Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-887-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-887-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Clemens Messerschmid
CORRESPONDING AUTHOR
Hydrology, Faculty of Environment and Natural Resources, University
of Freiburg, Freiburg, Germany
Chair of Applied Geology, Geoscience Center, University of Göttingen,
Göttingen, Germany
Martin Sauter
Chair of Applied Geology, Geoscience Center, University of Göttingen,
Göttingen, Germany
Jens Lange
Hydrology, Faculty of Environment and Natural Resources, University
of Freiburg, Freiburg, Germany
Related authors
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Dejian Zhou, Alexandru Tatomir, and Martin Sauter
Adv. Geosci., 54, 229–240, https://doi.org/10.5194/adgeo-54-229-2021, https://doi.org/10.5194/adgeo-54-229-2021, 2021
Short summary
Short summary
In this study, a coupled thermo-hydro-mechanical (THM) model is implemented to simulate the processes of heat extraction, reservoir deformation, and groundwater flow in the fractured rock reservoir. The results show that the growth of the number and spacing of fracture zones can effectively decrease the pore pressure difference between injection and abstraction wells; it also increases the production temperature at the abstraction, the service life-spans, and total heat production rate.
Jan Greiwe, Oliver Olsson, Klaus Kümmerer, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 497–509, https://doi.org/10.5194/hess-25-497-2021, https://doi.org/10.5194/hess-25-497-2021, 2021
Short summary
Short summary
We investigated the linkage between contaminant mobilization in catchments and their mitigation in vegetated treatment systems (VTSs). We identified different patterns in chemographs recorded at the inlet of a VTS, indicating distinct mobilization patterns that were associated with similar source areas, transport pathways, and discharge dynamics. Peak concentration reduction in the VTS was strongest for sharp-peaked chemographs, suggesting that dispersion was the principle mitigation process.
Marcus Bork, Jens Lange, Markus Graf-Rosenfellner, and Friederike Lang
Hydrol. Earth Syst. Sci., 24, 977–989, https://doi.org/10.5194/hess-24-977-2020, https://doi.org/10.5194/hess-24-977-2020, 2020
Short summary
Short summary
Fluorescent tracers such as uranine and sulforhodamine B are useful tools to gain knowledge about water and solute fluxes in aquatic and terrestrial ecosystems. In this study we systematically investigated the influence of important soil properties (pH, organic carbon content and texture) on tracer adsorption in soils and sediments. These properties also determine whether the tracers in the respective soil behave conservatively or non-conservatively.
Elena Fernández-Pascual, Marcus Bork, Birte Hensen, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 41–60, https://doi.org/10.5194/hess-24-41-2020, https://doi.org/10.5194/hess-24-41-2020, 2020
Short summary
Short summary
In this study we explore the use of hydrological tracers coupled with high vertical resolution sampling and monitoring to evaluate temporal and spatial mechanisms that dominate transport and dissipation of pesticides in a laboratory-scale constructed wetland. Our results reveal different transport vectors and dissipation pathways of solutes over time and space that are influenced by the constructional design, the presence of plants and the alternation of different hydrological conditions.
Marcus Bork, Jens Lange, Markus Graf-Rosenfellner, and Friederike Lang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-549, https://doi.org/10.5194/hess-2018-549, 2018
Manuscript not accepted for further review
Short summary
Short summary
Fluorescent tracers such as uranine and sulforhodamine B are useful tools to gain knowledge about water and solute fluxes in aquatic and terrestrial ecosystems. In batch experiments, we investigated systematically the influence of pH, organic carbon and texture on tracer adsorption on soils and sediments and quantified their impact and possible interactions. Overall, the investigated controls determine if the respective tracer shows more conservative or more non-conservative transport behaviour.
Alexandru Tatomir, Christopher McDermott, Jacob Bensabat, Holger Class, Katriona Edlmann, Reza Taherdangkoo, and Martin Sauter
Adv. Geosci., 45, 185–192, https://doi.org/10.5194/adgeo-45-185-2018, https://doi.org/10.5194/adgeo-45-185-2018, 2018
Short summary
Short summary
In the context of hydraulic fracturing we constructed a comprehensive FEP database and applied it to six key focused scenarios defined under the scope of FracRisk project (www.fracrisk.eu). The FEP database is ranked to show the relevance of each item in the FEP list per scenario. The main goal of the work is to illustrate the FEP database applicability to develop a conceptual model for regional-scale stray gas migration.
Jens Lange, Tineke Materne, and Jörg Grüner
Drink. Water Eng. Sci., 9, 47–55, https://doi.org/10.5194/dwes-9-47-2016, https://doi.org/10.5194/dwes-9-47-2016, 2016
Short summary
Short summary
Here we investigate the suitability of a specific low-cost water filter for drinking water treatment in households of rural South Africa. Distributed in the field, none of 51 individually tested water filters produced water without distinct contamination, and more than one-third even deteriorated hygienic water quality. We therefore recommend frequent monitoring of the filter performance at the point of use and identify dip slides as an efficient tool to assess critical contamination.
Aaron Peche, Matthias Halisch, Alexandru Bogdan Tatomir, and Martin Sauter
Solid Earth, 7, 727–739, https://doi.org/10.5194/se-7-727-2016, https://doi.org/10.5194/se-7-727-2016, 2016
Short summary
Short summary
In this case study, we compute georeservoir specific capillary pressure-saturation- interfacial area relationships by implementing a FEM-based two-phase flow model on μ-CT-based modelling domains. We propose a recommended practice for deriving a model and model setup for the successful modelling of such types of problems on micro-CT obtained geometries.
F. Ries, J. Lange, S. Schmidt, H. Puhlmann, and M. Sauter
Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, https://doi.org/10.5194/hess-19-1439-2015, 2015
Short summary
Short summary
Soil moisture was observed along a strong semi-arid climatic gradient in a Mediterranean karst area. Soil moisture data and soil hydraulic modelling with Hydrus-1D revealed a strong dependency of percolation fluxes with rainfall amounts and intensity during heavy rainfall events. Spatial and temporal extrapolation of the model illustrated the high variability of seasonal percolation amounts among single years and showed strong correlations between soil depth and potential groundwater recharge.
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru
Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain
Exploring the provenance of information across Canadian hydrometric stations: Implications for discharge estimation and uncertainty quantification
Adaptively monitoring streamflow using a stereo computer vision system
Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Seasonal variation and release of soluble reactive phosphorus in an agricultural upland headwater in central Germany
Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration–discharge relationship derived from a high-frequency data set
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
CABra: a novel large-sample dataset for Brazilian catchments
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Soil moisture sensor network design for hydrological applications
Catchment-scale drought: capturing the whole drought cycle using multiple indicators
Surface water as a cause of land degradation from dryland salinity
Technical note: A microcontroller-based automatic rain sampler for stable isotope studies
Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment
Open-source Arduino-compatible data loggers designed for field research
Water-use dynamics of an alien-invaded riparian forest within the summer rainfall zone of South Africa
Technical note: Mapping surface-saturation dynamics with thermal infrared imagery
Value of uncertain streamflow observations for hydrological modelling
Why has catchment evaporation increased in the past 40 years? A data-based study in Austria
Technical note: GUARD – an automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions
Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China
Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)
Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017)
Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data
Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024, https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023, https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Short summary
In semi-arid regions, the problem of water shortages is becoming more and more serious with the acceleration of urbanization. Based on isotope data and hydrometeorological data, we analysed the impact of urbanization on the water cycle of the basin. The results showed that urbanization sped up the process of rainfall runoff. The MRT got shorter from upstream to downstream, and the landscape dams that were built during urbanization made the river evaporate even more.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
EGUsphere, https://doi.org/10.5194/egusphere-2023-2214, https://doi.org/10.5194/egusphere-2023-2214, 2023
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of any two solutes during a storm event, by plotting the concentration variation of one solute against the variation of another solute. For each solute pair and each storm event, this methodology can reveal, whether only two or whether more than two end-members contribute to the stream flow during a storm event. In consequence, conclusions can be drawn about hydro-biogeochemical processes in catchments.
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023, https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Short summary
Rapid climate warming creates barriers for us to investigate water resource states. Using stable and radioactive isotopes, we identified the seasonality and spatiality of the water cycle in the northeastern Tibetan Plateau. Climate warming/humidification accelerates the water cycle in alpine arid basins. Precipitation and meltwater infiltrate along preferential flow paths to facilitate rapid groundwater recharge. Total water resources may show an initially increasing and then decreasing trend.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023, https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-150, https://doi.org/10.5194/hess-2023-150, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada, WSC. The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover, and sedimentation limit the ability of accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and associated uncertainty.
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023, https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023, https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
Short summary
Undisturbed soil monoliths combine advantages of outdoor and indoor experiments; however, there are often size limitations. A promising approach is the combination of smaller blocks to form a single large monolith. We compared the runoff properties of monoliths cut in half and recombined with uncut blocks. The effect of the combination procedure was negligible compared to the inherent soil heterogeneity, and we conclude that advantages outweigh possible adverse effects.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
María Luz Rodríguez-Blanco, María Teresa Taboada-Castro, and María Mercedes Taboada-Castro
Hydrol. Earth Syst. Sci., 27, 1243–1259, https://doi.org/10.5194/hess-27-1243-2023, https://doi.org/10.5194/hess-27-1243-2023, 2023
Short summary
Short summary
We examine the N dynamics in an Atlantic headwater catchment in the NW Iberian Peninsula, using high-frequency measurements of NO3 and TKN (total Kjeldahl N) during runoff events. The divergence dynamics observed between N components exemplifies the complexity of and variability in NO3 and TKN processes, highlighting the need to understand dominant hydrological pathways for the development of N-specific management plans to ensure that control measures are most effective at the catchment scale.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Short summary
We have collected and synthesized catchment attributes from multiple sources into an extensive dataset, the Catchment Attributes for Brazil (CABra). CABra contains streamflow and climate daily series for 735 catchments in the 1980–2010 period, aside from dozens of attributes of topography, climate, streamflow, groundwater, soil, geology, land cover, and hydrologic disturbance. The CABra intends to pave the way for a better understanding of catchments' behavior in Brazil and the world.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021, https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Short summary
Understanding when, where, and how nitrate is exported from watersheds is the key to addressing the challenges that excess nutrients pose. We analyzed daily nitrate and streamflow data for five nested, agricultural watersheds that export high levels of nitrate over a 4-year time period. Nutrient export patterns varied seasonally during baseflow but were stationary during stormflow. Additionally, anthropogenic and geologic factors drove nutrient export during both baseflow and stormflow.
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021, https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary
Short summary
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution (e.g. gullies generate approximately 40 % of the sediment pollution impacting the Great Barrier Reef). This study used a new method of monitoring to demonstrate how large-scale earthworks used to remediated large gullies (i.e. eroding landforms > 1 ha) can drastically improve the water quality of connected waterways and, thus, protect vulnerable ecosystems in downstream-receiving waters.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020, https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary
Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020, https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Short summary
Soil moisture plays an important role in hydrological modelling. However, most existing in situ observation networks rarely provide sufficient coverage to capture soil moisture variations. Clearly, there is a need to develop a systematic approach, so that with the minimal number of sensors the soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed (WRF, PCA, CA), which can provide very efficient soil moisture estimations.
Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose
Hydrol. Earth Syst. Sci., 24, 1985–2002, https://doi.org/10.5194/hess-24-1985-2020, https://doi.org/10.5194/hess-24-1985-2020, 2020
Short summary
Short summary
To be better prepared for drought, we need to be able to characterize how they begin, translate to on-ground impacts and how they end. We created a 100-year drought record for an area on the east coast of Australia and compared this with soil moisture and vegetation data. Drought reduces vegetation and soil moisture, but recovery rates are different across different catchments. Our methods can be universally applied and show the need to develop area-specific data to inform drought management.
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020, https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Nils Michelsen, Gerrit Laube, Jan Friesen, Stephan M. Weise, Ali Bakhit Ali Bait Said, and Thomas Müller
Hydrol. Earth Syst. Sci., 23, 2637–2645, https://doi.org/10.5194/hess-23-2637-2019, https://doi.org/10.5194/hess-23-2637-2019, 2019
Short summary
Short summary
Most commercial automatic rain samplers are costly and do not prevent evaporation from the collection bottles. Hence, we have developed a microcontroller-based collector enabling timer-actuated integral rain sampling. The simple, low-cost device is robust and effectively minimizes post-sampling evaporation. The excellent performance of the collector during an evaporation experiment in a lab oven suggests that even multi-week field deployments in warm climates are feasible.
Michael Engel, Daniele Penna, Giacomo Bertoldi, Gianluca Vignoli, Werner Tirler, and Francesco Comiti
Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019, https://doi.org/10.5194/hess-23-2041-2019, 2019
Short summary
Short summary
Hydrometric and geochemical dynamics are controlled by interplay of meteorological conditions, topography and geological heterogeneity. Nivo-meteorological indicators (such as global solar radiation, temperature and decreasing snow depth) explain monthly conductivity and isotopic dynamics best. These insights are important for better understanding hydrochemical responses of glacierized catchments under a changing cryosphere.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Bruce C. Scott-Shaw and Colin S. Everson
Hydrol. Earth Syst. Sci., 23, 1553–1565, https://doi.org/10.5194/hess-23-1553-2019, https://doi.org/10.5194/hess-23-1553-2019, 2019
Short summary
Short summary
The research undertaken for this study has allowed for an accurate direct comparison of indigenous and introduced tree water use. The measurements of trees growing in the understorey indicate significant water use in the subcanopy layer. The results showed that individual tree water use is largely inter-species specific. The introduced species remain active during the dry winter periods, resulting in their cumulative water use being significantly greater than that of the indigenous species.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Doris Duethmann and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, https://doi.org/10.5194/hess-22-5143-2018, 2018
Short summary
Short summary
We analyze changes in catchment evaporation estimated from the water balances of 156 catchments in Austria over 1977–2014, as well as the possible causes of these changes. Our results show that catchment evaporation increased on average by 29 ± 14 mm yr−1 decade−1. We attribute this increase to changes in atmospheric demand (based on reference and pan evaporation), changes in vegetation (quantified by a satellite-based vegetation index), and changes in precipitation.
Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann
Hydrol. Earth Syst. Sci., 22, 4281–4293, https://doi.org/10.5194/hess-22-4281-2018, https://doi.org/10.5194/hess-22-4281-2018, 2018
Short summary
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.
Yuedong Guo, Changchun Song, Wenwen Tan, Xianwei Wang, and Yongzheng Lu
Hydrol. Earth Syst. Sci., 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018, https://doi.org/10.5194/hess-22-1081-2018, 2018
Short summary
Short summary
The study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China. The findings indicated that the DOC export is a transport-limited process and the DOC load was significant for the net carbon balance in the studied catchment. The flowpath shift process is key to observed DOC concentration, resources and chemical characteristics in discharge. Permafrost degradation would likely elevate the proportion of microbe-originated DOC in baseflow.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Daniele P. Viero
Hydrol. Earth Syst. Sci., 22, 171–177, https://doi.org/10.5194/hess-22-171-2018, https://doi.org/10.5194/hess-22-171-2018, 2018
Fayçal Rejiba, Cyril Schamper, Antoine Chevalier, Benoit Deleplancque, Gaghik Hovhannissian, Julien Thiesson, and Pierre Weill
Hydrol. Earth Syst. Sci., 22, 159–170, https://doi.org/10.5194/hess-22-159-2018, https://doi.org/10.5194/hess-22-159-2018, 2018
Short summary
Short summary
The internal variability of paleomeanders strongly influence water fluxes in alluvial plains. This study presents the results of a hydrogeophysical investigation that provide a very detailed characterization of the geometry of a wide paleomeander. The presented case study, situated in the Seine River basin (France), represents a common sedimentary and geomorphological structure in alluvial plains worldwide.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Paul Floury, Jérôme Gaillardet, Eric Gayer, Julien Bouchez, Gaëlle Tallec, Patrick Ansart, Frédéric Koch, Caroline Gorge, Arnaud Blanchouin, and Jean-Louis Roubaty
Hydrol. Earth Syst. Sci., 21, 6153–6165, https://doi.org/10.5194/hess-21-6153-2017, https://doi.org/10.5194/hess-21-6153-2017, 2017
Short summary
Short summary
We present a new prototype
lab in the fieldnamed River Lab (RL) designed for water quality monitoring to perform a complete analysis at sub-hourly frequency of major dissolved species in river water. The article is an analytical paper to present the proof of concept, its performances and improvements. Our tests reveal a significant improvement of reproducibility compared to conventional analysis in the laboratory. First results are promising for understanding the critical zone.
Vladimir P. Shevchenko, Oleg S. Pokrovsky, Sergey N. Vorobyev, Ivan V. Krickov, Rinat M. Manasypov, Nadezhda V. Politova, Sergey G. Kopysov, Olga M. Dara, Yves Auda, Liudmila S. Shirokova, Larisa G. Kolesnichenko, Valery A. Zemtsov, and Sergey N. Kirpotin
Hydrol. Earth Syst. Sci., 21, 5725–5746, https://doi.org/10.5194/hess-21-5725-2017, https://doi.org/10.5194/hess-21-5725-2017, 2017
Short summary
Short summary
We used a coupled hydrological–hydrochemical approach to assess the impact of snow on river and lake water chemistry across a permafrost gradient in very poorly studied Western Siberia Lowland (WSL), encompassing > 1.5 million km2. The riverine springtime fluxes of major and trace element in WSL rivers might be strongly overestimated due to previously unknown input from the snow deposition.
Cited articles
Abusaada, M. J.: Flow Dynamics and Management Options in Stressed Carbonate
Aquifer System, The Western Aquifer Basin, Palestine, PhD Thesis, University
of Göttingen, available at: https://d-nb.info/1042263574/34 (last access: 19 April 2017), 2011.
Abusaada, M. and Sauter, M.: Recharge Estimation in Karst Aquifers by
Applying the Water Level Fluctuation Approach, Int. J. Earth Sci. Geophys.,
3, 013, https://doi.org/10.35840/2631-5033/1813, 2017.
Aish, A. M., Batelaan, O., and De Smedt, F.: Distributed recharge estimation
for groundwater modeling using WetSpass model, case study – Gaza strip,
Palestine, Arab. J. Sci. Eng., 35, 155–164, 2010.
Allocca, V., Manna, F., and De Vita, P.: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014.
Allocca, V., De Vita, P., Manna, F., and Nimmo, J. R.: Groundwater recharge
assessment at local and episodic scale in a soil mantled perched karst
aquifer in southern Italy, J. Hydrol., 529, 843–853,
https://doi.org/10.1016/j.jhydrol.2015.08.032, 2015.
Arbel, Y., Greenbaum, N., Lange, J., and Inbar, M.: Infiltration processes
and flow rates in developed karst vadose zone using tracers in cave drips,
Earth Surf. Process. Landf., 35, 1682–1693, https://doi.org/10.1002/esp.2010, 2010.
Bartov, Y.: Regional stratigraphy of Israel: A guide to geological mapping, GSI, Jerusalem, 1981.
Batelaan, O. and De Smedt, F.: WetSpass: a flexible, GIS based, distributed
recharge methodology for regional groundwater modelling, IAHS Publ.,
11, 11–17, 2001.
Batelaan, O. and De Smedt, F.: GIS-based recharge estimation by coupling
surface–subsurface water balances, J. Hydrol., 337, 337–355, 2007.
Berger, D.: Hydrological Model for the Yarqon-Taninim Aquifer,
Mekorot Ltd., Tel Aviv, 50 pp., 1999 (in Hebrew).
Beven, K.: Towards a coherent philosophy for modelling the environment,
Proc. Royal Soc., London, 458, 2465–2484, 2002.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. Bull., 42, 43–69, 1979.
Binley, A. and Beven, K.: Vadose Zone Flow Model Uncertainty as Conditioned
on Geophysical Data, Ground Water, 41, 119–127, 2003.
Blume, T., Zehe, E., and Bronstert, A.: Investigation of runoff generation in
a pristine, poorly gauged catchment in the Chilean Andes I: a multi-method
experimental study, Hydrol. Process., 22, 3661–3675, 2008.
Bradford, R. B., Ragab, R., Crooks, S. M., Bouraoui, F., and Peters, E.: Simplicity versus complexity in modelling groundwater recharge in Chalk catchments, Hydrol. Earth Syst. Sci., 6, 927–937, https://doi.org/10.5194/hess-6-927-2002, 2002.
Bredenkamp, D. B., Botha, L. J., van Tonder, G. J., and van Rensburg, H. J:
Manual on quantitaive estimation of groundwater recharge and aquifer
storativity: based on practical hydro-geological methods, Report (TT 73/95),
Water Research Commission, Pretoria, South Africa, 1995.
Cheng, Y., Zhan, H., Yang, W., Dang, H., and Li, W.: Is annual recharge coefficient a valid concept in arid and semi-arid regions?, Hydrol. Earth Syst. Sci., 21, 5031–5042, https://doi.org/10.5194/hess-21-5031-2017, 2017.
Dafny, E.: Groundwater flow and solute transport within the Yarqon-Taninim
aquifer, Israel, Diss. PhD Thesis, Hebrew University of Jerusalem, Israel, 2009.
Dafny, E., Burg, A., and Gvirtzman, H.: Effects of Karst and geological
structure on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel,
J. Hydrol., 389, 260–275, https://doi.org/10.1016/j.jhydrol.2010.05.038, 2010.
Dan, Y., Raz, Z., Yaalon, D. H., and Koyumdjisky, H.: Soil map of Israel 1:500 000, available at:
http://esdac.jrc.ec.europa.eu/images/Eudasm/Asia/images/maps/download/IL3002_SO.jpg (last access: 16 January 2019), Ministry of Agriculture, Agricultural Research Organization &
Soil Consveration and Drainage Dept., Jerusalem, 1975.
De Vries, J. J. and Simmers, I.: Groundwater recharge: an overview of
processes and challenges, Hydrogeol. J., 10, 5–17, 2002.
Dingman, S. L.: Physical/Hydrology, Macmillan, New York, USA, 1994.
Dooge, J. C.: A general theory of the unit hydrograph, J. Geophys. Res., 64, 241–256, 1959.
Dörhöfer, G. and Jesopait, V.: Grundwasserneubildung und ihre
Ermittlung – eine Anmerkung zum Beitrag von Hölting: Modellrechnungen zur
Grundwasserneubildung, Grundwasser, 2, 77–80,
https://doi.org/10.1007/s767-1997-8523-3, 1997.
Dvory, N. Z., Livshitz, Y., Kuznetsov, M., Adar, E., and Yakirevich, A.: The
effect of hydrogeological conditions on variability and dynamic of
groundwater recharge in a carbonate aquifer at local scale, J. Hydrol., 535, 480–494,
https://doi.org/10.1016/j.jhydrol.2016.02.011, 2016.
Eder, G., Sivapalan, M., and Nachtnebel, H. P.: Modelling water balances in
an Alpine catchment through exploitation of emergent properties over
changing time scales, Hydrol. Process., 17, 2125–2149, 2003.
ESCWA-BGR: Inventory of shared water resources in Western Asia, Chapter 16
Western Aquifer Basin, available at:
http://waterinventory.org/groundwater/western-aquifer-basin (last access: 14 May 2018), United Nations Economic and Social Commission for
Western Asia (UN-ESCWA) and Federal Institute for Geosciences and Natural Resources
(BGR), Beirut, 23 pp., 2013.
Ettinger, H.: Spatial Analysis of extreme Storms and Floods in the
Ayalon-Yarqon Catchment, Phys. Geogr. Dept., Inst. Earth Sci., Hebrew Univ., Jerusalem, 55 pp.,
1996.
Fetter, C. W.: Applied Hydrogeology, Prentice Hall, New Jersey, NJ, 691 pp.,
1994.
Ford, D. and Williams, P.: Karst hydrology and geomorphology, John Wiley
& Sons Ltd., West Sussex, England, 2007.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall–runoff models, J. Hydrol., 122, 161–219, 1991.
Frumkin, A., Schwarz, H. P., and Ford, D. C.: Evidence for isotopic equilibrium
in stalagmites from caves in a dry region: Jerusalem, Israel, Isr. J. Earth Sci., 43, 221–230,
1994.
Gimbel, K.: Influence of Artificial Drought on Soil Hydrology of Temperate
Forest Ecosystems, Dissertation, University of Freiburg i.Br, Hydrology
Dept., Freiburg, Germany, 110 pp., 2015.
Goldscheider, N. and Drew, D. (Eds.): Methods in Karst Hydrogeology,
International Contribution to Hydrogeology, IAH, 26, 264 pp., Taylor and
Francis/Balkema, London, 2007.
Goldschmidt, M. J. and Jacobs, M.: Precipitation over and replenishment of
the Yarqon and Nahal Hatteninim underground catchments, Hydrological Paper
3, Hydrological Service of Israel, Jerusalem, 1958.
Grayson, R. and Blöschl, G. (Eds.): Summary of pattern comparison and
concluding remarks, Chapter 14, in: Spatial patterns in catchment hydrology: observations and modelling, Cambridge
University Press, Cambridge, 355–367, 2000.
Grodek, T., Lange, J., Lekach, J., and Husary, S.: Urban hydrology in mountainous middle eastern cities, Hydrol. Earth Syst. Sci., 15, 953–966, https://doi.org/10.5194/hess-15-953-2011, 2011.
GSI: Geological Map of Israel, Sheet 8-IV: Ramallah, Geological Map by:
Shachnai, E.,
available at: https://www.gov.il/he/departments/general/ramallah-map (last access:
16 March 2018), GSI – Geological Survey of Israel, Jerusalem, 2000.
GSI: Geological Map of Israel, Sheet 8-III: Lod, Geological Map by:
Yechieli, Y.,
available at: https://www.gov.il/he/departments/general/lod-map (last access:
16 March 2018), GSI – Geological Survey of Israel, Jerusalem, 2008.
Gunkel, A. and Lange, J.: A technical report on TRAIN-ZIN, description of a hydrological model for semi-arid and arid areas, Freiburg HydroNotes Series paper 3, 48 pp., Univ. Freiburg/Br., available at: http://www.hydrology.uni-freiburg.de/publika/hydronotes/HNS_003.pdf (last access: 31 January 2020), 2016.
Gunkel, A., Shadeed, S., Hartmann, A., Wagener, T., and Lange, J.: Model
signatures and aridity indices enhance the accuracy of water balance
estimations in a data-scarce Eastern Mediterranean catchment, J. Hydrol.-Reg. Stud., 4, 487–501, https://doi.org/10.1016/j.ejrh.2015.08.002, 2015.
Guttman, J.: Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in
the Judea Hills and Jordan Valley, Mekorot Water Company, Report No. 468,
Tel Aviv, Israel, 2000.
Guttman, J. and Zukerman, H.: Yarqon-Taninim-Beer Sheeba Basin, flow model,
Tahal Consult. Eng., Tel Aviv, Israel, 37 pp., 1995.
Guttman, J., Goldshtoff, I., Baida, A., and Mercado, A.: A two-layer model of
flow regime and salinity in the Yarqon-Taninim Aquifer, Tahal Consult. Eng.,
(Rep. 01/88/23), Tel Aviv, Israel, 19 pp., 1988.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agr., 1, 96–99, 1985.
Hartmann, A., Kralik, M., Humer, F., Lange, J., and Weiler, M.:
Identification of a karst system's intrinsic hydrodynamic parameters:
upscaling from single springs to the whole aquifer, Environ Earth Sci., 65,
2377–2389, https://doi.org/10.1007/s12665-011-1033-9, 2012a.
Hartmann, A., Lange, J., Weiler, M., Arbel, Y., and Greenbaum, N.: A new approach to model the spatial and temporal variability of recharge to karst aquifers, Hydrol. Earth Syst. Sci., 16, 2219–2231, https://doi.org/10.5194/hess-16-2219-2012, 2012b.
Hartmann, A., Lange, J., Aguado, À. V., Mizyed, N., Smiatek, G., and Kunstmann, H.: A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring, J. Hydrol., 468, 130–138, 2012c.
Hartmann, A., Weiler, M., Wagener, T., Lange, J., Kralik, M., Humer, F., Mizyed, N., Rimmer, A., Barberá, J. A., Andreo, B., Butscher, C., and Huggenberger, P.: Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties, Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, 2013.
Hrachowitz, M. and Clark, M. P.: HESS Opinions: The complementary merits of competing modelling philosophies in hydrology, Hydrol. Earth Syst. Sci., 21, 3953–3973, https://doi.org/10.5194/hess-21-3953-2017, 2017.
Hrachowitz, M., Savenije, H. H., Blöschl, G., McDonnell J. J., Sivapalan,
M., Pomeroy, J. W., Arheimer, B., Blume T., Clark, M. P., Ehret, U., and
Fenicia, F.: A decade of Predictions in Ungauged Basins (PUB) – a review,
Hydrol. Sci. J., 58, 1198–255, 2013.
HSI: Development of utilization and status of water resources in Israel
until Autumn 2014,
available at: http://water.gov.il/Hebrew/ProfessionalInfoAndData/Data-Hidrologeime/Pages/water-resources-2014.aspx
(last access: 17 May 2018), State of Israel, Water commission,
Hydrological service, Annual report, Jerusalem, 509 pp., 2016 (in Hebrew).
Hughes, A. G. and Mansour, M. M.: Recharge modeling for the West Bank
aquifers, BGS – British Geological Survey, Commissioned Report, CR/05/087,
Keyworth, Nottingham, UK, 90 pp., 2005.
Hughes, A. G., Mansour, M. M., and Robins, N. S.: Evaluation of distributed
recharge in an upland semi-arid karst system: the West Bank Mountain
Aquifer, Middle East, Hydrogeol. J., 16, 845–854, https://doi.org/10.1007/s10040-008-0273-6, 2008.
IMS – Israel Meteorological Service: online database of the Israel
Meteorological Service, Bet Dagan, available at: http://data.gov.il/ims/3, last access: 1 October 2017.
Jeannin, P. Y. and Sauter, M.: Analysis of karst hydrodynamic behaviour
using global approaches: a review, Bull. Hydrogéol. (Neuchâtel), 16, 31–48, 1998.
Juston, J., Seibert, J., and Johansson, P. O.: Temporal sampling strategies
and uncertainty in calibrating a conceptual hydrological model for a small
boreal catchment, Hydrol. Process., 23, 3093–3109, 2009.
Kapangaziwiri, E., Hughes, D. A., and Wagener, T.: Constraining uncertainty in
hydrological predictions for ungauged basins in southern Africa,
Hydrol. Sci. J., 57, 1000–1019, 2012.
Lambert, A. O.: A comprehensive rainfall-runoff model for an upland
catchment, J. Instn Wat. Engrs, 23, 231–238, 1969.
Lange, J., Greenbaum, N., Husary, S., Ghanem, M., Leibundgut, C., and Schick,
A. P.: Runoff generation from successive simulated rainfalls on a rocky,
semi-arid, Mediterranean hillslope, Hydrol. Process., 17, 279–296, https://doi.org/10.1002/hyp.1124,
2003.
Lange, J., Arbel, Y., Grodek, T., and Greenbaum, N.: Water percolation
process studies in a Mediterranean karst area, Hydrol. Process., 24, 1866–1879, 2010.
Lerner, D. N., Issar, A. S., and Simmers, I.: Groundwater recharge: A guide to
understanding and estimating natural recharge, International Contributions to Hydrogeology, 8, 375 pp., Verlag Heinz Heise,
Hannover, 1990.
Martínez-Santos, P. and Andreu, J. M.: Lumped and distributed
approaches to model natural recharge in semiarid karst aquifers, J. Hydrol.,
388, 389–398, https://doi.org/10.1016/j.jhydrol.2010.05.018, 2010.
McDonnell, J. J. and Woods, R.: On the need for catchment classification, J. Hydrol.,
299, 2–3, 2004.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G.,
Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., Selker,
J., and Weiler, M.: Moving beyond heterogeneity and process complexity: a new
vision for catchment hydrology, Water Resour. Res., 43, W07301, https://doi.org/10.1029/2006WR005467, 2007.
Menzel, L.: Das hydrologische Modell TRAIN, Research Note at Univ. Heidelberg, December 2011, 6 pp., http://www.geog.uni-heidelberg.de/md/chemgeo/geog/hydro/train-beschreibung_dez2011.pdf, 2011.
Mero, F.: Hydrological investigation of the Na'aman spring region, Tahal, Water Planning for Israel, Rep. P.N. 45, Tel Aviv, 1958.
Messerschmid, C., Aliewi, A., Kalbouneh, A., Sayfi, E. and Ziada, M.: Field
trips to the springs in Wadi Natuf, Final Report – SUSMAQ-NAT # 65 V
0.1, prepared by: SUSMAQ TEAM, Palestinian Water Authority, Palestine, Water
Resource Systems Research Laboratory, University of Newcastle upon Tyne, UK,
July 2003, Ramallah, 2003a.
Messerschmid, C., Kalbouneh, A., Zayed, O., and Sayfi, E.: Conceptual Model
of Wadi Natuf Groundwater Recharge, Final Report – SUSMAQ-NAT # 64 V
0.3, prepared by: SUSMAQ TEAM, Palestinian Water Authority, Palestine, Water
Resource Systems Research Laboratory, University of Newcastle upon Tyne, UK,
November 2003, Ramallah, 2003b.
Messerschmid, C., Lange, J., and Sauter, M.: Assessment of transmission loss
in a Mediterranean karstic watershed (Wadi Natuf, West Bank), Hydrol. Process., 32,
1375–1390, https://doi.org/10.1002/hyp.11496, 2018.
Messerschmid, C., Sauter, M., and Lange, J.: Regionalization of distributed
groundwater recharge and leakage calculations in a Mediterranean karst
catchment, Wadi Natuf, West Bank, in preparation, 2020.
Nash, J. E.: The form of the instantaneous unit hydrograph, International Association of Scientific Hydrology, 3, 114–121,
1957.
Nativ, R., Adar, E., Dahan, O., and Geyh, M.: Water recharge and solute
transport through the vadose zone of fractured chalk under desert
conditions, Water Resour. Res., 31, 253–261, 1995.
Olden, J. D., Kennard, M. J., and Pusey, B. J.: A framework for hydrologic
classification with a review of methodologies and applications in
ecohydrology, Ecohydrology, 5, 503–518, 2012.
Pomeroy, J.: IAHS Decade for Predictions in Ungauged Basins, PUB,
Presentation at IAHS-PUB 11 May 2011, Canmore, Canada,
available at: http://www.usask.ca/hydrology/pub2011/presentations/Pomeroy_PUB2011_Weds11May.pdf (last access: 17 December 2018), 2011.
Radulović, M. M., Stevanović, Z., and Radulović, M.: A new
approach in assessing recharge of highly karstified terrains – Montenegro
case studies, Environ. Earth Sci., 65, 2221–2230,
https://doi.org/10.1007/s12665-011-1378-0, 2011.
Ries, F., Lange, J., Schmidt, S., Puhlmann, H., and Sauter, M.: Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region, Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, 2015.
Ries, F., Schmidt, S., Sauter, M., and Lange, J.: Controls on runoff
generation along a steep climatic gradient in the Eastern Mediterranean, J. Hydrol.-Reg. Stud.,
9, 18–33, https://doi.org/10.1016/j.ejrh.2016.11.001, 2017.
Rosenzweig, A.: Study of the difference in effects of forest and other
vegetative covers on water yield, Final report, Project A-10-FS-13, State of
Israel, Ministry of Agriculture, Soil Conservation and Drainage Division
Research Unit, Rishon LeTsiyon, Israel, 1972.
Ryu, Y., Baldocchi, D. D., Ma, S., and Hehn, T.: Interannual variability of
evapotranspiration and energy exchange over an annual grassland in
California, J. Geophys. Res., 113, D09104, https://doi.org/10.1029/2007JD009263, 2008.
Sanz, E., Menéndez Pidal de Navascués, I., and Távara, C.: Calculating the average natural recharge in large areas as a factor of their lithology and precipitation, Hydrol. Earth Syst. Sci. Discuss., 8, 4753–4788, https://doi.org/10.5194/hessd-8-4753-2011, 2011.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques
for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39,
https://doi.org/10.1007/s10040-002-0200-1, 2002.
Scanlon, B. R., Keese, K. E. A., Flint, L., Flint, L. E., Gaye, C. B., Edmunds,
W. M., and Simmers, I.: Global synthesis of groundwater recharge in semiarid
and arid regions, Hydrol. Process., 20, 3335–3370, https://doi.org/10.1002/hyp.6335, 2006.
Schmidt, S., Geyer, T., Guttman, J., Marei, A., Ries, F., and Sauter, M.:
Characterisation and modelling of conduit restricted karst aquifers –
example of the Auja spring, Jordan Valley, J. Hydrol., 511, 750–763, 2014.
Seibert, J. and Beven, K. J.: Gauging the ungauged basin: how many discharge measurements are needed?, Hydrol. Earth Syst. Sci., 13, 883–892, https://doi.org/10.5194/hess-13-883-2009, 2009.
Shachori, A., Michaeli, A., and Rosenzweig, D.: Hydrologic Studies on a
Representative Karst Catchment in Israel, Symposium of Budapest,
International Union of Geodesy and Geophysics, 333–346, 1965.
Sheffer, N. A.: Variable scale recharge measurement and modeling using the
hydrometeorological DREAM, PhD dissertation, Hebrew Univ. of Jerusalem,
Israel, 97 pp., 2009.
Sheffer, N. A., Dafny, E., Gvirtzman, H., Navon, S., Frumkin, A., and Morin,
E.: Hydrometeorological daily recharge assessment model (DREAM) for the
Western Mountain Aquifer, Israel: Model application and effects of temporal
patterns, Water Resour. Res., 46, W05510, https://doi.org/10.1029/2008WR007607, 2010.
Simmers, I. (Ed.): Estimation of Natural Groundwater Recharge, D. Reidel
Publishing Company, Dordrecht, the Netherlands, 510 pp., 1988.
Sivakumar, B.: Dominant processes concept in hydrology: Moving forward,
Hydrol. Process., 18, 2349–2353, 2004.
Sivakumar, B.: Dominant processes concept, model simplification and
classification framework in catchment hydrology, Stochastic Environ. Res. Risk Assess., 22, 737–748, 2008.
Sivakumar, B., Singh, V. P., Berndtsson, R., and Khan, S. K.: Catchment
classification framework in hydrology: challenges and directions, J. Hydrol. Eng., 20,
A4014002, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000837, 2013.
Sivapalan, M.: Prediction in ungauged basins: a grand challenge for
theoretical hydrology, Hydrol. Process., 17, 3163–3170, 2003.
Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward
approach to hydrological prediction, Hydrol. Process., 17, 2101–2111, 2003a.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H.,
Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E.,
Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS
Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an
exciting future for the hydrological sciences, Hydrol. Sci. J., 48, 857–880,
https://doi.org/10.1623/hysj.48.6.857.51421, 2003b.
Steinmann, A.: Runoff generation in Mediterranean areas, Dissertation,
University of Freiburg i.Br, Hydrology Dept., Freiburg, Germany, 159 pp.,
2010.
SUSMAQ: Boundaries of the Western Aquifer Basin and the Eocene Aquifer in
the Northeastern Aquifer Basin, SUSMAQ-MOD Report No. # 6.1 V1.0, The
Sustainable Management for the West Bank and Gaza Aquifers,
available at: http://www.hwe.org.ps/Projects/SUSMAQ_Reports/Flow%
20 Modeling/Boundaries%
20of%
20the%
20Western%
20Aquifer %
20Basinand%
20and%
20the%
20Eocene%
20Aquifer%
20 in%
20the%
20Northeastern%
20 Aquifer%
20Basin.pdf (last access: 2 April 2015), Palestinian
Water Authority and University of Newcastle upon Tyne, UK, Ramallah,
Palestine, 56 pp., 2001.
SUSMAQ: Compiled Base Data for the Numerical Groundwater Flow Model of the
Western Aquifer Basin. Volume 1 – General Background, SUSMAQ-MOD Report No.
#07 V0.4, The Sustainable Management for the West Bank and Gaza Aquifers,
Palestinian Water Authority and University of Newcastle upon Tyne, UK,
Ramallah, Palestine, 306 pp., 2002.
SUSMAQ: Steady State Flow Model of the Western Aquifer Basin, SUSMAQ-MOD
Report No. #23 V0.2, The Sustainable Management for the West Bank and
Gaza Aquifers, Palestinian Water Authority and University of Newcastle upon
Tyne, UK, Ramallah, Palestine, 99 pp., 2003.
UN-GA: Convention on the Law of the Non-navigational Uses of International
Watercourses, adopted by the General Assembly of the United Nations on 21 May 1997, New York, United Nations,
available at: http://legal.un.org/ilc/texts/instruments/english/conventions/8_3_1997.pdf (last access: 19 January 2019), 1997.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment
classification and hydrologic similarity, Geography compass, 1, 901–931, 2007.
Weiss, M. and Gvirtzman, H.: Estimating ground water recharge using flow
models of perched karstic aquifers, GroundWater, 45, 761–773, 2007.
Woods, R. A.: Seeing catchments with new eyes, Hydrol. Process., 16, 1111–1113, 2002.
World Bank: West Bank and Gaza – Assessment of restrictions on Palestinian
water sector development,
available at: http://documents.worldbank.org/curated/en/7754914681397822 40/West-Bank-and-Gaza-Assessment-of-restrictions-on-Palestinian-water-sector-development
(last access: 17 December 2018), World Bank, Washington, D.C., 2009.
Young, P. C. and Ratto, M.: A unified approach to environmental systems
modeling, Stoch. Env. Res. Risk A., 23, 1037–1057, 2009.
Zomlot, Z., Verbeiren, B., Huysmans, M., and Batelaan, O.: Spatial
distribution of groundwater recharge and base flow: Assessment of
controlling factors, J. Hydrol. Reg. Stud., 4, 349–368,
https://doi.org/10.1016/j.ejrh.2015.07.005, 2015.
Short summary
Recharge assessment in the shared transboundary Western Aquifer Basin is highly relevant, scientifically as well as hydropolitically (in Israeli–Palestinian water negotiations). Our unique combination of field-measured soil characteristics and soil moisture time series with soil moisture saturation excess modelling provides a new basis for the spatial differentiation of formation-specific groundwater recharge (at any scale), applicable also in other previously ungauged basins around the world.
Recharge assessment in the shared transboundary Western Aquifer Basin is highly relevant,...