Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Jianjun Zhang
School of Land Science and Technology, China University of
Geosciences, Beijing 100083, China
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of
Sciences and Ministry of Water Resources, Yang ling, Shaanxi 712100, China
Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China
Guangyao Gao
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Bojie Fu
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Cong Wang
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Hoshin V. Gupta
CORRESPONDING AUTHOR
Department of Hydrology and Atmospheric Sciences, The University of
Arizona, Tucson, AZ 85721, USA
Xiaoping Zhang
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of
Sciences and Ministry of Water Resources, Yang ling, Shaanxi 712100, China
Rui Li
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of
Sciences and Ministry of Water Resources, Yang ling, Shaanxi 712100, China
Related authors
No articles found.
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Preprint under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Yichu Huang, Xiaoming Feng, Chaowei Zhou, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3393, https://doi.org/10.5194/egusphere-2024-3393, 2024
Preprint archived
Short summary
Short summary
This study uses an integrated water-energy-land optimization model to explore sustainable water use pathways in the Yellow River Basin. We find water conflicts between energy and irrigation water use, and quantify the mitigation and spillover effects of water transfer. We also highlight the critical role of energy production, implying that the energy sector transformation is key to the water system of the Yellow River Basin.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666, https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Short summary
Long Short-Term Memory (LSTM) is a widely-used machine learning (ML) model in hydrology. However, it is difficult to extract knowledge from it. We propose HydroLSTM which represents processes analogous to a hydrological reservoir. Models using HydroLSTM perform similarly to LSTM but require fewer cell states. The learned parameters are informative about the dominant hydroclimatic characteristics of a catchment. Our results demonstrate how hydrological knowledge is encoded in the new structure.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Bojie Fu, Xutong Wu, Zhuangzhuang Wang, Xilin Wu, and Shuai Wang
Earth Syst. Dynam., 13, 795–808, https://doi.org/10.5194/esd-13-795-2022, https://doi.org/10.5194/esd-13-795-2022, 2022
Short summary
Short summary
To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we propose a conceptual
pattern–process–service–sustainabilitycascade framework. The use of this framework is systematically illustrated by a review of CHANS research experience in China's Loess Plateau in terms of coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Xuejing Leng, Xiaoming Feng, Bojie Fu, and Yu Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-377, https://doi.org/10.5194/hess-2021-377, 2021
Manuscript not accepted for further review
Short summary
Short summary
At present, there is a lack of time series of runoff generated by glacial regions in the world. In this paper, we quantified glacial runoff (including meltwater runoff and delayed runoff) in arid regions of China from 1961 to 2015 by using remote sensing datasets of glacier mass balance with high resolution. Glacier runoff is the water resource used by oases in arid regions of China. The long-term glacial runoff data can indicate the climate risk faced by different basins in arid regions.
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
Gabriela Chiquito Gesualdo, Paulo Tarso Oliveira, Dulce Buchala Bicca Rodrigues, and Hoshin Vijai Gupta
Hydrol. Earth Syst. Sci., 23, 4955–4968, https://doi.org/10.5194/hess-23-4955-2019, https://doi.org/10.5194/hess-23-4955-2019, 2019
Short summary
Short summary
We investigate the influence of anticipated climate change on water security in the Jaguari Basin, which is the main source of freshwater for 9 million people in the São Paulo metropolitan region. Our findings indicate an expansion of the basin critical period, and identify October and November as the most vulnerable months. There is an urgent need to implement efficient mitigation and adaptation policies that recognize the annual pattern of variation between insecure and secure periods.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Yuan Zhang, Xiaoming Feng, Xiaofeng Wang, and Bojie Fu
Hydrol. Earth Syst. Sci., 22, 1749–1766, https://doi.org/10.5194/hess-22-1749-2018, https://doi.org/10.5194/hess-22-1749-2018, 2018
Short summary
Short summary
We characterized drought by linking climate anomalies with the change in precipitation–runoff relationships in China's Loess Plateau, where drought is of major concern for revegetation. Multi-year drought causes a change in the precipitation–runoff relationship in this water limited area. The drought causing a decrease in runoff ratio is vital to ecosystem management. The revegetation in the Loess Plateau should live with the spatially varied drought.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
Ji Zhou, Bojie Fu, Guangyao Gao, Yihe Lü, and Shuai Wang
Hydrol. Earth Syst. Sci., 21, 1491–1514, https://doi.org/10.5194/hess-21-1491-2017, https://doi.org/10.5194/hess-21-1491-2017, 2017
Short summary
Short summary
We constructed an integrated probabilistic assessment to describe, simulate and evaluate the stochasticity of soil erosion in restoration vegetation in the Loess Plateau. We found that morphological structures in vegetation are the source of different stochasticities of soil erosion, and proved that the Poisson model is fit for predicting erosion stochasticity. This assessment could be an important complement to develop restoration strategies to improve understanding of stochasticity of erosion.
Chuan Yuan, Guangyao Gao, and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1421–1438, https://doi.org/10.5194/hess-21-1421-2017, https://doi.org/10.5194/hess-21-1421-2017, 2017
Short summary
Short summary
We computed stemflow yield and efficiency, and analyzed the influential mechanism at smaller scales of leaf and raindrop. We found that precipitation was the most influential meteorological feature on stemflow. The smaller threshold precipitation to start stemflow and the more beneficial leaf traits might partly explain the larger and more efficient stemflow production. At defoliated period, the newly exposed stems replaced leaves to intercept raindrops and might really matter in stemflow yield.
Tirthankar Roy, Hoshin V. Gupta, Aleix Serrat-Capdevila, and Juan B. Valdes
Hydrol. Earth Syst. Sci., 21, 879–896, https://doi.org/10.5194/hess-21-879-2017, https://doi.org/10.5194/hess-21-879-2017, 2017
Short summary
Short summary
This study presents and compares two different approaches to using satellite-derived estimates of actual evapotranspiration (ET) to improve the performance of a conceptual rainfall–runoff model. In the first approach, the ET process within the model is constrained using the satellite ET estimates, while in the second one, the model structure is altered. Results indicate that both the approaches improve streamflow forecasting, while the second one also improves the ET simulations significantly.
Hernan A. Moreno, Hoshin V. Gupta, Dave D. White, and David A. Sampson
Hydrol. Earth Syst. Sci., 20, 1241–1267, https://doi.org/10.5194/hess-20-1241-2016, https://doi.org/10.5194/hess-20-1241-2016, 2016
Short summary
Short summary
We use a distributed hydrologic model to document the potential impacts of a forest restoration project on the mean and extreme hydrologic conditions on a water-supply, semi-arid basin. Results show shifts in spatio-temporal patterns of interception, soil moisture, evapotranspiration, snow persistence and runoff production differently in contrasting aspect slopes. Forest thinning leads to net loss of surface water storage and to a less regulated runoff response during hydrologic extremes.
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
Z. He, F. Tian, H. C. Hu, H. V. Gupta, and H. P. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-1253-2014, https://doi.org/10.5194/hessd-11-1253-2014, 2014
Revised manuscript not accepted
N. Lu, J. Liski, R. Y. Chang, A. Akujärvi, X. Wu, T. T. Jin, Y. F. Wang, and B. J. Fu
Biogeosciences, 10, 7053–7063, https://doi.org/10.5194/bg-10-7053-2013, https://doi.org/10.5194/bg-10-7053-2013, 2013
J. Zhou, B. J. Fu, N. Lü, G. Y. Gao, Y. H. Lü, and S. Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10083-2013, https://doi.org/10.5194/hessd-10-10083-2013, 2013
Revised manuscript not accepted
Y. D. Xu, B. J. Fu, and C. S. He
Hydrol. Earth Syst. Sci., 17, 2185–2193, https://doi.org/10.5194/hess-17-2185-2013, https://doi.org/10.5194/hess-17-2185-2013, 2013
V. López-Burgos, H. V. Gupta, and M. Clark
Hydrol. Earth Syst. Sci., 17, 1809–1823, https://doi.org/10.5194/hess-17-1809-2013, https://doi.org/10.5194/hess-17-1809-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Estimating global precipitation fields by interpolating rain gauge observations using the local ensemble transform Kalman filter and reanalysis precipitation
Theoretical Annual Exceedances from Moving Average Drought Indices
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Atmospheric water transport connectivity within and between ocean basins and land
Technical Note: Space–time statistical quality control of extreme precipitation observations
The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin
Rainfall pattern analysis in 24 East Asian megacities using a complex network
Comparison between canonical vine copulas and a meta-Gaussian model for forecasting agricultural drought over China
Analysis of flash droughts in China using machine learning
Performance-based comparison of regionalization methods to improve the at-site estimates of daily precipitation
The use of personal weather station observations to improve precipitation estimation and interpolation
The 2018 northern European hydrological drought and its drivers in a historical perspective
Assimilating shallow soil moisture observations into land models with a water budget constraint
Emerging climate signals in the Lena River catchment: a non-parametric statistical approach
Near-0 °C surface temperature and precipitation type patterns across Canada
Significant spatial patterns from the GCM seasonal forecasts of global precipitation
Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region
Technical note: An improved Grassberger–Procaccia algorithm for analysis of climate system complexity
The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands
Geostatistical assessment of warm-season precipitation observations in Korea based on the composite precipitation and satellite water vapor data
Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets
Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale
Assessment of an ensemble seasonal streamflow forecasting system for Australia
Technical note: Combining quantile forecasts and predictive distributions of streamflows
Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes
Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia
Seasonal streamflow forecasting by conditioning climatology with precipitation indices
Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts
Flood triggering in Switzerland: the role of daily to monthly preceding precipitation
Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China
Explaining and forecasting interannual variability in the flow of the Nile River
Drought severity–duration–frequency curves: a foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes
Characterising the space–time structure of rainfall in the Sahel with a view to estimating IDAF curves
Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types
Variability of extreme precipitation over Europe and its relationships with teleconnection patterns
Drought evolution characteristics and precipitation intensity changes during alternating dry–wet changes in the Huang–Huai–Hai River basin
Structural break or long memory: an empirical survey on daily rainfall data sets across Malaysia
Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux
Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods
Spectral representation of the annual cycle in the climate change signal
Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: identical twin experiments
Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression
Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland
El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting
A summer climate regime over Europe modulated by the North Atlantic Oscillation
Yuka Muto and Shunji Kotsuki
Hydrol. Earth Syst. Sci., 28, 5401–5417, https://doi.org/10.5194/hess-28-5401-2024, https://doi.org/10.5194/hess-28-5401-2024, 2024
Short summary
Short summary
It is crucial to improve global precipitation estimates to understand water-related disasters and water resources. This study proposes a new methodology to interpolate global precipitation fields from ground rain gauge observations using ensemble data assimilation and the precipitation of a numerical weather prediction model. Our estimates agree better with independent rain gauge observations than existing precipitation estimates, especially in mountainous or rain-gauge-sparse regions.
James Howard Stagge, Kyungmin Sung, Irenee Munyejuru, and Md Atif Ibne Haidar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1430, https://doi.org/10.5194/egusphere-2024-1430, 2024
Short summary
Short summary
The Standardized Precipitation Index (SPI) and related drought indices are used globally to measure drought severity. The index uses a predictable structure, which we leverage to determine the theoretical likelihood of a year with an extreme worse than a given threshold. We show these likelihoods differ by the length (number of months) and resolution (daily vs monthly) of the index. This is important for drought managers when setting decision thresholds or when communicating risk to the public.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
Short summary
We calculated past, present and future rainfall erosivity in central Europe from high-resolution precipitation data (3 km and 1 h) generated by the COSMO-CLM convection-permitting climate model. Future rainfall erosivity can be up to 84 % higher than it was in the past. Such increases are much higher than estimated previously from regional climate model output. Convection-permitting simulations have an enormous and, to date, unexploited potential for the calculation of future rainfall erosivity.
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023, https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary
Short summary
An exceptionally heavy rainfall event occurred on 20 July 2021 in central China (the 7.20 storm). The storm presents a rare opportunity to examine the extreme rainfall erosivity. The storm, with an average recurrence interval of at least 10 000 years, was the largest in terms of its rainfall erosivity on record over the past 70 years in China. The study suggests that extreme erosive events can occur anywhere in eastern China and are not necessarily concentrated in low latitudes.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023, https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary
Short summary
Under the joint action of climate–human activities the use of runoff data whose mathematical properties have changed has become the key to watershed management. To determine whether the data have been changed, the number and the location of changes, we proposed a change-point detection framework. The problem of determining the parameters of wavelet transform has been solved by comparing the accuracy of identifying change points. This study helps traditional models adapt to environmental changes.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös
Hydrol. Earth Syst. Sci., 27, 481–493, https://doi.org/10.5194/hess-27-481-2023, https://doi.org/10.5194/hess-27-481-2023, 2023
Short summary
Short summary
One of the most striking and robust features of climate change is the acceleration of the atmospheric water cycle branch. Earlier studies were able to provide a quantification of the global atmospheric water cycle, but they missed addressing the atmospheric water transport connectivity within and between ocean basins and land. These shortcomings were overcome in the present study and presented a complete synthesised and quantitative view of the atmospheric water cycle.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Qihua Ran, Jin Wang, Xiuxiu Chen, Lin Liu, Jiyu Li, and Sheng Ye
Hydrol. Earth Syst. Sci., 26, 4919–4931, https://doi.org/10.5194/hess-26-4919-2022, https://doi.org/10.5194/hess-26-4919-2022, 2022
Short summary
Short summary
This study aims to further evaluate the relative importance of antecedent soil moisture and rainfall on flood generation and the controlling factors. The relative importance of antecedent soil moisture and daily rainfall present a significant correlation with drainage area; the larger the watershed, and the more essential the antecedent soil saturation rate is in flood generation, the less important daily rainfall will be.
Kyunghun Kim, Jaewon Jung, Hung Soo Kim, Masahiko Haraguchi, and Soojun Kim
Hydrol. Earth Syst. Sci., 26, 4823–4836, https://doi.org/10.5194/hess-26-4823-2022, https://doi.org/10.5194/hess-26-4823-2022, 2022
Short summary
Short summary
This study applied a new methodology (complex network), instead of using classic methods, to establish the relationships between rainfall events in large East Asian cities. The relationships show that western China and Southeast Asia have a lot of influence on each other. Moreover, it is confirmed that the relationships arise from the effect of the East Asian monsoon. In future, complex network may be able to be applied to analyze the concurrent relationships between extreme rainfall events.
Haijiang Wu, Xiaoling Su, Vijay P. Singh, Te Zhang, Jixia Qi, and Shengzhi Huang
Hydrol. Earth Syst. Sci., 26, 3847–3861, https://doi.org/10.5194/hess-26-3847-2022, https://doi.org/10.5194/hess-26-3847-2022, 2022
Short summary
Short summary
Agricultural drought forecasting lies at the core of overall drought risk management and is critical for food security and drought early warning. Using three-dimensional scenarios, we attempted to compare the agricultural drought forecast performance of a canonical vine copula (3C-vine) model and meta-Gaussian (MG) model over China. The findings show that the 3C-vine model exhibits more skill than the MG model when using 1– to 3-month lead times for forecasting agricultural drought.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Abubakar Haruna, Juliette Blanchet, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 26, 2797–2811, https://doi.org/10.5194/hess-26-2797-2022, https://doi.org/10.5194/hess-26-2797-2022, 2022
Short summary
Short summary
Reliable prediction of floods depends on the quality of the input data such as precipitation. However, estimation of precipitation from the local measurements is known to be difficult, especially for extremes. Regionalization improves the estimates by increasing the quantity of data available for estimation. Here, we compare three regionalization methods based on their robustness and reliability. We apply the comparison to a dense network of daily stations within and outside Switzerland.
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Short summary
This study provides an in-depth analysis of the 2018 northern European drought. Large parts of the region experienced 60-year record-breaking temperatures, linked to high-pressure systems and warm surrounding seas. Meteorological drought developed from May and, depending on local conditions, led to extreme low flows and groundwater drought in the following months. The 2018 event was unique in that it affected most of Fennoscandia as compared to previous droughts.
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020, https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
Short summary
Data assimilation is a procedure to generate an optimal combination of the state variable in geoscience, based on the model outputs and observations. The ensemble Kalman filter (EnKF) scheme is a widely used assimilation method in soil moisture estimation. This study proposed several modifications of EnKF for improving this assimilation. The study shows that the quality of the assimilation result is improved, while the degree of water budget imbalance is reduced.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Guoxiao Wei, Xiaoying Zhang, Ming Ye, Ning Yue, and Fei Kan
Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019, https://doi.org/10.5194/hess-23-2877-2019, 2019
Short summary
Short summary
Accurately evaluating evapotranspiration (ET) is a critical challenge in improving hydrological process modeling. Here we evaluated four ET models (PM, SW, PT–FC, and AA) under the Bayesian framework. Our results reveal that the SW model has the best performance. This is in part because the SW model captures the main physical mechanism in ET; the other part is that the key parameters, such as the extinction factor, could be well constrained with observation data.
Chongli Di, Tiejun Wang, Xiaohua Yang, and Siliang Li
Hydrol. Earth Syst. Sci., 22, 5069–5079, https://doi.org/10.5194/hess-22-5069-2018, https://doi.org/10.5194/hess-22-5069-2018, 2018
Short summary
Short summary
The original Grassberger–Procaccia algorithm for complex analysis was modified by incorporating the normal-based K-means clustering technique and the RANSAC algorithm. The calculation accuracy of the proposed method was shown to outperform traditional algorithms. The proposed algorithm was used to diagnose climate system complexity in the Hai He basin. The spatial patterns of the complexity of precipitation and air temperature reflected the influence of the dominant climate system.
César Cisneros Vaca, Christiaan van der Tol, and Chandra Prasad Ghimire
Hydrol. Earth Syst. Sci., 22, 3701–3719, https://doi.org/10.5194/hess-22-3701-2018, https://doi.org/10.5194/hess-22-3701-2018, 2018
Short summary
Short summary
The influence of long-term changes in canopy structure on rainfall interception loss was studied in a 55-year old forest. Interception loss was similar at the same site (38 %), when the forest was 29 years old. In the past, the forest was denser and had a higher storage capacity, but the evaporation rates were lower. We emphasize the importance of quantifying downward sensible heat flux and heat release from canopy biomass in tall forest in order to improve the quantification of evaporation.
Sojung Park, Seon Ki Park, Jeung Whan Lee, and Yunho Park
Hydrol. Earth Syst. Sci., 22, 3435–3452, https://doi.org/10.5194/hess-22-3435-2018, https://doi.org/10.5194/hess-22-3435-2018, 2018
Short summary
Short summary
Understanding the precipitation characteristics is essential to design an optimal observation network. We studied the spatial and temporal characteristics of summertime precipitation systems in Korea via geostatistical analyses on the ground-based precipitation and satellite water vapor data. We found that, under a strict standard, an observation network with higher resolution is required in local areas with frequent heavy rainfalls, depending on directional features of precipitation systems.
Wenbin Liu, Fubao Sun, Yanzhong Li, Guoqing Zhang, Yan-Fang Sang, Wee Ho Lim, Jiahong Liu, Hong Wang, and Peng Bai
Hydrol. Earth Syst. Sci., 22, 351–371, https://doi.org/10.5194/hess-22-351-2018, https://doi.org/10.5194/hess-22-351-2018, 2018
Short summary
Short summary
The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of hydro-climatic observations. In this study, we investigate seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations).
Harsh Beria, Trushnamayee Nanda, Deepak Singh Bisht, and Chandranath Chatterjee
Hydrol. Earth Syst. Sci., 21, 6117–6134, https://doi.org/10.5194/hess-21-6117-2017, https://doi.org/10.5194/hess-21-6117-2017, 2017
Short summary
Short summary
High-quality satellite precipitation forcings have provided a viable alternative to hydrologic modeling in data-scarce regions. Ageing TRMM sensors have recently been upgraded to GPM, promising enhanced spatio-temporal resolutions. Statistical and hydrologic evaluation of GPM measurements across 86 Indian river basins revealed improved low rainfall estimates with reduced effects of climatology and topography.
James C. Bennett, Quan J. Wang, David E. Robertson, Andrew Schepen, Ming Li, and Kelvin Michael
Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, https://doi.org/10.5194/hess-21-6007-2017, 2017
Short summary
Short summary
We assess a new streamflow forecasting system in Australia. The system is designed to meet the need of water agencies for 12-month forecasts. The forecasts perform well in a wide range of rivers. Forecasts for shorter periods (up to 6 months) are generally informative. Forecasts sometimes did not perform well in a few very dry rivers. We test several techniques for improving streamflow forecasts in drylands, with mixed success.
Konrad Bogner, Katharina Liechti, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 21, 5493–5502, https://doi.org/10.5194/hess-21-5493-2017, https://doi.org/10.5194/hess-21-5493-2017, 2017
Short summary
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria
Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, https://doi.org/10.5194/hess-21-2649-2017, 2017
Short summary
Short summary
The commonly used bias correction method called quantile mapping assumes a constant function of error correction values between modeled and observed distributions. Our article finds that this function cannot be assumed to be constant. We propose a new bias correction method, called scaled distribution mapping, that does not rely on this assumption. Furthermore, the proposed method more explicitly accounts for the frequency of rain days and the likelihood of individual events.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter v. Zaag, and Eyasu Y. Hagos
Hydrol. Earth Syst. Sci., 21, 2127–2142, https://doi.org/10.5194/hess-21-2127-2017, https://doi.org/10.5194/hess-21-2127-2017, 2017
Short summary
Short summary
This study was conducted to understand the spatio-temporal variations of streamflow in the Tekezē basin. Results showed rainfall over the basin did not significantly change. However, streamflow experienced high variabilities at seasonal and annual scales. Further studies are needed to verify hydrological changes by identifying the physical mechanisms behind those changes. Findings are useful as prerequisite for studying the effects of catchment management dynamics on the hydrological processes.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
P. Froidevaux, J. Schwanbeck, R. Weingartner, C. Chevalier, and O. Martius
Hydrol. Earth Syst. Sci., 19, 3903–3924, https://doi.org/10.5194/hess-19-3903-2015, https://doi.org/10.5194/hess-19-3903-2015, 2015
Short summary
Short summary
We investigate precipitation characteristics prior to 4000 annual floods in Switzerland since 1961. The floods were preceded by heavy precipitation, but in most catchments extreme precipitation occurred only during the last 3 days prior to the flood events. Precipitation sums for earlier time periods (like e.g. 4-14 days prior to floods) were mostly average and do not correlate with the return period of the floods.
G. H. Fang, J. Yang, Y. N. Chen, and C. Zammit
Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, https://doi.org/10.5194/hess-19-2547-2015, 2015
Short summary
Short summary
This study compares the effects of five precipitation and three temperature correction methods on precipitation, temperature, and streamflow through loosely coupling RCM (RegCM) and a distributed hydrological model (SWAT) in terms of frequency-based indices and time-series-based indices. The methodology and results can be used for other regions and other RCM and hydrologic models, and for impact studies of climate change on water resources at a regional scale.
M. S. Siam and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 19, 1181–1192, https://doi.org/10.5194/hess-19-1181-2015, https://doi.org/10.5194/hess-19-1181-2015, 2015
Short summary
Short summary
This paper explains the different natural modes of interannual variability in the flow of the Nile River and also presents a new index based on the sea surface temperature (SST) over the southern Indian Ocean to forecast the flow of the Nile River. It also presents a new hybrid forecasting algorithm that can be used to predict the Nile flow based on indices of the SST in the eastern Pacific and southern Indian oceans.
D. Halwatura, A. M. Lechner, and S. Arnold
Hydrol. Earth Syst. Sci., 19, 1069–1091, https://doi.org/10.5194/hess-19-1069-2015, https://doi.org/10.5194/hess-19-1069-2015, 2015
G. Panthou, T. Vischel, T. Lebel, G. Quantin, and G. Molinié
Hydrol. Earth Syst. Sci., 18, 5093–5107, https://doi.org/10.5194/hess-18-5093-2014, https://doi.org/10.5194/hess-18-5093-2014, 2014
D. Masson and C. Frei
Hydrol. Earth Syst. Sci., 18, 4543–4563, https://doi.org/10.5194/hess-18-4543-2014, https://doi.org/10.5194/hess-18-4543-2014, 2014
Short summary
Short summary
The question of how to utilize information from the physiography/topography in the spatial interpolation of rainfall is a long-standing discussion in the literature. In this study we test ideas that go beyond the approach in popular interpolation schemes today. The key message of our study is that these ideas can at best marginally improve interpolation accuracy, even in a region where a clear benefit would intuitively be expected.
A. Casanueva, C. Rodríguez-Puebla, M. D. Frías, and N. González-Reviriego
Hydrol. Earth Syst. Sci., 18, 709–725, https://doi.org/10.5194/hess-18-709-2014, https://doi.org/10.5194/hess-18-709-2014, 2014
D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang
Hydrol. Earth Syst. Sci., 17, 2859–2871, https://doi.org/10.5194/hess-17-2859-2013, https://doi.org/10.5194/hess-17-2859-2013, 2013
F. Yusof, I. L. Kane, and Z. Yusop
Hydrol. Earth Syst. Sci., 17, 1311–1318, https://doi.org/10.5194/hess-17-1311-2013, https://doi.org/10.5194/hess-17-1311-2013, 2013
J. H. Lee, J. Timmermans, Z. Su, and M. Mancini
Hydrol. Earth Syst. Sci., 16, 4291–4302, https://doi.org/10.5194/hess-16-4291-2012, https://doi.org/10.5194/hess-16-4291-2012, 2012
L. Gudmundsson, J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen
Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, https://doi.org/10.5194/hess-16-3383-2012, 2012
T. Bosshard, S. Kotlarski, T. Ewen, and C. Schär
Hydrol. Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011, https://doi.org/10.5194/hess-15-2777-2011, 2011
S. Nie, J. Zhu, and Y. Luo
Hydrol. Earth Syst. Sci., 15, 2437–2457, https://doi.org/10.5194/hess-15-2437-2011, https://doi.org/10.5194/hess-15-2437-2011, 2011
G. Ibarra-Berastegi, J. Saénz, A. Ezcurra, A. Elías, J. Diaz Argandoña, and I. Errasti
Hydrol. Earth Syst. Sci., 15, 1895–1907, https://doi.org/10.5194/hess-15-1895-2011, https://doi.org/10.5194/hess-15-1895-2011, 2011
R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres
Hydrol. Earth Syst. Sci., 15, 1515–1536, https://doi.org/10.5194/hess-15-1515-2011, https://doi.org/10.5194/hess-15-1515-2011, 2011
A. Lü, S. Jia, W. Zhu, H. Yan, S. Duan, and Z. Yao
Hydrol. Earth Syst. Sci., 15, 1273–1281, https://doi.org/10.5194/hess-15-1273-2011, https://doi.org/10.5194/hess-15-1273-2011, 2011
G. Wang, A. J. Dolman, and A. Alessandri
Hydrol. Earth Syst. Sci., 15, 57–64, https://doi.org/10.5194/hess-15-57-2011, https://doi.org/10.5194/hess-15-57-2011, 2011
Cited articles
Anagnostopoulou, C. and Tolika, K.: Extreme precipitation in Europe:
statistical threshold selection based on climatological criteria, Theor.
Appl. Climatol., 107, 479-489, 2012.
Bao, J., Sherwood, S. C., Alexander, L. V., and Evans, J. P.: Future increases in extreme precipitation exceed observed scaling rates, Nat. Clim. Change, 7, 128–132, 2017.
Beguería, S., Vicente-Serrano, S. M., López-Moreno, J. I., and
García-Ruiz, J. M.: Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic
gradient, northeast Spain, Int. J. Climatol., 29, 1759–1779, 2009.
Bernaola Galván, P., Ivanov, P. C., Amaral, L. A. N., and Stanley, H. E.: Scale invariance in the nonstationarity of human heart rate, Phys. Rev. Lett., 87, 168–105, 2001.
Cai, Q.: Soil erosion and management on the Loess Plateau, J. Geogr. Sci.,
11, 53–70, 2001.
Deidda, R. and Puliga, M.: Sensitivity of goodness-of-fit statistics to
rainfall data rounding off, Phys. Chem. Earth, 31, 1240–1251, 2006.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.: More extreme precipitation in the world's dry and wet regions, Nat. Clim. Change, 6, 508–513, https://doi.org/10.1038/NCLIMATE2941, 2016.
Dong, Q., Chen, X., and Chen, T.: Characteristics and Changes of Extreme
Precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers Basins, China, J. Climate, 24, 3781–3795, 2011.
Douglas, E. M. and Barros, A. P.: Probable maximum precipitation estimation
using multifractals: application in the Eastern United States, J. Hydrometeorol., 4, 1012–1024, 2003.
Du, H., Wu, Z., Zong, S., Meng, X., and Wang, L.: Assessing the characteristics of extreme precipitation over Northeast China using the
multifractal detrended fluctuation analysis, J. Geophys. Res.-Atmos., 118,
52013, https://doi.org/10.1002/jgrd.50487, 2013.
Dulière, V., Zhang, Y., and Salathé Jr, E. P.: Extreme precipitation
and temperature over the US Pacific Northwest: A comparison between observations, reanalysis data, and regional models, J. Climate, 24,
1950–1964, 2011.
Eekhout, J. P. C., Hunink, J. E., Terink, W., and de Vente, J.: Why increased extreme precipitation under climate change negatively affects water security, Hydrol. Earth Syst. Sci., 22, 5935–5946, https://doi.org/10.5194/hess-22-5935-2018, 2018.
Feng, X. M., Sun, G., Fu, B. J., Su, C. H., Liu, Y., and Lamparski, H.: Regional effects of vegetation restoration on water yield across the Loess Plateau, China, Hydrol. Earth Syst. Sci., 16, 2617–2628, https://doi.org/10.5194/hess-16-2617-2012, 2012.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., and Jiang, X.: Revegetation in China's Loess Plateau is approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019–1022, 2016.
Gagnon, J.-S., Lovejoy, S., and Schertzer, D.: Multifractal earth topography, Nonlin. Processes Geophys., 13, 541–570, https://doi.org/10.5194/npg-13-541-2006, 2006.
Haddad, K., Rahman, A., and Green, J.: Design rainfall estimation in Australia: a case study using L moments and generalized least squares
regression, Stoch. Environ. Res. Risk A., 25, 815–825, 2011.
Herold, N., Behrangi, A., and Alexander, L. V.: Large uncertainties in
observed daily precipitation extremes over land, J. Geophys. Res.-Atmos.,
122, 668–681, 2017.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, 166–171, 2016.
Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P.,
Carbonnel, J., Violette, S., and Desurosne, I.: Multifractals and extreme
rainfall events, Geophys. Res. Lett., 20, 931–934, 1993.
IPCC – Intergovernmental Panel on Climate Change: Climate Change 2007:
Synthesis Report. Contribution of Working Groups I, II and III to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Core Writing Team, Pachauri, R. K. and Reisinger, A., Geneva, Switzerland, 104 pp., 2007.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., and Woollen, J.: The NCEP/NCAR 40-year
reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Lavallée, D., Lovejoy, S., Schertzer, D., and Ladoy, P.: Nonlinear
variability and landscape topography: analysis and simulation, in: Fractals
in geography, edited by: Lam, N. S.-N. and Cola, L. D., PTR Prentice-Hall,
London, 1993.
Li, Y., Cai, W., and Campbell, E.: Statistical modeling of extreme rainfall
in southwest Western Australia, J. Climate, 18, 852–863, 2005.
Li, Z., Zheng, F.-L., Liu, W.-Z., and Flanagan, D. C.: Spatial distribution
and temporal trends of extreme temperature and precipitation events on the
Loess Plateau of China during 1961–2007, Quatern. Int., 226, 92–100, 2010a.
Li, Z., Zheng, F., and Liu, W.: Analyzing the spatial temporal changes of
extreme precipitation events in the loess plateau from 1961 to 2007, J. Nat.
Res., 25, 291–299, 2010b.
Li, Z., Xu, X., Xu, C., Liu, M., Wang, K., and Yu, B.: Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China, J. Hydrometeorol., 18, 2745–2759, 2017.
Liu, B., Chen, J., Chen, X., Lian, Y., and Wu, L.: Uncertainty in determining extreme precipitation thresholds, J. Hydrol., 503, 233–245, 2013.
Lovejoy, S. and Schertzer, D.: Scaling and multifractal fields in the solid earth and topography, Nonlin. Processes Geophys., 14, 465–502, https://doi.org/10.5194/npg-14-465-2007, 2007.
Lovejoy, S. and Schertzer, D.: The weather and Climate: emergent laws and
multifractal cascades, Cambridge University Press, Cambridge, 2013.
Ludwig, W. and Probst, J. L.: River sediment discharge to the oceans;
present-day controls and global budgets, Am. J. Sci., 298, 265-295, 1998.
Manola, I., van den Hurk, B., De Moel, H., and Aerts, J. C. J. H.: Future extreme precipitation intensities based on a historic event, Hydrol. Earth Syst. Sci., 22, 3777–3788, https://doi.org/10.5194/hess-22-3777-2018, 2018.
Miao, C., Sun, Q., Duan, Q., and Wang, Y.: Joint analysis of changes in
temperature and precipitation on the Loess Plateau during the period 1961–2011, Clim. Dynam., 47, 3221–3234, 2016.
Miao, C., Duan, Q., Sun, Q., Lei, X., and Li, H.: Non-uniform changes in
different categories of precipitation intensity across China and the associated large-scale circulations, Environ. Res. Lett., 14, 025004, https://doi.org/10.1088/1748-9326/aaf306, 2019.
Min, S., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution to
more-intense precipitation extremes, Nature, 470, 378–381, 2011.
Ministry of Water Resources and National Bureau of Statistics: Bulletin of First National Census for Water, China Water & Power Press, Beijing, 2013.
Oliver, M. A. and Webster, R.: Kriging: a method of interpolation for
geographical information systems, Int. J. Geogr. Inf. Syst., 4, 313–332, 1990.
Pandey, G., Lovejoy, S., and Schertzer, D.: Multifractal analysis of daily
river flows including extremes for basins of five to two million square
kilometres, one day to 75 years, J. Hydrol., 208, 62–81, 1998.
Papalexiou, S. M., Koutsoyiannis, D., and Makropoulos, C.: How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrol. Earth Syst. Sci., 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, 2013.
Parisi, G. and Frisch, U.: A multifractal model of intermittency, in:
Turbulence and predictability in geophysical fluid dynamics and climate
dynamics, edited by: Ghil, M., Benzi, R., and Parisi, G., Elsevier North Holland, New-York, 1985.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., and Evengård, B.: Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being, Science, 355, eaai9214, https://doi.org/10.1126/science.aai9214, 2017.
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional
pattern of projected future changes in extreme precipitation, Nat. Clim.
Change, 7, 423–427, https://doi.org/10.1038/NCLIMATE3287, 2017.
Ran, D., Liu, L., Zhao, L., Bai, Z., Liu, B., and Wang, H.: The soil
conservation practices and streamflow and sediment load changes in the
Hekou-Longmen region of middle reaches of Yellow River, Yellow River Water Conservancy Press, Zhengzhou, 2000.
Ren, M.-E.: Sediment discharge of the Yellow River, China: past, present and
future – a synthesis, Adv. Earth Sci., 21, 551–563, 2006.
Rustomji, P., Zhang, X., Hairsine, P., Zhang, L., and Zhao, J.: River sediment load and concentration responses to changes in hydrology and
catchment management in the Loess Plateau region of China, Water Resour. Res., 44, W00A04, https://doi.org/10.1029/2007WR006656, 2008.
Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res.-Atmos., 92, 9693–9714, 1987.
Shi, H. and Shao, M.: Soil and water loss from the Loess Plateau in China, J. Arid Environ., 45, 9–20, 2000.
Stow, D., Daeschner, S., Hope, A., Douglas, D., Petersen, A., Myneni, R.,
Zhou, L., and Oechel, W.: Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s, Int. J. Remote Sens., 24, 1111–1117, 2003.
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., Kriauǐūnienė, J., Loukas, A., Osuch, M., and Yücel, I.: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe, Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, 2015.
Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and precipitation in south and west Britain, Hydrol. Earth Syst. Sci., 8, 973–992, https://doi.org/10.5194/hess-8-973-2004, 2004.
Swendsen, R. H. and Wang, J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58, 86–88, 1987.
Tang, K.: The soil conservation practices and streamflow and sediment load
changes in the Hekou-Longmen region of middle reaches of Yellow River, Yellow River Water Conservancy Press, Zhengzhou, 1990.
Tang, K.: The changes of erosion, runoff and sediment in the Yellow River,
Science China Press, Beijing, 1993.
Tang, K.: Soil and water conservation in China, Science China Press, Beijing, 2004.
Tessier, Y., Lovejoy, S., and Schertzer, D.: Universal multifractals: theory
and observations for rain and clouds, J. Appl. Meteorol., 32, 223–250, 1993.
Tessier, Y., Lovejoy, S., and Schertzer, D.: Multifractal analysis and simulation of the global meteorological network, J. Appl. Meteorol., 33,
1572–1586, 1994.
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S.:
Multifractal analysis and modeling of rainfall and river flows and scaling,
causal transfer functions, J. Geophys. Res., 101, 26427–26440, 1996.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological
responses to recent climate change, Nature, 416, 389–395, 2002.
Wan, L., Zhang, X., Ma, Q., Zhang, J., Ma, T., and Sun, Y.: Spatiotemporal
characteristics of precipitation and extreme events on the Loess Plateau of
China between 1957 and 2009, Hydrol. Process., 28, 4971–4983, 2014.
Wang, G., Wang, D., Trenberth, K. E., Erfanian, A., Yu, M., Bosilovich, M.
G., and Parr, D. T.: The peak structure and future changes of the relationships between extreme precipitation and temperature, Nat. Clim. Change, 7, 268–274, 2017.
Wang, S., Fu, B., Piao, S., Lü, Y., Ciais, P., Feng, X., and Wang, Y.:
Reduced sediment transport in the Yellow River due to anthropogenic changes,
Nat. Geosci., 9, 38–41, 2015.
Wischmeier, W. H.: Use and misuse of the universal soil loss equation, J.
Soil Water Conserv., 31, 5–9, 1976.
Xin, Z., Xu, J., and Ma, Y.: Spatio-temporal Variation of Erosive Precipitation in Loess Plateau during Past 50 Years, Sci. Geogr. Sin., 29,
98–104, 2009.
Zhang, J., Zhang, T., Lei, Y., Zhang, X., and Li, R.: Streamflow regime
variations following ecological management on the Loess Plateau, China, Forests, 7, 1–18, https://doi.org/10.3390/f7010006, 2016.
Zhang, J., Zhang, X., Li, R., Chen, L., and Lin, P.: Did streamflow or suspended sediment concentration changes reduce sediment load in the middle
reaches of the Yellow River?, J. Hydrol., 546, 357–369, 2017.
Zhang, X., Walling, D. E., Quine, T. A., and Wen, A.: Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling loess plateau region of China, Land
Degrad. Dev., 8, 1–16, 1997.
Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between
extreme rainfall and storm surge in the coastal zone, J. Hydrol., 505, 172–187, 2013.
Zheng, F., Westra, S., and Leonard, M.: Opposing local precipitation extremes, Nat. Clim. Change, 5, 389–390, 2015.
Zhou, P. and Wang, Z.: A Study on Rainstorm Causing Soil Erosion in the Loess Plateau, J. Soil Water Conserv., 6, 1–5, 1992.
Short summary
We proposed an approach that integrates universal multifractals and a segmentation algorithm to precisely identify extreme precipitation (EP) and assess spatiotemporal EP variation over the Loess Plateau, using daily data. Our results explain how EP contributes to the widely distributed severe natural hazards. These findings are of great significance for ecological management in the Loess Plateau. Our approach is also helpful for spatiotemporal EP assessment at the regional scale.
We proposed an approach that integrates universal multifractals and a segmentation algorithm to...