Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-401-2021
https://doi.org/10.5194/hess-25-401-2021
Research article
 | 
27 Jan 2021
Research article |  | 27 Jan 2021

A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions

Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus

Related authors

The influence of hillslope topography on beech water use: a comparative study in two different climates
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024,https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
HESS Opinions: Towards a common vision for the future of hydrological observatories
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678,https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-217,https://doi.org/10.5194/hess-2023-217, 2023
Revised manuscript under review for HESS
Short summary
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023,https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-152,https://doi.org/10.5194/hess-2023-152, 2023
Revised manuscript accepted for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024,https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
HESS Opinions: The sword of Damocles of the impossible flood
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024,https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
The influence of human activities on streamflow reductions during the megadrought in central Chile
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024,https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary

Cited articles

Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M., and Blume, T.: Form and function in hillslope hydrology: characterization of subsurface flow based on response observations, Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, 2017. a, b, c
Antonelli, M., Glaser, B., Teuling, A. J., Klaus, J., and Pfister, L.: Saturated areas through the lens: 1. Spatio-temporal variability of surface saturation documented through thermal infrared imagery, Hydrol. Process., 34, 1310–1332, https://doi.org/10.1002/hyp.13698, 2020a. a
Antonelli, M., Glaser, B., Teuling, A  J., Klaus, J., and Pfister, L.: Saturated areas through the lens: 2. Spatio-temporal variability of streamflow generation and its relationship with surface saturation, Hydrol. Process, 34, 1333–1349, https://doi.org/10.1002/hyp.13607, 2020b. a
Bajjali, W.: Spatial variability of environmental isotope and chemical content of precipitation in Jordan and evidence of slight change in climate, Appl. Water Sci., 2, 271–283, https://doi.org/10.1007/s13201-012-0046-1, 2012. a
Begemann, F. and Libby, W.: Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium, Geochim. Cosmochim. Ac., 12, 277–296, https://doi.org/10.1016/0016-7037(57)90040-6, 1957. a
Download
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.