Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3731-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3731-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
Janie Masse-Dufresne
CORRESPONDING AUTHOR
Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
Florent Barbecot
Department of Earth and Atmospheric Sciences, Geotop-UQAM, Montreal, QC H2X 3Y7, Canada
Paul Baudron
Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada
John Gibson
InnoTech Alberta, 3-4476 Markham Street, Victoria, BC V8Z 7X8, Canada
Department of Geography, University of Victoria, Victoria, BC V8W 3R4, Canada
Related authors
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Cited articles
Ageos: Drinking water supply: Application for an authorization under
Section 31 of Groundwater Catchment Regulation: Hydrogeological expert
report, 2010-723, volume 1 de 2, AGEOS, Brossard, QC, Canada, 2010.
Ageos: Drinking water supply: Monitoring of piezometric fluctuations in the
water table and lake levels: Period from April 27, 2012 to December 17, 2015: Annual Report 2015, AGEOS, Brossard, QC, Canada, 42 pp., 2016.
Aissia, M. A. B., Chebana, F., Ouarda, T. B. M. J., Roy, L., Desrochers, G.,
Chartier, I., and Robichaud, É.: Multivariate analysis of flood
characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Québec, Canada, Hydrol. Process., 26, 130–142, https://doi.org/10.1002/hyp.8117, 2012.
Arnoux, M., Barbecot, F., Gibert-Brunet, E., Gibson, J., and Noret, A.: Impacts of changes in groundwater recharge on the isotopic composition and
geochemistry of seasonally ice-covered lakes: insights for sustainable
management, Hydrol. Earth Syst. Sci., 21, 5875–5889,
https://doi.org/10.5194/hess-21-5875-2017, 2017a.
Arnoux, M., Barbecot, F., Gibert-Brunet, E., Gibson, J., Rosa, E., Noret, A., and Monvoisin, G.: Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality, Environ. Earth Sci., 76, 106, https://doi.org/10.1007/s12665-017-6410-6, 2017b.
Arnoux, M., Gibert-Brunet, E., Barbecot, F., Guillon, S., Gibson, J., and Noret, A.: Interactions between groundwater and seasonally ice-covered lakes: Using water stable isotopes and radon-222 multilayer mass balance models, Hydrol. Process., 31, 2566–2581, https://doi.org/10.1002/hyp.11206, 2017c.
Barbecot, F., Guillon, S., Pili, E., Larocque, M., Gibert-Brunet, E., Hélie, J.-F., Noret, A., Plain, C., Schneider, V., Mattei, A., and Meyzonnat, G.: Using Water Stable Isotopes in the Unsaturated Zone to Quantify Recharge in Two Contrasted Infiltration Regimes, Vadose Zone J., 17, 170170, https://doi.org/10.2136/vzj2017.09.0170, 2018.
Barbecot, F., Larocque, M., and Horoi, V.: Research infrastructure on groundwater recharge, in: Isotopic composition of precipitation, Saint-Bruno, QC, Canada, 2019.
Baudron, P., Barbecot, F., Gillon, M., Aróstegui, J. L. G., Travi, Y.,
Leduc, C., Castillo, F. G., and Martinez-Vicente, D.: Assessing Groundwater
Residence Time in a Highly Anthropized Unconfined Aquifer Using Bomb Peak
14C and Reconstructed Irrigation Water 3H, Radiocarbon, 53, 933–1006, https://doi.org/10.2458/azu_js_rc.55.16396, 2013.
Biehler, A., Chaillou, G., Buffin-Bélanger, T., and Baudron, P.: Hydrological connectivity in the aquifer–river continuum: impact of river
stages on the geochemistry of groundwater floodplains, J. Hydrol., 590, 125379, https://doi.org/10.1016/j.jhydrol.2020.125379, 2020.
Bocanegra, E., Quiroz Londoño, O. M., Martínez, D. E., and Romanelli, A.: Quantification of the water balance and hydrogeological processes of groundwater–lake interactions in the Pampa Plain, Argentina, Environ. Earth Sci., 68, 2347–2357, https://doi.org/10.1007/s12665-012-1916-4, 2013.
Brock, B. E., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the Hydrology of Shallow Floodplain Lakes in the Slave River Delta, NWT, Canada,
Using Water Isotope Tracers, Arct. Antarct. Alp. Res., 39, 388–401, https://doi.org/10.1657/1523-0430(06-026)[BROCK]2.0.CO;2, 2007.
Centre d'Expertise Hydrique du Québec: Délimitation des bassins
versants correspondant aux stations hydrométriques ouvertes et fermées, available at: https://www.cehq.gouv.qc.ca/hydrometrie/index.htm, last access: 18 December 2019.
Centre d'Expertise Hydrique du Québec: Niveau d'eau à la station 043108 (Lac des Deux Montagnes), available at:
http://cehq.gouv.qc.ca/depot/historique_donnees_instantanees/043108_N_2017.txt
(last access: 18 August 2019), 2020.
Clark, I.: Groundwater Geochemistry and Isotopes, CRC Press Taylor & Francis Group, Boca Raton, FL, 2015.
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: Stable isotopes in oceanographic studies and paleotemperatures, edited by: Tongiorgi, E., Lab. Geologia Nucleare, Pisa, 9–130, 1965.
Cumming, G. S., Barnes, G., Perz, S., Schmink, M., Sieving, K. E., Southworth, J., Binford, M., Holt, R. D., Stickler, C., and Van Holt, T.: An
Exploratory Framework for the Empirical Measurement of Resilience, Ecosystems, 8, 975–987, https://doi.org/10.1007/s10021-005-0129-z, 2005.
Cunha, D. G. F., Sabogal-Paz, L. P., and Dodds, W. K.: Land use influence on
raw surface water quality and treatment costs for drinking supply in São
Paulo State (Brazil), Ecol. Eng., 94, 516–524, https://doi.org/10.1016/j.ecoleng.2016.06.063, 2016.
de Bruin, H. A. R.: Temperature and energy balance of a water reservoir
determined from standard weather data of a land station, J. Hydrol., 59, 261–274, https://doi.org/10.1016/0022-1694(82)90091-9, 1982.
Delpla, I., Jung, A. V., Baures, E., Clement, M., and Thomas, O.: Impacts of
climate change on surface water quality in relation to drinking water production, Environ. Int., 35, 1225–1233, https://doi.org/10.1016/j.envint.2009.07.001, 2009.
Dibike, Y. B. and Coulibaly, P.: Hydrologic impact of climate change in the
Saguenay watershed: comparison of downscaling methods and hydrologic models,
J. Hydrol., 307, 145–163, https://doi.org/10.1016/j.jhydrol.2004.10.012, 2005.
Edwards, T. W. D., Wolfe, B. B., Gibson, J. J., and Hammarlund, D.: Use of
water isotope tracers in high latitude hydrology and paleohydrology, in:
Long-term environmental change in Arctic and Antarctic Lakes, developments in paleoenvironmental research, edited by: Pienitz, R., Douglas, M., and Smol, J. P., Springer, Dordrecht, the Netherlands, 187–207, 2004.
Falcone, M.: Assessing hydrological processes controlling the water balance
of lakes in the Peace-Athabasca Delta, Alberta, Canada using water isotope
tracers, UWSpace, University of Waterloo, Waterloo, Ontario, Canada, available at: http://hdl.handle.net/10012/3081 (last access: 14 July 2020), 2007.
Gibson, J. J.: Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance, J. Hydrol., 264, 242–261, https://doi.org/10.1016/S0022-1694(02)00091-4, 2002.
Gibson, J. J., Edwards, T. W. D., Bursey, G. G., and Prowse, T. D.: Estimating Evaporation Using Stable Isotopes: Quantitative Results and Sensitivity Analysis for Two Catchments in Northern Canada: Paper presented
at the 9th Northern Res. Basin Symposium/Workshop (Whitehorse/Dawson/Inuvik,
Canada – August 1992), Hydrol. Res., 24, 79–94, https://doi.org/10.2166/nh.1993.0015,
1993.
Gibson, J. J., Birks, S. J., and Yi, Y.: Stable isotope mass balance of lakes: a contemporary perspective, Quaternary Sci. Rev., 131, 316–328,
https://doi.org/10.1016/j.quascirev.2015.04.013, 2015.
Gibson, J. J., Birks, S. J., Yi, Y., Moncur, M. C., and McEachern, P. M.:
Stable isotope mass balance of fifty lakes in central Alberta: Assessing the
role of water balance parameters in determining trophic status and lake
level, J. Hydrol.: Reg. Stud., 6, 13–25, https://doi.org/10.1016/j.ejrh.2016.01.034, 2016.
Gibson, J. J., Birks, S. J., Jeffries, D., and Yi, Y.: Regional trends in
evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys, J. Hydrol., 544, 500–510, https://doi.org/10.1016/j.jhydrol.2016.11.016, 2017.
Gibson, J. J., Yi, Y., and Birks, S. J.: Isotopic tracing of hydrologic drivers including permafrost thaw status for lakes across Northeastern Alberta, Canada: A 16-year, 50-lake assessment, J. Hydrol.: Reg. Stud., 26, 100643, https://doi.org/10.1016/j.ejrh.2019.100643, 2019.
Gonfiantini, R.: Chapter 3 – Environmental Isotopes In Lake Studies, in: The
Terrestrial Environment, B, edited by: Fritz, P. and Fontes, J. C., Elsevier, Amsterdam, 113–168, 1986.
Gran, G.: Determination of the equivalence point in potentiometric titrations. Part II, Analyst, 77, 661–671, https://doi.org/10.1039/AN9527700661, 1952.
Haig, H. A., Hayes, N. M., Simpson, G. L., Yi, Y., Wissel, B., Hodder, K.
R., and Leavitt, P. R.: Comparison of isotopic mass balance and instrumental
techniques as estimates of basin hydrology in seven connected lakes over
12 years, J. Hydrol., 6, 100046, https://doi.org/10.1016/j.hydroa.2019.100046, 2020.
Herczeg, A. L., Leaney, F. W., Dighton, J. C., Lamontagne, S., Schiff, S. L., Telfer, A. L., and English, M. C.: A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia, Limnol. Oceanogr., 48, 2093–2105, https://doi.org/10.4319/lo.2003.48.6.2093, 2003.
Holtz, R. D. and Kovacs, W. D.: An Introduction to Geotechnical Engineering, Montreal, Canada, 832 pp., 1981.
Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and
hydrogen isotopes of water from the freezing to the critical temperature,
Geochim. Cosmochim. Ac., 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Horita, J., Rozanski, K., and Cohen, S.: Isotope effects in the evaporation
of water: a status report of the Craig–Gordon model, Isotop. Environ. Health Stud., 44, 23–49, https://doi.org/10.1080/10256010801887174, 2008.
Hughes, C. E. and Crawford, J.: A new precipitation weighted method for
determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data, J. Hydrol., 464–465, 344–351, https://doi.org/10.1016/j.jhydrol.2012.07.029, 2012.
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database,
available at: https://nucleus.iaea.org/wiser (last access: 20 September 2019), 2018.
Isokangas, E., Rozanski, K., Rossi, P. M., Ronkanen, A. K., and Kløve, B.: Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach, Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, 2015.
Jasechko, S., Wassenaar, L. I., and Mayer, B.: Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow
across central Canada, Hydrol. Process., 31, 2196–2209, https://doi.org/10.1002/hyp.11175, 2017.
Jeppesen, E., Meerhoff, M., Davidson, T. A., Trolle, D., Sondergaard, M.,
Lauridsen, T. L., Beklioglu, M., Brucet Balmaña, S., Volta, P., and
González-Bergonzoni, I.: Climate change impacts on lakes: an integrated
ecological perspective based on a multi-faceted approach, with special focus
on shallow lakes, J. Limnol., 73, 88–111, https://doi.org/10.4081/jlimnol.2014.844, 2014.
Jones, M. D., Cuthbert, M. O., Leng, M. J., McGowan, S., Mariethoz, G.,
Arrowsmith, C., Sloane, H. J., Humphrey, K. K., and Cross, I.: Comparisons of observed and modelled lake δ18O variability, Quaternary Sci. Rev., 131, 329–340, https://doi.org/10.1016/j.quascirev.2015.09.012, 2016.
Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A.,
Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner,
J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E.,
Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., and
Widerlund, A.: Groundwater dependent ecosystems. Part I: Hydroecological status and trends, Environ. Sci. Policy, 14, 770–781, https://doi.org/10.1016/j.envsci.2011.04.002, 2011.
Lerner, D. N. and Harris, B.: The relationship between land use and groundwater resources and quality, Land Use Policy, 26, S265–S273,
https://doi.org/10.1016/j.landusepol.2009.09.005, 2009.
Linacre, E. T.: A simple formula for estimating evaporation rates in various
climates, using temperature data alone, Agricult. Meteorol., 18, 409–424, https://doi.org/10.1016/0002-1571(77)90007-3, 1977.
Masse-Dufresne, J., Baudron, P., Barbecot, F., Patenaude, M., Pontoreau, C.,
Proteau-Bedard, F., Menou, M., Pasquier, P., Veuille, S., and Barbeau, B.:
Anthropic and Meteorological Controls on the Origin and Quality of Water at
a Bank Filtration Site in Canada, Water, 11, 2510, https://doi.org/10.3390/w11122510, 2019.
Masse-Dufresne, J., Baudron, P., Barbecot, F., Pasquier, P., and Barbeau, B.: Optimizing short time-step monitoring and management strategies using environmental tracers at flood-affected bank filtration sites, Sci. Total Environ., 750, 141429, https://doi.org/10.1016/j.scitotenv.2020.141429, 2021.
McJannet, D. L., Webster, I. T., and Cook, F. J.: An area-dependent wind
function for estimating open water evaporation using land-based meteorological data, Environ. Model. Softw., 31, 76-83,
https://doi.org/10.1016/j.envsoft.2011.11.017, 2012.
MDDELCC: Portrait sommaire du bassin versant de la rivière des Outaouais, available at: http://www.mddelcc.gouv.qc.ca/eau/bassinversant/bassins/outaouais/portrait-sommaire.pdf
(last access: 5 September 2019), 2015.
Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of
climate change on the hydrology of a nordic watershed, J. Hydrol., 358, 70–83, https://doi.org/10.1016/j.jhydrol.2008.05.033, 2008.
Monsen, N. E., Cloern, J. E., Lucas, L. V., and Monismith, S. G.: A comment
on the use of flushing time, residence time, and age as transport time scales, Limnol. Oceanogr., 47, 1545–1553, https://doi.org/10.4319/lo.2002.47.5.1545, 2002.
Mueller, H., Hamilton, D. P., and Doole, G. J.: Evaluating services and damage costs of degradation of a major lake ecosystem, Ecosyst. Serv., 22, 370–380, https://doi.org/10.1016/j.ecoser.2016.02.037, 2016.
O'Neil, J. R.: Hydrogen and oxygen isotope fractionation between ice and water, J. Phys. Chem., 72, 3683–3684, https://doi.org/10.1021/j100856a060, 1968.
Patenaude, M., Baudron, P., Labelle, L., and Masse-Dufresne, J.: Evaluating
Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS
Approach, Water, 12, 662, https://doi.org/10.3390/w12030662, 2020.
Pazouki, P., Prevost, M., McQuaid, N., Barbeau, B., de Boutray, M. L., Zamyadi, A., and Dorner, S.: Breakthrough of cyanobacteria in bank filtration, Water Res., 102, 170–179, https://doi.org/10.1016/j.watres.2016.06.037, 2016.
Petermann, E., Gibson, J. J., Knöller, K., Pannier, T., Weiß, H., and Schubert, M.: Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances, Hydrol. Process., 32, 805–816, https://doi.org/10.1002/hyp.11456, 2018.
Rosa, E., Hillaire-Marcel, C., Hélie, J.-F., and Myre, A.: Processes
governing the stable isotope composition of water in the St. Lawrence river
system, Canada, Isotop. Environ. Health Stud., 52, 370–379,
https://doi.org/10.1080/10256016.2015.1135138, 2016.
Rosen, M. R.: The Influence of Hydrology on Lacustrine Sediment Contaminant
Records, in: Environmental Contaminants: Using natural archives to track sources and long-term trends of pollution, edited by: Blais, J. M., Rosen, M. R., and Smol, J. P., Springer Netherlands, Dordrecht, 5–33, 2015.
Rosenberry, D. O., Lewandowski, J., Meinikmann, K., and Nützmann, G.:
Groundwater – the disregarded component in lake water and nutrient budgets.
Part 1: effects of groundwater on hydrology, Hydrol. Process., 29, 2895–2921, https://doi.org/10.1002/hyp.10403, 2015.
Roy, L., Leconte, R., Brissette, F. P., and Marche, C.: The impact of climate change on seasonal floods of a southern Quebec River Basin, Hydrol. Process., 15, 3167–3179, https://doi.org/10.1002/hyp.323, 2001.
Salinger, M. J.: Climate Variability and Change: Past, Present and Future –
An Overview, Climatic Change, 70, 9–29, https://doi.org/10.1007/s10584-005-5936-x, 2005.
Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., and Dennehy,
K. F.: Impact of land use and land cover change on groundwater recharge and
quality in the southwestern US, Global Change Biol., 11, 1577–1593,
https://doi.org/10.1111/j.1365-2486.2005.01026.x, 2005.
Schallenberg, M., de Winton, M. D., Verburg, P., Kelly, D. J., Hamill, K. D., and Hamilton, D. P.: Ecosystem services of lakes, in: Ecosystem services in New Zealand: conditions and trends, edited by: Dymond, J. R., Manaaki Whenua Press, Lincoln, New Zealand, 203–225, 2013.
Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger, K.,
Garnaud, C., de Elia, R., Zwiers, F. W., Matthews, H. D., and Nguyen, V. T.
V.: Investigation of the mechanisms leading to the 2017 Montreal flood, Clim. Dynam., 52, 4193–4206, https://doi.org/10.1007/s00382-018-4375-0, 2019.
Turner, K. W., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers, J. Hydrol., 386, 103–117, https://doi.org/10.1016/j.jhydrol.2010.03.012, 2010.
Valiantzas, J. D.: Simplified versions for the Penman evaporation equation
using routine weather data, J. Hydrol., 331, 690–702,
https://doi.org/10.1016/j.jhydrol.2006.06.012, 2006.
Walsh, J. R., Carpenter, S. R., and Vander Zanden, M. J.: Invasive species
triggers a massive loss of ecosystem services through a trophic cascade, P. Natl. Acad. Sci. USA, 113, 4081, https://doi.org/10.1073/pnas.1600366113, 2016.
Welch, C., Smith, A. A., and Stadnyk, T. A.: Linking physiography and
evaporation using the isotopic composition of river water in 16 Canadian
boreal catchments, Hydrol. Process., 32, 170–184, https://doi.org/10.1002/hyp.11396,
2018.
Wheaton, E., Koshida, G., Bonsal, B., Johnston, T., Richards, W., and Wittrock, V.: Agricultural Adaptation to Drought (ADA) in Canada: The Case of 2001 to 2002, SK Canada, Saskatoon, 1–14, 2007.
Wolfe, B. B., Karst-Riddoch, T. L., Hall, R. I., Edwards, T. W. D., English,
M. C., Palmini, R., McGowan, S., Leavitt, P. R., and Vardy, S. R.:
Classification of hydrological regimes of northern floodplain basins
(Peace–Athabasca Delta, Canada) from analysis of stable isotopes (δ18O, δ2H) and water chemistry, Hydrol. Process., 21, 151–168, https://doi.org/10.1002/hyp.6229, 2007.
Zimmermann, U.: Determination by stable isotopes of underground inflow and
outflow and evaporation of young artificial groundwater lakes, in: Isotopes
in lakes studies, IAEA, Vienna, Austria, 87–94, 1979.
Short summary
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in Canada, in a context where direct measurements of surface water fluxes are difficult. It revealed that floodwater inputs affected the dynamics of the lake in spring but also significantly influenced the long-term water balance due to temporary subsurface storage of floodwater. Such models are paramount for understanding the vulnerability of lakes to changes in groundwater quantity and quality.
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in...