamiru Haile, Hodson Makurira, and Paolo Reggiani
Hydrol. Earth Syst. Sci., 23, 2915–2938, https://doi.org/10.5194/hess-23-2915-2019, https://doi.org/10.5194/hess-23-2915-2019, 2019
Short summary
Short summary
We evaluate the influence of elevation and distance from large-scale open water bodies on bias for CMORPH satellite rainfall in the Zambezi basin. Effects of distance > 10 km from water bodies are minimal, whereas the effects at shorter distances are indicated but are not conclusive for lack of rain gauges. Taylor diagrams show station elevation influencing CMORPH performance. The
spatio-temporaland newly developed
elevation zonebias schemes proved more effective in removing CMORPH bias.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Frédéric Satgé, Denis Ruelland, Marie-Paule Bonnet, Jorge Molina, and Ramiro Pillco
Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, https://doi.org/10.5194/hess-23-595-2019, 2019
Short summary
Short summary
This paper assesses the potential of satellite precipitation estimates (SPEs) for precipitation measurement and hydrological and snow modelling. A total of 12 SPEs is considered to provide a global overview of available SPE accuracy for users interested in such datasets. Results show that, over poorly monitored regions, SPEs represent a very efficient alternative to traditional precipitation gauges to follow precipitation in time and space and for hydrological and snow modelling.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Samiro Khodayar, Amparo Coll, and Ernesto Lopez-Baeza
Hydrol. Earth Syst. Sci., 23, 255–275, https://doi.org/10.5194/hess-23-255-2019, https://doi.org/10.5194/hess-23-255-2019, 2019
Franziska K. Fischer, Tanja Winterrath, and Karl Auerswald
Hydrol. Earth Syst. Sci., 22, 6505–6518, https://doi.org/10.5194/hess-22-6505-2018, https://doi.org/10.5194/hess-22-6505-2018, 2018
Short summary
Short summary
The potential of rain to cause soil erosion by runoff is called rain erosivity. Rain erosivity is highly variable in space and time even over distances of less than 1 km. Contiguously measured radar rain data depict for the first time this spatio-temporal variation, but scaling factors are required to account for differences in spatial and temporal resolution compared to rain gauge data. These scaling factors were obtained from more than 2 million erosive events.
Phu Nguyen, Mohammed Ombadi, Soroosh Sorooshian, Kuolin Hsu, Amir AghaKouchak, Dan Braithwaite, Hamed Ashouri, and Andrea Rose Thorstensen
Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018, https://doi.org/10.5194/hess-22-5801-2018, 2018
Short summary
Short summary
The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. We evaluate the products over CONUS at different spatial and temporal scales using CPC data. Daily scale is the finest temporal scale used for the evaluation over CONUS. We provide a comparison of the available products at a quasi-global scale. We highlight the strengths and limitations of the PERSIANN products.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Ruifang Guo, Yuanbo Liu, Han Zhou, and Yaqiao Zhu
Hydrol. Earth Syst. Sci., 22, 3685–3699, https://doi.org/10.5194/hess-22-3685-2018, https://doi.org/10.5194/hess-22-3685-2018, 2018
Short summary
Short summary
Existing satellite products are often insufficient for use in small-scale (< 10 km) hydrological and meteorological studies. We propose a new approach based on the cumulative distribution of frequency to downscale satellite precipitation products with geostationary (GEO) data. This paper uses CMORPH and FY2-E GEO data to examine the approach in six different climate regions. The downscaled precipitation performed better for convective systems.
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275–3294, https://doi.org/10.5194/hess-22-3275-2018, https://doi.org/10.5194/hess-22-3275-2018, 2018
Short summary
Short summary
In North Africa rain storms can be as vital as they are devastating. The present study uses multi-year satellite data to better understand how and where soil moisture conditions affect development of rainfall in the area. Our results reveal two major regions in the southwest and southeast, where drier soils show higher potential to cause rainfall development. This knowledge is essential for the hydrological sector, and can be further used by models to improve prediction of rainfall and droughts.
Nishan Bhattarai, Kaniska Mallick, Nathaniel A. Brunsell, Ge Sun, and Meha Jain
Hydrol. Earth Syst. Sci., 22, 2311–2341, https://doi.org/10.5194/hess-22-2311-2018, https://doi.org/10.5194/hess-22-2311-2018, 2018
Short summary
Short summary
We report the first ever regional-scale implementation of the Surface Temperature Initiated Closure (STIC1.2) model for mapping evapotranspiration (ET) using MODIS land surface and gridded climate datasets to overcome the existing uncertainties in aerodynamic temperature and conductance estimation in global ET models. Validation and intercomparison with SEBS and MOD16 products across an aridity gradient in the US manifested better ET mapping potential of STIC1.2 in different climates and biomes.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Beas Barik, Subimal Ghosh, A. Saheer Sahana, Amey Pathak, and Muddu Sekhar
Hydrol. Earth Syst. Sci., 21, 3041–3060, https://doi.org/10.5194/hess-21-3041-2017, https://doi.org/10.5194/hess-21-3041-2017, 2017
Short summary
Short summary
The article summarises changing patterns of the water-food-energy nexus in India during recent decades. The work first analyses satellite data of water storage with a validation using the observed well data. Northern India shows a declining trend of water storage and western-central India shows an increasing trend of the same. Major droughts result in a drop in water storage which is not recovered due to uncontrolled ground water irrigation for agricultural activities even in good monsoon years.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Davi de C. D. Melo, Bridget R. Scanlon, Zizhan Zhang, Edson Wendland, and Lei Yin
Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, https://doi.org/10.5194/hess-20-4673-2016, 2016
Short summary
Short summary
Drought propagation from rainfall deficits to reservoir depletion was studied based on remote sensing, monitoring and modelling data. Regional droughts were shown by widespread depletion in total water storage that reduced soil moisture storage and runoff, greatly reducing reservoir storage. The multidisciplinary approach to drought assessment shows the linkages between meteorological and hydrological droughts that are essential for managing water resources subjected to climate extremes.
Zhi Qing Peng, Xiaozhou Xin, Jin Jun Jiao, Ti Zhou, and Qinhuo Liu
Hydrol. Earth Syst. Sci., 20, 4409–4438, https://doi.org/10.5194/hess-20-4409-2016, https://doi.org/10.5194/hess-20-4409-2016, 2016
Short summary
Short summary
A remote sensing algorithm named temperature sharpening and flux aggregation (TSFA) was applied to HJ-1B satellite data to estimate evapotranspiration over heterogeneous surface considering landscape and statistical effects on mixed pixels. Footprint validation results showed TSFA was more accurate and less uncertain than other two upscaling methods. Additional analysis and comparison showed TSFA can capture land surface heterogeneities and integrate the effect of landscapes within mixed pixels.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
J. Peng, J. Niesel, and A. Loew
Hydrol. Earth Syst. Sci., 19, 4765–4782, https://doi.org/10.5194/hess-19-4765-2015, https://doi.org/10.5194/hess-19-4765-2015, 2015
Short summary
Short summary
This paper gives a comprehensive evaluation of a simple newly developed downscaling scheme using in situ measurements from REMEDHUS network, a first cross-comparison of the performance of the downscaled soil moisture from MODIS and MSG SEVIRI, an evaluation of the performance of the downscaled soil moisture at different spatial resolutions, and an exploration of the influence of LST, vegetation index, terrain, clouds, and land cover heterogeneity on the performance of VTCI.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
O. P. Prat and B. R. Nelson
Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, https://doi.org/10.5194/hess-19-2037-2015, 2015
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
A. W. Worqlul, B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 18, 4871–4881, https://doi.org/10.5194/hess-18-4871-2014, https://doi.org/10.5194/hess-18-4871-2014, 2014
S. Schneider, A. Jann, and T. Schellander-Gorgas
Hydrol. Earth Syst. Sci., 18, 2899–2905, https://doi.org/10.5194/hess-18-2899-2014, https://doi.org/10.5194/hess-18-2899-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
Cited articles
Bartholomeus, R., de Louw, P., Witte, F., van Dam, J., van Deijl, D.,
Hoefsloot, P., van Huijgevoort, M., Hunink, J., America, I., Pouwels, J., and
de Wit, J.: Droogte in zandgebieden van Zuid-, Midden-en Oost-Nederland: Het verhaal: analyse van droogte 2018 en 2019 en tussentijdse bevindingen, Tech. rep., KWR, https://edepot.wur.nl/534198 (last access: 13 August 2021), 2020. a
Bracaglia, M., Ferrazzoli, P., and Guerriero, L.: A fully polarimetric multiple scattering model for crops, Remote Sens. Environ., 54, 170–179,
https://doi.org/10.1016/0034-4257(95)00151-4, 1995. a
Brancato, V., Liebisch, F., and Hajnsek, I.: Impact of Plant Surface Moisture on Differential Interferometric Observables: A Controlled Electromagnetic Experiment, IEEE T. Geosci. Remote, 55, 3949–3964, https://doi.org/10.1109/TGRS.2017.2684814, 2017. a, b
Brisco, B., Brown, R. J., Koehler, J. A., Sofko, G. J., and McKibben, M. J.:
The diurnal pattern of microwave backscattering by wheat, Remote Sens. Environ., 34, 37–47, https://doi.org/10.1016/0034-4257(90)90082-W, 1990. a
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W.,
Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J.,
Martin, C., and Bittelli, M.: Soil moisture estimation through ASCAT and
AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sens. Environ., 115, 3390–3408, https://doi.org/10.1016/j.rse.2011.08.003, 2011. a, b
Cosh, M. H., Kabela, E. D., Hornbuckle, B., Gleason, M. L., Jackson, T. J., and Prueger, J. H.: Observations of dew amount using in situ and satellite
measurements in an agricultural landscape, Agr. Forest Meteorol., 149, 1082–1086, https://doi.org/10.1016/j.agrformet.2009.01.004, 2009. a
Cosh, M. H., Ochsner, T. E., McKee, L., Dong, J., Basara, J. B., Evett, S. R., Hatch, C. E., Small, E. E., Steele-Dunne, S. C., Zreda, M., and Sayde, C.: The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST): Testbed Design and Evaluation of In Situ Sensors, Vadose Zone J., 15, 1–11, https://doi.org/10.2136/vzj2015.09.0122, 2016. a
Čermák, J., Kučera, J., Bauerle, W. L., Phillips, N., and Hinckley, T. M.: Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees, Tree Physiol., 27, 181–198, https://doi.org/10.1093/treephys/27.2.181, 2007. a, b, c
Dawson, T. E. and Goldsmith, G. R.: The value of wet leaves, New Phytol., 219, 1156–1169, https://doi.org/10.1111/nph.15307, 2018. a
Ding, R., Kang, S., Zhang, Y., Hao, X., Tong, L., and Du, T.: Partitioning
evapotranspiration into soil evaporation and transpiration using a modified
dual crop coefficient model in irrigated maize field with ground-mulching,
Agricult. Water Manage., 127, 85–96, https://doi.org/10.1016/j.agwat.2013.05.018, 2013. a, b
Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review of the
methods available for estimating soil moisture and its implications for water
resource management, J. Hydrol., 458-459, 110–117,
https://doi.org/10.1016/j.jhydrol.2012.06.021, 2012. a
Drusch, M., Wood, E. F., and Gao, H.: Observation operators for the direct
assimilation of TRMM microwave imager retrieved soil moisture, Geophys. Res. Lett., 32, L15403, https://doi.org/10.1029/2005GL023623, 2005. a
El Hajj, M., Baghdadi, N., Wigneron, J.-P., Zribi, M., Albergel, C., Calvet,
J.-C., and Fayad, I.: First Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over Crop Fields, Remote Sens., 11, 2769, https://doi.org/10.3390/rs11232769, 2019. a
Emmerik, T. V., Steele-Dunne, S. C., Judge, J., and v. d. Giesen, N.: Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter From Maize During Water Stress, IEEE T. Geosci. Remote, 53, 3855–3869,
https://doi.org/10.1109/TGRS.2014.2386142, 2015. a
Emmerik, T. V., Steele-Dunne, S., Paget, A., Oliveira, R. S., Bittencourt, P.
R. L., Barros, F. D. V., and v. d. Giesen, N.: Water stress detection in the
Amazon using radar, Geophys. Res. Lett., 44, 6841–6849, https://doi.org/10.1002/2017GL073747, 2017. a, b
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Zyl, J. V.: The Soil Moisture Active Passive (SMAP) Mission, Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010. a
Farquharson, G., Castelletti, D., Stringham, C., and Eddy, D.: An Update on
the Capella Space Radar Constellation, in: EUSAR 2021; 13th European Conference on Synthetic Aperture Radar, 29 March–1 April 2021, online, 1–4, 2021. a
FAWN: Report Generator, https://fawn.ifas.ufl.edu/data/reports/, last access: 10 October 2018. a
Frolking, S., Milliman, T., Palace, M., Wisser, D., Lammers, R., and
Fahnestock, M.: Tropical forest backscatter anomaly evident in SeaWinds
scatterometer morning overpass data during 2005 drought in Amazonia, Remote
Sens. Environ., 115, 897–907, https://doi.org/10.1016/j.rse.2010.11.017, 2011. a
Goldstein, G., Andrade, J. L., Meinzer, F. C., Holbrook, N. M., Cavelier, J.,
Jackson, P., and Celis, A.: Stem water storage and diurnal patterns of water
use in tropical forest canopy trees, Plant Cell Environ., 21, 397–406, https://doi.org/10.1046/j.1365-3040.1998.00273.x, 1998. a, b, c, d
Hamadi, A., Albinet, C., Borderies, P., Koleck, T., Villard, L., Ho Tong Minh, D., and Le Toan, T.: Temporal Survey of Polarimetric P-Band
Scattering of Tropical Forests, IEEE T. Geosci. Remote, 52, 4539–4547, https://doi.org/10.1109/TGRS.2013.2282357, 2014. a
Ignatenko, V., Laurila, P., Radius, A., Lamentowski, L., Antropov, O., and
Muff, D.: ICEYE Microsatellite SAR Constellation Status Update: Evaluation of First Commercial Imaging Modes, in: IGARSS – IEEE International Geoscience and Remote Sensing Symposium, Online, 3581–3584, https://doi.org/10.1109/IGARSS39084.2020.9324531, 2020. a
Joseph, A. T., van der Velde, R., O'Neill, P. E., Lang, R., and Gish, T.:
Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval, Remote Sens. Environ., 114, 2417–2430,
https://doi.org/10.1016/j.rse.2010.05.017, 2010. a
Kim, S.-B., v. Zyl, J. J., Johnson, J. T., Moghaddam, M., Tsang, L.,
Colliander, A., Dunbar, R. S., Jackson, T. J., Jaruwatanadilok, S., West, R.,
Berg, A., Caldwell, T., Cosh, M. H., Goodrich, D. C., Livingston, S.,
López-Baeza, E., Rowlandson, T., Thibeault, M., Walker, J. P., Entekhabi,
D., Njoku, E. G., O'Neill, P. E., and Yueh, S. H.: Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites, IEEE T. Geosci. Remote, 55, 1897–1914, https://doi.org/10.1109/TGRS.2016.2631126, 2017. a
Kimes, D. S. and Kirchner, J. A.: Diurnal variations of vegetation canopy
structure, Int. J. Remote Sens., 4, 257–271, https://doi.org/10.1080/01431168308948545, 1983. a
Köcher, P., Horna, V., and Leuschner, C.: Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal
dynamics and dependence on tree functional traits, Tree Physiol., 33, 817–832, https://doi.org/10.1093/treephys/tpt055, 2013. a, b, c, d
Konings, A. G., Yu, Y., Xu, L., Yang, Y., Schimel, D. S., and Saatchi, S. S.:
Active microwave observations of diurnal and seasonal variations of canopy
water content across the humid African tropical forests, Geophys. Res. Lett., 44, 2290–2299, https://doi.org/10.1002/2016GL072388, 2017. a, b
Konings, A. G., Rao, K., and Steele‐Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New Phytol., 223, 1166–1172, https://doi.org/10.1111/nph.15808, 2019. a
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V.,
Anderegg, W. R. L., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L., Agee, E., Barnes, M. L., Binks, O., Cawse-Nicholson, K., Christoffersen, B. O., Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., Liu, Y., Longo, M., Martinez-Vilalta, J., McDowell, N., Meir, P., Mencuccini, M., Mrad, A., Novick, K. A., Oliveira, R. S., Siqueira, P., Steele-Dunne, S. C.,
Thompson, D. R., Wang, Y., Wehr, R., Wood, J. D., Xu, X., and Zuidema, P. A.:
Detecting forest response to droughts with global observations of vegetation
water content, Global Change Biol., 27, 6005–6024, https://doi.org/10.1111/gcb.15872, 2021. a
Langensiepen, M., Fuchs, M., Bergamaschi, H., Moreshet, S., Cohen, Y., Wolff,
P., Jutzi, S. C., Cohen, S., Rosa, L. M. G., Li, Y., and Fricke, T.: Quantifying the uncertainties of transpiration calculations with the
Penman–Monteith equation under different climate and optimum water supply conditions, Agr. Forest Meteorol., 149, 1063–1072, https://doi.org/10.1016/j.agrformet.2009.01.001, 2009. a, b, c, d
Maltese, A., Awada, H., Capodici, F., Ciraolo, G., La Loggia, G., and Rallo,
G.: On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model, Remote Sens., 10, 195, https://doi.org/10.3390/rs10020195, 2018. a, b
Meinzer, F. C., James, S. A., and Goldstein, G.: Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees, Tree
Physiol., 24, 901–909, https://doi.org/10.1093/treephys/24.8.901, 2004. a, b, c
Monteith, A. R. and Ulander, L. M. H.: Temporal Characteristics of P-Band
Tomographic Radar Backscatter of a Boreal Forest, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 14, 1967–1984, https://doi.org/10.1109/JSTARS.2021.3050611, 2021. a
Nagarajan, K., Liu, P., DeRoo, R., Judge, J., Akbar, R., Rush, P., Feagle, S., Preston, D., and Terwilleger, R.: Automated L-Band Radar System for
Sensing Soil Moisture at High Temporal Resolution, IEEE Geosci. Remote Sens. Lett., 11, 504–508, https://doi.org/10.1109/LGRS.2013.2270453, 2014. a
Oguntunde, P. G., v. d. Giesen, N. C., Vlek, P. L. G., and Eggers, H.: Water
Flux in a Cashew Orchard during a Wet-to-Dry Transition Period: Analysis of Sap Flow and Eddy Correlation Measurements, Earth Interact., 8, 1–17, https://doi.org/10.1175/1087-3562(2004)8<1:WFIACO>2.0.CO;2, 2004. a, b
Paget, A. C., Long, D. G., and Madsen, N. M.: RapidScat Diurnal Cycles Over Land, IEEE T. Geosci. Remote, 54, 3336–3344, https://doi.org/10.1109/TGRS.2016.2515022, 2016. a
Phillips, N. G., Scholz, F. G., Bucci, S. J., Goldstein, G., and Meinzer, F. C.: Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: comment on Burgess and Dawson (2008), Plant Soil, 315, 315–324, https://doi.org/10.1007/s11104-008-9741-y, 2008. a, b, c
Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S.,
Haarpaintner, J., Hajduch, G., Laurin, G. V., Lavalle, M., López-Martínez, C., Nagler, T., and Su, B.: The Copernicus L-band SAR mission ROSE-L (Radar Observing System for Europe) (Conference Presentation), in: Active and Passive Microwave Remote Sensing for Environmental Monitoring III, vol. 11154, International Society for Optics and Photonics, p. 111540E, https://doi.org/10.1117/12.2534743, 2019. a
Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D. H. T., Lomas, M., D'Alessandro, M. M., Paillou, P., Papathanassiou, K., Rocca, F., Saatchi, S., Scipal, K., Shugart, H., Smallman, T. L., Soja, M. J.,
Tebaldini, S., Ulander, L., Villard, L., and Williams, M.: The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space, Remote Sens. Environ., 227, 44–60, https://doi.org/10.1016/j.rse.2019.03.032, 2019. a
Rafi, Z., Merlin, O., Le Dantec, V., Khabba, S., Mordelet, P., Er-Raki, S.,
Amazirh, A., Olivera-Guerra, L., Ait Hssaine, B., Simonneaux, V., Ezzahar,
J., and Ferrer, F.: Partitioning evapotranspiration of a drip-irrigated wheat
crop: Inter-comparing eddy covariance-, sap flow-, lysimeter- and FAO-based methods, Agr. Forest Meteorol., 265, 310–326, https://doi.org/10.1016/j.agrformet.2018.11.031, 2019. a
Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite soil moisture, Geophys. Res. Lett., 31, L19501,
https://doi.org/10.1029/2004GL020938, 2004. a
Rosen, P. A., Kim, Y., Kumar, R., Misra, T., Bhan, R., and Sagi, V. R.: Global persistent SAR sampling with the NASA-ISRO SAR (NISAR) mission, in:
2017 IEEE Radar Conference (RadarConf), 0410–0414,
https://doi.org/10.1109/RADAR.2017.7944237, iSSN: 2375-5318, 2017. a
Sakuratani, T.: A Heat Balance Method for Measuring Water Flux in the Stem of Intact Plants, J. Agricult. Meteorol., 37, 9–17, https://doi.org/10.2480/agrmet.37.9, 1981. a
Schroeder, R., McDonald, K. C., Azarderakhsh, M., and Zimmermann, R.: ASCAT
MetOp-A diurnal backscatter observations of recent vegetation drought
patterns over the contiguous U.S.: An assessment of spatial extent and relationship with precipitation and crop yield, Remote Sens. Environ., 177, 153–159, https://doi.org/10.1016/j.rse.2016.01.008, 2016. a
Stamenković, J., Ferrazzoli, P., Guerriero, L., Tuia, D., and Thiran, J.-P.: Joining a Discrete Radiative Transfer Model and a Kernel Retrieval Algorithm for Soil Moisture Estimation From SAR Data, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 8, 3463–3475, https://doi.org/10.1109/JSTARS.2015.2432854, 2015. a
Steele-Dunne, S. C., Friesen, J., and van de Giesen, N.: Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress, IEEE T. Geosci. Remote, 50, 2618–2629, https://doi.org/10.1109/TGRS.2012.2194156, 2012. a
Steele-Dunne, S. C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu,
P.-W., and Papathanassiou, K.: Radar Remote Sensing of Agricultural Canopies: A Review, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 10, 2249–2273,
https://doi.org/10.1109/JSTARS.2016.2639043, 2017. a
Steele-Dunne, S. C., Hahn, S., Wagner, W., and Vreugdenhil, M.: Investigating
vegetation water dynamics and drought using Metop ASCAT over the North
American Grasslands, Remote Sens. Environ., 224, 219–235,
https://doi.org/10.1016/j.rse.2019.01.004, 2019. a
Swanson, R. H.: Significant historical developments in thermal methods for
measuring sap flow in trees, Agr. Forest Meteorol., 72, 113–132, https://doi.org/10.1016/0168-1923(94)90094-9, 1994. a
Thompson, A. A.: Overview of the RADARSAT Constellation Mission, Can. J. Remote Sens., 41, 401–407, https://doi.org/10.1080/07038992.2015.1104633, 2015. a
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012. a
Vermunt, P. C., Khabbazan, S., Steele-Dunne, S. C., Judge, J.,
Monsivais-Huertero, A., Guerriero, L., and Liu, P.-W.: Response of Subdaily
L-Band Backscatter to Internal and Surface Canopy Water Dynamics, IEEE T. Geosci. Remote, 59, 7322–7337, https://doi.org/10.1109/TGRS.2020.3035881, 2020. a, b, c, d, e, f, g, h
Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., and Strauss, P.: Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study, Remote Sens., 10, 1396, https://doi.org/10.3390/rs10091396, 2018. a
Xu, X., Konings, A. G., Longo, M., Feldman, A., Xu, L., Saatchi, S., Wu, D.,
Wu, J., and Moorcroft, P.: Leaf surface water, not plant water stress, drives
diurnal variation in tropical forest canopy water content, New Phytol., 231, 122–136, https://doi.org/10.1111/nph.17254, 2021. a
Ye, N., Walker, J. P., Wu, X., de Jeu, R., Gao, Y., Jackson, T. J., Jonard, F., Kim, E., Merlin, O., Pauwels, V. R. N., Renzullo, L. J., Rüdiger, C.,
Sabaghy, S., von Hebel, C., Yueh, S. H., and Zhu, L.: The Soil Moisture
Active Passive Experiments: Validation of the SMAP Products in Australia, IEEE T Geosci. Remote, 59, 2922–2939, https://doi.org/10.1109/TGRS.2020.3007371, 2021. a
Zhang, Z., Tian, F., Hu, H., and Yang, P.: A comparison of methods for
determining field evapotranspiration: photosynthesis system, sap flow, and
eddy covariance, Hydrol. Earth Syst. Sci., 18, 1053–1072,
https://doi.org/10.5194/hess-18-1053-2014, 2014. a
Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., and Morgan, K.: Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 method), Institute of Food and Agricultural Sciences, University of Florida, Florida, USA, https://edis.ifas.ufl.edu/pdffiles/AE/AE45900.pdf (last access: 9 June 2021), 2010. a, b
Short summary
This study investigates the use of hydrometeorological sensors to reconstruct variations in internal vegetation water content of corn and relates these variations to the sub-daily behaviour of polarimetric L-band backscatter. The results show significant sensitivity of backscatter to the daily cycles of vegetation water content and dew, particularly on dry days and for vertical and cross-polarizations, which demonstrates the potential for using radar for studies on vegetation water dynamics.
This study investigates the use of hydrometeorological sensors to reconstruct variations in...