Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-401-2021
https://doi.org/10.5194/hess-25-401-2021
Research article
 | 
27 Jan 2021
Research article |  | 27 Jan 2021

A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions

Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus

Related authors

Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-217,https://doi.org/10.5194/hess-2023-217, 2023
Revised manuscript under review for HESS
Short summary
Contrasting water use strategies of beech trees along two hillslopes with different slope and climate
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-225,https://doi.org/10.5194/hess-2023-225, 2023
Preprint under review for HESS
Short summary
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023,https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-152,https://doi.org/10.5194/hess-2023-152, 2023
Revised manuscript under review for HESS
Short summary
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022,https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024,https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
A network approach for multiscale catchment classification using traits
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024,https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Multi-model approach in a variable spatial framework for streamflow simulation
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024,https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024,https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024,https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary

Cited articles

Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M., and Blume, T.: Form and function in hillslope hydrology: characterization of subsurface flow based on response observations, Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, 2017. a, b, c
Antonelli, M., Glaser, B., Teuling, A. J., Klaus, J., and Pfister, L.: Saturated areas through the lens: 1. Spatio-temporal variability of surface saturation documented through thermal infrared imagery, Hydrol. Process., 34, 1310–1332, https://doi.org/10.1002/hyp.13698, 2020a. a
Antonelli, M., Glaser, B., Teuling, A  J., Klaus, J., and Pfister, L.: Saturated areas through the lens: 2. Spatio-temporal variability of streamflow generation and its relationship with surface saturation, Hydrol. Process, 34, 1333–1349, https://doi.org/10.1002/hyp.13607, 2020b. a
Bajjali, W.: Spatial variability of environmental isotope and chemical content of precipitation in Jordan and evidence of slight change in climate, Appl. Water Sci., 2, 271–283, https://doi.org/10.1007/s13201-012-0046-1, 2012. a
Begemann, F. and Libby, W.: Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium, Geochim. Cosmochim. Ac., 12, 277–296, https://doi.org/10.1016/0016-7037(57)90040-6, 1957. a
Download
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.