Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5595-2020
https://doi.org/10.5194/hess-24-5595-2020
Research article
 | Highlight paper
 | 
24 Nov 2020
Research article | Highlight paper |  | 24 Nov 2020

New flood frequency estimates for the largest river in Norway based on the combination of short and long time series

Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche

Related authors

Regional index flood estimation at multiple durations with generalized additive models
Danielle M. Barna, Kolbjørn Engeland, Thomas Kneib, Thordis L. Thorarinsdottir, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2335,https://doi.org/10.5194/egusphere-2023-2335, 2023
Preprint archived
Short summary
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022,https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary
The benefits of pre- and postprocessing streamflow forecasts for an operational flood-forecasting system of 119 Norwegian catchments
Trine J. Hegdahl, Kolbjørn Engeland, Ingelin Steinsland, and Andrew Singleton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-13,https://doi.org/10.5194/hess-2021-13, 2021
Manuscript not accepted for further review
Short summary
Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 24, 4109–4133, https://doi.org/10.5194/hess-24-4109-2020,https://doi.org/10.5194/hess-24-4109-2020, 2020
Short summary
Streamflow forecast sensitivity to air temperature forecast calibration for 139 Norwegian catchments
Trine J. Hegdahl, Kolbjørn Engeland, Ingelin Steinsland, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 23, 723–739, https://doi.org/10.5194/hess-23-723-2019,https://doi.org/10.5194/hess-23-723-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024,https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
EGUsphere, https://doi.org/10.5194/egusphere-2023-2214,https://doi.org/10.5194/egusphere-2023-2214, 2023
Short summary

Cited articles

Aano, A.: Flood frequency analyses based on streamflow time series, historical information and paleohydrological data, MS thesis, University of Oslo, Oslo, Norway, 2017. 
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K. and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016EF000485, 2017. 
Appleby, P. G.: Chronostratigraphic Techniques in Recent Sediments, in: Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Springer, Dordrecht, the Netherlands, 171–203, https://doi.org/10.1007/0-306-47669-X_9, 2001. 
Appleby, P. G. and Piliposian, G. T.: Radiometric Dating of Lake Sediment Cores from Flyginnsjøen and Vingersjøen, Southern Norway (provisional report), Environmental Radioactivity Research Centre, University of Liverpool, Liverpool, 2014. 
Baker, V. R.: Paleohydrology and sedimentology of lake missoula flooding in Eastern Washington, Special Paper of the Geological Society of America 144, Geological Society of America, Boulder, Colorado, 1–73, https://doi.org/10.1130/SPE144-p1, 1973. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.