Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-4171-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land–atmosphere interactions in the tropics – a review
Pierre Gentine
CORRESPONDING AUTHOR
Department of Earth and Environmental Engineering,
Earth Institute, Columbia University, New York, NY, USA
Adam Massmann
Department of Earth and Environmental Engineering,
Earth Institute, Columbia University, New York, NY, USA
Benjamin R. Lintner
Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
Sayed Hamed Alemohammad
Department of Earth and Environmental Engineering,
Earth Institute, Columbia University, New York, NY, USA
Rong Fu
Department of Atmospheric and Ocean Sciences, University of California, Los Angeles, Los Angeles, CA, USA
Julia K. Green
Department of Earth and Environmental Engineering,
Earth Institute, Columbia University, New York, NY, USA
Daniel Kennedy
Department of Earth and Environmental Engineering,
Earth Institute, Columbia University, New York, NY, USA
Jordi Vilà-Guerau de Arellano
Meteorology and Air Quality Group,
Wageningen University, Wageningen, the Netherlands
Related authors
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
This article is included in the Encyclopedia of Geosciences
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
This article is included in the Encyclopedia of Geosciences
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
This article is included in the Encyclopedia of Geosciences
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
This article is included in the Encyclopedia of Geosciences
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
This article is included in the Encyclopedia of Geosciences
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
This article is included in the Encyclopedia of Geosciences
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
This article is included in the Encyclopedia of Geosciences
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
This article is included in the Encyclopedia of Geosciences
Wen Li Zhao, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, Baoyu Chen, and Guo Yu Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-160, https://doi.org/10.5194/hess-2019-160, 2019
Manuscript not accepted for further review
Short summary
Short summary
Accurate evapotranspiration (ET) estimation requires an in-depth identification of uncertainty sources. Using high density eddy covariance observations, we evaluated the effects of resistances on ET estimation and discussed possible solutions. The results show that more complex resistance parameterizations leads to more uncertainty, although prior calibration can improve the ET estimates and that a new model without resistance parameterization introduces less uncertainty into the ET estimation.
This article is included in the Encyclopedia of Geosciences
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
This article is included in the Encyclopedia of Geosciences
Adam Massmann, Pierre Gentine, and Changjie Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-553, https://doi.org/10.5194/hess-2018-553, 2018
Revised manuscript not accepted
Short summary
Short summary
Plants can sense increasing dryness in the air and close up the pores
on their leaves, preventing water loss. However, drier air also
naturally demands more water from the land surface. Here we develop a
simplified theory for when land surface water loss increases
(atmospheric demand dominates) or decreases (plant response dominates)
in response to increased dryness in the air. This theory provides
intuition for how ecosystems regulate water in response to changes in
atmospheric dryness.
This article is included in the Encyclopedia of Geosciences
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
This article is included in the Encyclopedia of Geosciences
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
This article is included in the Encyclopedia of Geosciences
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
This article is included in the Encyclopedia of Geosciences
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
This article is included in the Encyclopedia of Geosciences
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
This article is included in the Encyclopedia of Geosciences
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
This article is included in the Encyclopedia of Geosciences
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
This article is included in the Encyclopedia of Geosciences
B. R. Lintner, P. Gentine, K. L. Findell, and G. D. Salvucci
Hydrol. Earth Syst. Sci., 19, 2119–2131, https://doi.org/10.5194/hess-19-2119-2015, https://doi.org/10.5194/hess-19-2119-2015, 2015
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
Mary Rose Mangan, Jordi Vilà-Guerau de Arellano, Bart J. H. van Stratum, Marie Lothon, Guylaine Canut-Rocafort, and Oscar K. Hartogensis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3000, https://doi.org/10.5194/egusphere-2024-3000, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Using observations and high-resolution turbulence modeling, we examine the influence of irrigation-driven surface heterogeneity on the atmospheric boundary layer (ABL). We employ different spatial scales of heterogeneity to explore how the influence of surface heterogeneity on the ABL within a single grid cell would change in higher resolution global models. We find that the height of the ABL is highly variable, and that the surface heterogeneity is felt least strongly in the middle of the ABL.
This article is included in the Encyclopedia of Geosciences
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
This article is included in the Encyclopedia of Geosciences
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
This article is included in the Encyclopedia of Geosciences
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
This article is included in the Encyclopedia of Geosciences
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
This article is included in the Encyclopedia of Geosciences
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
This article is included in the Encyclopedia of Geosciences
Yizhou Zhuang and Rong Fu
Atmos. Chem. Phys., 24, 1641–1657, https://doi.org/10.5194/acp-24-1641-2024, https://doi.org/10.5194/acp-24-1641-2024, 2024
Short summary
Short summary
This study investigated how atmospheric circulation affects precipitation variability and changes in the US Great Plains (GP) and southwest (SW). By developing a new method called self organizing map–analogue, we found that circulation significantly influences short-term precipitation variability, accounting for 54 %–61 % of the total variance. Furthermore, circulation contributes considerably to the multi-decadal changes in precipitation and its extremes, especially for the southern GP and SW.
This article is included in the Encyclopedia of Geosciences
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
This article is included in the Encyclopedia of Geosciences
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
This article is included in the Encyclopedia of Geosciences
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
This article is included in the Encyclopedia of Geosciences
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
This article is included in the Encyclopedia of Geosciences
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
This article is included in the Encyclopedia of Geosciences
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
This article is included in the Encyclopedia of Geosciences
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
This article is included in the Encyclopedia of Geosciences
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
This article is included in the Encyclopedia of Geosciences
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
This article is included in the Encyclopedia of Geosciences
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Short summary
Boreal autumn is the main wet season over the Congo basin. Thus, changes in its onset date have a significant impact on the rainforest. This study provides compelling evidence that the cooling effect of aerosols modifies the timing and strength of the southern African easterly jet that is central to the boreal autumn wet season over the Congo rainforest. A higher boreal summer aerosol concentration is positively correlated with the boreal autumn wet season onset timing.
This article is included in the Encyclopedia of Geosciences
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
This article is included in the Encyclopedia of Geosciences
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021, https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Short summary
The type of vegetation (or land cover) and its status influence the heat and water transfers between the surface and the air, affecting the processes that develop in the atmosphere at different (but connected) spatiotemporal scales. In this work, we investigate how these transfers are affected by the way the surface is represented in a widely used weather model. The results encourage including realistic high-resolution and updated land cover databases in models to improve their predictions.
This article is included in the Encyclopedia of Geosciences
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
This article is included in the Encyclopedia of Geosciences
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
This article is included in the Encyclopedia of Geosciences
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
This article is included in the Encyclopedia of Geosciences
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
This article is included in the Encyclopedia of Geosciences
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
This article is included in the Encyclopedia of Geosciences
Xabier Pedruzo-Bagazgoitia, Stephan R. de Roode, Bianca Adler, Karmen Babić, Cheikh Dione, Norbert Kalthoff, Fabienne Lohou, Marie Lothon, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020, https://doi.org/10.5194/acp-20-2735-2020, 2020
Short summary
Short summary
Using a high-resolution model we simulate the transition from night to day clouds on southern West Africa using observations from the DACCIWA project. We find that the radiative effects of clouds help mantain a thick cloud layer in the night, while the mixing of cloud air with air above during the day, aided by moisture and heat fluxes at the surface, thins this layer and promotes its transition to other clouds. The effect of changing wind with height accelerates the transition.
This article is included in the Encyclopedia of Geosciences
Amir Erfanian and Rong Fu
Atmos. Chem. Phys., 19, 15199–15216, https://doi.org/10.5194/acp-19-15199-2019, https://doi.org/10.5194/acp-19-15199-2019, 2019
Short summary
Short summary
An eastward advection of dry and warm air in spring was identified as a major drought onset mechanism over the US Great Plains (GP). Further breakdown of the zonal advection into the dynamic versus thermodynamic contributions revealed dominance of the latter in the tropospheric drying observed during the onset of GP 2011 and 2012 droughts. The dependence of thermodynamic advection on moisture gradient links the spring precipitation in the Rockies and US southwest to the GP summer precipitation.
This article is included in the Encyclopedia of Geosciences
Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann
Geosci. Model Dev., 12, 5177–5196, https://doi.org/10.5194/gmd-12-5177-2019, https://doi.org/10.5194/gmd-12-5177-2019, 2019
Short summary
Short summary
An aerosol scheme with multiple aerosol species is introduced in the Dutch Atmospheric Large-Eddy Simulation model (DALES) and focused to simulate the feedback of aerosol–cloud interaction (ACI) on the aerosol population. Cloud aerosol processing is found to be sensitive to the numerical method, while removal by precipitation is more stable. How ACI increases or decreases the mean aerosol size depends on the balance between the evaporation of clouds/rain and ultimate removal by precipitation.
This article is included in the Encyclopedia of Geosciences
Sara Lynn Fults, Adam K. Massmann, Aldo Montecinos, Elisabeth Andrews, David E. Kingsmill, Justin R. Minder, René D. Garreaud, and Jefferson R. Snider
Atmos. Chem. Phys., 19, 12377–12396, https://doi.org/10.5194/acp-19-12377-2019, https://doi.org/10.5194/acp-19-12377-2019, 2019
Short summary
Short summary
We analyze wintertime aerosol measurements from the central Chilean Pacific coast. The averaged aerosol particle concentration at our site (D > 0.01 μm) is larger than at a site on the Californian Pacific coast. Additionally, size distributions sampled during intervals of onshore flow are used to parameterize aerosol properties relevant to cloud and precipitation processes. We anticipate that modeling of wintertime Chilean coastal rain events will benefit from the parameterizations we present.
This article is included in the Encyclopedia of Geosciences
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
This article is included in the Encyclopedia of Geosciences
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019, https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Short summary
The free software CLASS4GL (http://class4gl.eu) is designed to investigate the dynamic atmospheric boundary layer (ABL) with weather balloons. It mines observational data from global radio soundings, satellite and reanalysis data from the last 40 years to constrain and initialize an ABL model and automizes multiple experiments in parallel. CLASS4GL aims at fostering a better understanding of land–atmosphere feedbacks and the drivers of extreme weather.
This article is included in the Encyclopedia of Geosciences
Wen Li Zhao, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, Baoyu Chen, and Guo Yu Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-160, https://doi.org/10.5194/hess-2019-160, 2019
Manuscript not accepted for further review
Short summary
Short summary
Accurate evapotranspiration (ET) estimation requires an in-depth identification of uncertainty sources. Using high density eddy covariance observations, we evaluated the effects of resistances on ET estimation and discussed possible solutions. The results show that more complex resistance parameterizations leads to more uncertainty, although prior calibration can improve the ET estimates and that a new model without resistance parameterization introduces less uncertainty into the ET estimation.
This article is included in the Encyclopedia of Geosciences
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019, https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
This article is included in the Encyclopedia of Geosciences
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
This article is included in the Encyclopedia of Geosciences
Juhi Nagori, Ruud H. H. Janssen, Juliane L. Fry, Maarten Krol, Jose L. Jimenez, Weiwei Hu, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 701–729, https://doi.org/10.5194/acp-19-701-2019, https://doi.org/10.5194/acp-19-701-2019, 2019
Short summary
Short summary
Secondary organic aerosol (SOA) is produced through a complex interaction of sunlight, volatile organic compounds emitted from trees, anthropogenic emissions, and atmospheric chemistry. We are able to successfully model the formation and diurnal evolution of SOA using a model that takes into consideration the surface and boundary layer dynamics (1–2 km from the surface) and photochemistry above the southeastern US with data collected during the SOAS campaign to constrain the model.
This article is included in the Encyclopedia of Geosciences
Adam Massmann, Pierre Gentine, and Changjie Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-553, https://doi.org/10.5194/hess-2018-553, 2018
Revised manuscript not accepted
Short summary
Short summary
Plants can sense increasing dryness in the air and close up the pores
on their leaves, preventing water loss. However, drier air also
naturally demands more water from the land surface. Here we develop a
simplified theory for when land surface water loss increases
(atmospheric demand dominates) or decreases (plant response dominates)
in response to increased dryness in the air. This theory provides
intuition for how ecosystems regulate water in response to changes in
atmospheric dryness.
This article is included in the Encyclopedia of Geosciences
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
This article is included in the Encyclopedia of Geosciences
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
This article is included in the Encyclopedia of Geosciences
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
This article is included in the Encyclopedia of Geosciences
Sudip Chakraborty, Kathleen A. Schiro, Rong Fu, and J. David Neelin
Atmos. Chem. Phys., 18, 11135–11148, https://doi.org/10.5194/acp-18-11135-2018, https://doi.org/10.5194/acp-18-11135-2018, 2018
Short summary
Short summary
This study shows the observational evidence of the role of humidity and associations from wind shear and aerosol concentrations on the evolution of deep convective clouds from shallow clouds. This study shows how humidity, wind shear, and aerosols influence a parcel's buoyancy before the clouds form.
This article is included in the Encyclopedia of Geosciences
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
This article is included in the Encyclopedia of Geosciences
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
This article is included in the Encyclopedia of Geosciences
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
This article is included in the Encyclopedia of Geosciences
Jose A. Marengo, Gilberto F. Fisch, Lincoln M. Alves, Natanael V. Sousa, Rong Fu, and Yizhou Zhuang
Atmos. Chem. Phys., 17, 7671–7681, https://doi.org/10.5194/acp-17-7671-2017, https://doi.org/10.5194/acp-17-7671-2017, 2017
Short summary
Short summary
The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the GoAmazon experiment for the 2014–15 rainy season. The onset of the rainy season was strongly associated with changes in large-scale circulation in the region, and our analyses using regional thermodynamic indices suggest that local changes such the regional thermodynamic characteristics may have been less important on the occurrence of the onset compared to large-scale circulation.
This article is included in the Encyclopedia of Geosciences
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
This article is included in the Encyclopedia of Geosciences
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Metodija M. Shapkalijevski, Huug G. Ouwersloot, Arnold F. Moene, and Jordi Vilà-Guerau de Arrellano
Atmos. Chem. Phys., 17, 1623–1640, https://doi.org/10.5194/acp-17-1623-2017, https://doi.org/10.5194/acp-17-1623-2017, 2017
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
This article is included in the Encyclopedia of Geosciences
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741, https://doi.org/10.5194/acp-16-7725-2016, https://doi.org/10.5194/acp-16-7725-2016, 2016
R. Obringer, X. Zhang, K. Mallick, S. H. Alemohammad, and D. Niyogi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 747–751, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, 2016
C. Darbieu, F. Lohou, M. Lothon, J. Vilà-Guerau de Arellano, F. Couvreux, P. Durand, D. Pino, E. G. Patton, E. Nilsson, E. Blay-Carreras, and B. Gioli
Atmos. Chem. Phys., 15, 10071–10086, https://doi.org/10.5194/acp-15-10071-2015, https://doi.org/10.5194/acp-15-10071-2015, 2015
Short summary
Short summary
A case study of the BLLAST experiment is considered to explore the decay of turbulence that occurs in the convective boundary layer over land during the afternoon. Based on observations and on a large-eddy simulation, the analysis reveals two phases in the afternoon: a first quasi-stationary phase when the turbulent kinetic energy slowly decays without significant change in the turbulence structure and a second phase of more rapid decay with a change in spectral turbulence characteristics.
This article is included in the Encyclopedia of Geosciences
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
This article is included in the Encyclopedia of Geosciences
B. R. Lintner, P. Gentine, K. L. Findell, and G. D. Salvucci
Hydrol. Earth Syst. Sci., 19, 2119–2131, https://doi.org/10.5194/hess-19-2119-2015, https://doi.org/10.5194/hess-19-2119-2015, 2015
H. P. Pietersen, J. Vilà-Guerau de Arellano, P. Augustin, A. van de Boer, O. de Coster, H. Delbarre, P. Durand, M. Fourmentin, B. Gioli, O. Hartogensis, F. Lohou, M. Lothon, H. G. Ouwersloot, D. Pino, and J. Reuder
Atmos. Chem. Phys., 15, 4241–4257, https://doi.org/10.5194/acp-15-4241-2015, https://doi.org/10.5194/acp-15-4241-2015, 2015
M. Combe, J. Vilà-Guerau de Arellano, H. G. Ouwersloot, C. M. J. Jacobs, and W. Peters
Biogeosciences, 12, 103–123, https://doi.org/10.5194/bg-12-103-2015, https://doi.org/10.5194/bg-12-103-2015, 2015
Short summary
Short summary
This study investigates the interactions among the carbon, water and heat cycles above a maize field at the diurnal scale. We couple two land-surface schemes, corresponding to two different modelling approaches, to the same atmospheric boundary-layer (ABL) model. We find the simpler meteorological approach best reproduces the surface and upper-air observations. Finally, we show that the interaction of subsidence with ABL dynamics is key to explain the daytime atmospheric CO2 budget.
This article is included in the Encyclopedia of Geosciences
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
Related subject area
Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Interannual variations of terrestrial water storage in the East African Rift region
Technical note: Surface fields for global environmental modelling
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Characterising recent drought events in the context of dry-season trends using state-of-the-art reanalysis and remote-sensing soil moisture products
Dynamic rainfall erosivity estimates derived from IMERG data
A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis
Scaling methods of leakage correction in GRACE mass change estimates revisited for the complex hydro-climatic setting of the Indus Basin
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: a case study for the Okavango Delta
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Global component analysis of errors in three satellite-only global precipitation estimates
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe
Assimilation of vegetation optical depth retrievals from passive microwave radiometry
Long-term total water storage change from a Satellite Water Cycle reconstruction over large southern Asian basins
Global partitioning of runoff generation mechanisms using remote sensing data
Global-scale human pressure evolution imprints on sustainability of river systems
Using GRACE in a streamflow recession to determine drainable water storage in the Mississippi River basin
A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region
Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response
Using modelled discharge to develop satellite-based river gauging: a case study for the Amazon Basin
Global downscaling of remotely sensed soil moisture using neural networks
Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation
Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements
Estimating time-dependent vegetation biases in the SMAP soil moisture product
Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data
Microwave implementation of two-source energy balance approach for estimating evapotranspiration
A global approach to estimate irrigated areas – a comparison between different data and statistics
The future of Earth observation in hydrology
Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations
MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data
Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data
Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations
Cloud tolerance of remote-sensing technologies to measure land surface temperature
Dynamic changes in terrestrial net primary production and their effects on evapotranspiration
Assessing changes in urban flood vulnerability through mapping land use from historical information
SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI
A global data set of the extent of irrigated land from 1900 to 2005
Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors
Spatial patterns in timing of the diurnal temperature cycle
Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
This article is included in the Encyclopedia of Geosciences
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
This article is included in the Encyclopedia of Geosciences
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024, https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Short summary
We assessed 13 global models using GRACE satellite data over 29 river basins. Simulated seasonal water storage cycles showed discrepancies compared to GRACE. The models overestimated seasonal amplitude in boreal basins and showed underestimation in tropical, arid, and temperate zones, with phase differences of 2–3 months compared to GRACE in cold basins and of 1 month in temperate, arid, and semi-arid basins. Seasonal amplitude and phase differences provide insights for model improvement.
This article is included in the Encyclopedia of Geosciences
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
This article is included in the Encyclopedia of Geosciences
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023, https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary
Short summary
Many remote sensing products for precipitation, evapotranspiration, and water storage variations exist. However, when these are used with in situ runoff data in water balance closure studies, no single combination of products consistently outperforms others. We analyzed the water balance closure using different products in catchments worldwide and related the results to catchment characteristics. Our results can help identify the dataset combinations best suited for use in different catchments.
This article is included in the Encyclopedia of Geosciences
Martin Hirschi, Bas Crezee, Pietro Stradiotti, Wouter Dorigo, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2023-2499, https://doi.org/10.5194/egusphere-2023-2499, 2023
Short summary
Short summary
Based on surface and root-zone soil moisture, we compare the ability of selected long-term reanalysis and merged remote-sensing products to represent major agroecological drought events. While all products capture the investigated droughts, they particularly show differences in the drought magnitudes. Globally, the diverse and regionally contradicting dry-season soil moisture trends of the products is an important factor governing their drought representation and monitoring capability.
This article is included in the Encyclopedia of Geosciences
Robert A. Emberson
Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023, https://doi.org/10.5194/hess-27-3547-2023, 2023
Short summary
Short summary
Soil can be eroded by rainfall, and this is a major threat to agricultural sustainability. Estimating the erosivity of rainfall is essential as a first step to determine how much soil might be lost. Until recently, satellite data have not been used to estimate rainfall erosivity, but the data quality is now sufficient to do so. In this study, I test several methods to calculate rainfall erosivity using satellite rainfall data and contrast this with ground-based estimates.
This article is included in the Encyclopedia of Geosciences
Daniel Blank, Annette Eicker, Laura Jensen, and Andreas Güntner
Hydrol. Earth Syst. Sci., 27, 2413–2435, https://doi.org/10.5194/hess-27-2413-2023, https://doi.org/10.5194/hess-27-2413-2023, 2023
Short summary
Short summary
Soil moisture (SM), a key variable of the global water cycle, is analyzed using two types of satellite observations; microwave sensors measure the top few centimeters and satellite gravimetry (GRACE) the full vertical water column. As SM can change very fast, non-standard daily GRACE data are applied for the first time for this analysis. Jointly analyzing these data gives insight into the SM dynamics at different soil depths, and time shifts indicate the infiltration time into deeper layers.
This article is included in the Encyclopedia of Geosciences
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
This article is included in the Encyclopedia of Geosciences
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
This article is included in the Encyclopedia of Geosciences
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
This article is included in the Encyclopedia of Geosciences
Vasaw Tripathi, Andreas Groh, Martin Horwath, and Raaj Ramsankaran
Hydrol. Earth Syst. Sci., 26, 4515–4535, https://doi.org/10.5194/hess-26-4515-2022, https://doi.org/10.5194/hess-26-4515-2022, 2022
Short summary
Short summary
GRACE/GRACE-FO provided global observations of water storage change since 2002. Scaling is a common approach to compensate for the spatial filtering inherent to the results. However, for complex hydrological basins, the compatibility of scaling with the characteristics of regional hydrology has been rarely assessed. We assess traditional scaling approaches and a new scaling approach for the Indus Basin. Our results will help users with regional focus understand implications of scaling choices.
This article is included in the Encyclopedia of Geosciences
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
This article is included in the Encyclopedia of Geosciences
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
This article is included in the Encyclopedia of Geosciences
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
This article is included in the Encyclopedia of Geosciences
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021, https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Short summary
Instantaneous evapotranspiration (ET), which is detected by the remote sensing technique, needs to be upscaled to daily values in order to practical applications. The accuracy of seven upscaling methods is evaluated by using global observations. The sine function and the evaporative fraction method using extraterrestrial solar irradiance are recommended. Although every upscaling scheme has high accuracy at most sites, it is less accurate at tropical rainforest and tropical monsoon sites.
This article is included in the Encyclopedia of Geosciences
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021, https://doi.org/10.5194/hess-25-3087-2021, 2021
Alka Singh, John Thomas Reager, and Ali Behrangi
Hydrol. Earth Syst. Sci., 25, 511–526, https://doi.org/10.5194/hess-25-511-2021, https://doi.org/10.5194/hess-25-511-2021, 2021
Short summary
Short summary
The study demonstrates the utility of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies (TWSAs) for obtaining statistics of hydrological droughts, i.e., recovery periods and required precipitation in different precipitation scenarios. The findings of this study are that the GRACE-based drought index is valid for estimating the required precipitation for drought recovery, and the period of drought recovery depends on the intensity of the precipitation.
This article is included in the Encyclopedia of Geosciences
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
This article is included in the Encyclopedia of Geosciences
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
This article is included in the Encyclopedia of Geosciences
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Short summary
Vegetation optical depth (VOD) is a byproduct of the soil moisture retrieval from passive microwave instruments. This study demonstrates that VOD information can be utilized for improving land surface water budget and carbon conditions through data assimilation.
This article is included in the Encyclopedia of Geosciences
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020, https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary
Short summary
The water mass variation at and below the land surface is a major component of the water cycle that was first estimated using GRACE observations (2002–2017). Our analysis shows the advantages of the use of satellite observation for precipitation and evapotranspiration along with river discharge measurement to perform an indirect and coherent reconstruction of this water component estimate over longer time periods.
This article is included in the Encyclopedia of Geosciences
Joseph T. D. Lucey, John T. Reager, and Sonya R. Lopez
Hydrol. Earth Syst. Sci., 24, 1415–1427, https://doi.org/10.5194/hess-24-1415-2020, https://doi.org/10.5194/hess-24-1415-2020, 2020
Short summary
Short summary
This work relates total water storage (TWS) and rainfall to surface water inundation (SWI) using NASA satellite data. We determine whether TWS and/or rainfall control global SWI developments. Regression methods and cross-correlations were used to relate the measurements and correct for time differences among peaks. Results show TWS and rainfall control most global SWI developments. To our knowledge, this is the first global study on SWI controls and validates previous findings.
This article is included in the Encyclopedia of Geosciences
Serena Ceola, Francesco Laio, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 3933–3944, https://doi.org/10.5194/hess-23-3933-2019, https://doi.org/10.5194/hess-23-3933-2019, 2019
Short summary
Short summary
A simple and effective index for the quantitative estimation of the evolution of human pressure on rivers at global scale is proposed. This index, based on nightlights and river discharge data, shows a significant increase from 1992 to 2013 worldwide. The most notable changes are found in river basins across Africa and Asia, where human pressure on rivers is growing markedly. This index identifies priority areas that can be targeted for the implementation of mitigation strategies and plans.
This article is included in the Encyclopedia of Geosciences
Heloisa Ehalt Macedo, Ralph Edward Beighley, Cédric H. David, and John T. Reager
Hydrol. Earth Syst. Sci., 23, 3269–3277, https://doi.org/10.5194/hess-23-3269-2019, https://doi.org/10.5194/hess-23-3269-2019, 2019
Short summary
Short summary
The water stored under the surface is very important for defining the amount of water available for human and environmental applications; however, it is still a challenge to obtain such measurements. NASA's GRACE satellites provide information on total terrestrial water storage based on observations of gravity changes. Here, we relate GRACE data to streamflow measurements, providing estimations of the fraction of baseflow and total drainable storage for the Mississippi River basin.
This article is included in the Encyclopedia of Geosciences
Linlin Li, Andrew Skidmore, Anton Vrieling, and Tiejun Wang
Hydrol. Earth Syst. Sci., 23, 3037–3056, https://doi.org/10.5194/hess-23-3037-2019, https://doi.org/10.5194/hess-23-3037-2019, 2019
Short summary
Short summary
We derived an 8 d, 500 m resolution surface water fraction product over the Mediterranean region for 2000–2017 based on MODIS data. This dataset complements existing surface water/wetland datasets by adding more temporal detail. It allows for the seasonal, inter-annual, and long-term dynamics of the surface water extent to be monitored, inclusive of small-sized and highly dynamic water bodies; it can also contribute to biodiversity and climate change assessment.
This article is included in the Encyclopedia of Geosciences
Siyuan Tian, Luigi J. Renzullo, Albert I. J. M. van Dijk, Paul Tregoning, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 1067–1081, https://doi.org/10.5194/hess-23-1067-2019, https://doi.org/10.5194/hess-23-1067-2019, 2019
Jiawei Hou, Albert I. J. M. van Dijk, Luigi J. Renzullo, and Robert A. Vertessy
Hydrol. Earth Syst. Sci., 22, 6435–6448, https://doi.org/10.5194/hess-22-6435-2018, https://doi.org/10.5194/hess-22-6435-2018, 2018
Short summary
Short summary
Satellite-based river gauging can be constructed based on remote-sensing-derived surface water extent and modelled discharge, and used to estimate river discharges with satellite observations only. This provides opportunities for monitoring river discharge in the absence of a real-time hydrological model or gauging stations.
This article is included in the Encyclopedia of Geosciences
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
This article is included in the Encyclopedia of Geosciences
Albert I. J. M. van Dijk, Jaap Schellekens, Marta Yebra, Hylke E. Beck, Luigi J. Renzullo, Albrecht Weerts, and Gennadii Donchyts
Hydrol. Earth Syst. Sci., 22, 4959–4980, https://doi.org/10.5194/hess-22-4959-2018, https://doi.org/10.5194/hess-22-4959-2018, 2018
Short summary
Short summary
Evaporation from wetlands, lakes and irrigation areas needs to be measured to understand water scarcity. So far, this has only been possible for small regions. Here, we develop a solution that can be applied at a very high resolution globally by making use of satellite observations. Our results show that 16% of global water resources evaporate before reaching the ocean, mostly from surface water. Irrigation water use is less than 1% globally but is a very large water user in several dry basins.
This article is included in the Encyclopedia of Geosciences
Carlos Jiménez, Brecht Martens, Diego M. Miralles, Joshua B. Fisher, Hylke E. Beck, and Diego Fernández-Prieto
Hydrol. Earth Syst. Sci., 22, 4513–4533, https://doi.org/10.5194/hess-22-4513-2018, https://doi.org/10.5194/hess-22-4513-2018, 2018
Short summary
Short summary
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate local measurements with estimates from satellites, more uncertain but covering larger areas. This is the main topic of our paper, in which local observations are compared with global land evaporation estimates, followed by a weighting of the global observations based on this comparison to attempt derive a more accurate evaporation product.
This article is included in the Encyclopedia of Geosciences
Simon Zwieback, Andreas Colliander, Michael H. Cosh, José Martínez-Fernández, Heather McNairn, Patrick J. Starks, Marc Thibeault, and Aaron Berg
Hydrol. Earth Syst. Sci., 22, 4473–4489, https://doi.org/10.5194/hess-22-4473-2018, https://doi.org/10.5194/hess-22-4473-2018, 2018
Short summary
Short summary
Satellite soil moisture products can provide critical information on incipient droughts and the interplay between vegetation and water availability. However, time-variant systematic errors in the soil moisture products may impede their usefulness. Using a novel statistical approach, we detect such errors (associated with changing vegetation) in the SMAP soil moisture product. The vegetation-associated biases impede drought detection and the quantification of vegetation–water interactions.
This article is included in the Encyclopedia of Geosciences
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
This article is included in the Encyclopedia of Geosciences
Peter J. Shellito, Eric E. Small, and Ben Livneh
Hydrol. Earth Syst. Sci., 22, 1649–1663, https://doi.org/10.5194/hess-22-1649-2018, https://doi.org/10.5194/hess-22-1649-2018, 2018
Short summary
Short summary
After soil gets wet, much of the surface moisture evaporates directly back into the air. Recent satellite data show that this process is enhanced when there is more water in the soil, less humidity in the air, and less vegetation covering the ground. A widely used model shows similar effects of soil water and humidity, but it largely misses the role of vegetation and assigns outsized importance to soil type. These results are encouraging evidence that the satellite can be used to improve models.
This article is included in the Encyclopedia of Geosciences
Cassandra Normandin, Frédéric Frappart, Bertrand Lubac, Simon Bélanger, Vincent Marieu, Fabien Blarel, Arthur Robinet, and Léa Guiastrennec-Faugas
Hydrol. Earth Syst. Sci., 22, 1543–1561, https://doi.org/10.5194/hess-22-1543-2018, https://doi.org/10.5194/hess-22-1543-2018, 2018
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
This article is included in the Encyclopedia of Geosciences
Jonas Meier, Florian Zabel, and Wolfram Mauser
Hydrol. Earth Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, https://doi.org/10.5194/hess-22-1119-2018, 2018
Short summary
Short summary
The following study extends existing irrigation maps based on official reports. The main idea was to extend the reported irrigated areas using agricultural suitability data and compare them with remote sensing information about plant conditions. The analysis indicates an increase in irrigated land by 18 % compared to the reported statistics. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated.
This article is included in the Encyclopedia of Geosciences
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
This article is included in the Encyclopedia of Geosciences
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
This article is included in the Encyclopedia of Geosciences
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
This article is included in the Encyclopedia of Geosciences
Oliver López, Rasmus Houborg, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 21, 323–343, https://doi.org/10.5194/hess-21-323-2017, https://doi.org/10.5194/hess-21-323-2017, 2017
Short summary
Short summary
The study evaluated the spatial and temporal consistency of satellite-based hydrological products based on the water budget equation, including three global evaporation products. The products were spatially matched using spherical harmonics analysis. The results highlighted the difficulty in obtaining agreement between independent satellite products, even over regions with simple water budgets. However, imposing a time lag on water storage data improved results considerably.
This article is included in the Encyclopedia of Geosciences
Paul A. Levine, James T. Randerson, Sean C. Swenson, and David M. Lawrence
Hydrol. Earth Syst. Sci., 20, 4837–4856, https://doi.org/10.5194/hess-20-4837-2016, https://doi.org/10.5194/hess-20-4837-2016, 2016
Short summary
Short summary
We demonstrate a new approach to assess the strength of feedbacks resulting from land–atmosphere coupling on decadal timescales. Our approach was tailored to enable evaluation of Earth system models (ESMs) using data from Earth observation satellites that measure terrestrial water storage anomalies and relevant atmospheric variables. Our results are consistent with previous work demonstrating that ESMs may be overestimating the strength of land surface feedbacks compared with observations.
This article is included in the Encyclopedia of Geosciences
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
This article is included in the Encyclopedia of Geosciences
Zhi Li, Yaning Chen, Yang Wang, and Gonghuan Fang
Hydrol. Earth Syst. Sci., 20, 2169–2178, https://doi.org/10.5194/hess-20-2169-2016, https://doi.org/10.5194/hess-20-2169-2016, 2016
Short summary
Short summary
Global net primary production (NPP) slightly increased in 2000–2014. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP, while 60.3 % in Southern Hemisphere (SH) showed a decreasing trend. Vegetation greening and climate change promote rises of global evapotranspiration (ET). The increased rate of ET in the NH is faster than that in the SH. Meanwhile, global warming and vegetation greening accelerate evaporation in soil moisture. Continuation of these trends will likely exacerbate the risk of ecological drought.
This article is included in the Encyclopedia of Geosciences
M. Boudou, B. Danière, and M. Lang
Hydrol. Earth Syst. Sci., 20, 161–173, https://doi.org/10.5194/hess-20-161-2016, https://doi.org/10.5194/hess-20-161-2016, 2016
Short summary
Short summary
This paper presents an appraisal of flood vulnerability of two French cities, Besançon and Moissac, which have been largely impacted by two ancient major floods (resp. in January 1910 and March 1930). An analysis of historical sources allows the mapping of land use and occupation within the flood extent of the two historical floods, both in past and present contexts. It gives an insight into the complexity of flood risk evolution, at a local scale.
This article is included in the Encyclopedia of Geosciences
S. Kotsuki and K. Tanaka
Hydrol. Earth Syst. Sci., 19, 4441–4461, https://doi.org/10.5194/hess-19-4441-2015, https://doi.org/10.5194/hess-19-4441-2015, 2015
Short summary
Short summary
This study aims to develop a new global data set of a satellite-derived crop calendar (SACRA) and to reveal its advantages and disadvantages compared to other global products. The cultivation period of SACRA is identified from the time series of NDVI; therefore, SACRA considers current effects of human decisions and natural disasters. The difference between the estimated sowing dates and other existing products is less than 2 months (< 62 days) in most areas.
This article is included in the Encyclopedia of Geosciences
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
This article is included in the Encyclopedia of Geosciences
B. Revilla-Romero, J. Thielen, P. Salamon, T. De Groeve, and G. R. Brakenridge
Hydrol. Earth Syst. Sci., 18, 4467–4484, https://doi.org/10.5194/hess-18-4467-2014, https://doi.org/10.5194/hess-18-4467-2014, 2014
Short summary
Short summary
One of the main challenges in global hydrological modelling is the limited availability of observational data for calibration and model verification. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System (GFDS) for converting the flood detection signal into river discharge values. This work also provides a first analysis of the local factors influencing the accuracy of discharge measurement as provided by this system.
This article is included in the Encyclopedia of Geosciences
T. R. H. Holmes, W. T. Crow, and C. Hain
Hydrol. Earth Syst. Sci., 17, 3695–3706, https://doi.org/10.5194/hess-17-3695-2013, https://doi.org/10.5194/hess-17-3695-2013, 2013
A. Loew, T. Stacke, W. Dorigo, R. de Jeu, and S. Hagemann
Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, https://doi.org/10.5194/hess-17-3523-2013, 2013
Cited articles
Acevedo, O. C., Moraes, O. L. L., da Silva, R., Fitzjarrald, D. R.,
Sakai, R. K., Staebler, R. M., and Czikowsky, M. J.: Inferring nocturnal surface
fluxes from vertical profiles of scalars in an Amazon pasture, Global Change Biol., 10,
886–894, https://doi.org/10.1111/j.1529-8817.2003.00755.x, 2004.
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017.
Anber, U., Gentine, P., Wang, S., and Sobel, A. H.: Fog and rain in the Amazon,
P. Natl. Acad. Sci. USA, 112, 11473–11477, https://doi.org/10.1073/pnas.1505077112, 2015a.
Anber, U., Wang, S., and Sobel, A.: Effect of Surface Fluxes versus Radiative
Heating on Tropical Deep Convection, J. Atmos. Sci., 72, 3378–3388,
https://doi.org/10.1175/JAS-D-14-0253.1, 2015b.
Andreae, M. O., Artaxo, P., Brandao, C., Carswell, F. E., Ciccioli, P., Da
Costa, A. L., Culf, A. D., Esteves, J. L., Gash, J. H. C., Grace, J., and Kabat,
P.: Biogeochemical cycling of carbon, water, energy, trace gases, and
aerosols in Amazonia: The LBA-EUSTACH experiments, J. Geophys. Res.-Atmos., 107,
https://doi.org/10.1029/2001JD000524, 2002.
Andreasen, M., Jensen, K. H., Desilets, D., Zreda, M., Bogena, H. R., and Looms, M. C.: Cosmic-ray neutron transport at a forest field site: the sensitivity to various environmental conditions with focus on biomass and canopy interception, Hydrol. Earth Syst. Sci., 21, 1875–1894, https://doi.org/10.5194/hess-21-1875-2017, 2017.
Avissar, R. and Nobre, C.: Preface to special issue on the Large-Scale
Biosphere-Atmosphere Experiment in Amazonia (LBA), J. Geophys. Res.-Atmos., 107,
https://doi.org/10.1029/2002JD002507, 2002.
Avissar, R. and Pielke, R. A.: A parameterization of heterogeneous land
surfaces for atmospheric numerical models and its impact on regional
meteorology, Mon. Weather Rev., 117, 2113–2136, 1989.
Avissar, R. and Schmidt, T.: An evaluation of the scale at which
ground-surface heat flux patchiness affects the convective boundary layer
using large-eddy simulations, J. Atmos. Sci., 55, 2666–2689, 1998.
Avissar, R., Dias, P., Dias, M., and Nobre, C.: The Large-Scale
Biosphere-atmosphere Experiment in Amazonia (LBA): Insights and future
research needs, J. Geophys. Res.-Atmos., 107, https://doi.org/10.1029/2002JD002704, 2002.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., and Fuentes, J.: FLUXNET: A
new tool to study the temporal and spatial variability of ecosystem-scale
carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434,
2001.
Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans,
P., Shevliakova, E., Pan, Y., Poulter, B., Anav, A., and Friedlingstein, P.:
Accelerating net terrestrial carbon uptake during the warming hiatus due to
reduced respiration, Nat. Clim. Change, 7, 148–152, https://doi.org/10.1038/nclimate3204, 2017.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi,
M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification
from Field Site to Terrestrial Water Storage and Impact in the Integrated
Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009.
Barbaro, E. and Arellano, J.: Aerosols in the convective boundary layer:
Shortwave radiation effects on the coupledland-atmosphere system, J. Climate, 119, 5845–5863,
https://doi.org/10.1002/(ISSN)2169-8996, 2014.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing equilibrium and non-equilibrium convection in
large-scale models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2013.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in
Large-Scale Models, J. Atmos. Sci., 71, 734–753, https://doi.org/10.1175/JAS-D-13-0163.1, 2014.
Berg, A. M., Lintner, B. R., Findell, K. L., and Giannini, A.: Soil
moisture influence on seasonality and large-scale circulation in simulations
of the West African monsoon, J. Climate, 30, 2295–2317, 2017.
Betts, A. K. and Silva Dias, M. A. F.: Progress in understanding
land-surface-atmosphere coupling from LBA research, J. Adv. Model. Earth Syst., 2,
https://doi.org/10.3894/JAMES.2010.2.6, 2010.
Betts, A. K., Gatti, L. V., and Cordova, A. M.: Transport of ozone to the
surface by convective downdrafts at night, J. Climate, , 107, 13.1–13.6, 2002.
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the Subcloud Layer on the Development of a Deep Convective
Ensemble, J. Atmos. Sci., 69, 2682–2698, https://doi.org/10.1175/JAS-D-11-0317.1, 2012.
Boisier, J. P., Ciais, P., Ducharne, A., and Guimberteau, M.: Projected
strengthening of Amazonian dry season by constrained climate model
simulations, Nat. Clim. Change, 5, 656–660, https://doi.org/10.1038/nclimate2658, 2015.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein,
M., Lawrence, D. M., and Swenson, S. C.: Improving canopy processes in the
Community Land Model version 4 (CLM4) using global flux fields empirically
inferred from FLUXNET data, J. Geophys. Res.-Biogeo., 116, 1–22, https://doi.org/10.1029/2010JG001593, 2011.
Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., and Reichstein, M.: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4, J. Geophys. Res.-Biogeo., 117, 1–19, 2012.
Boone, A., De Rosnay, P., Balsamo, G., Beljaars, A., Chopin, F., Decharme,
B., Delire, C., Ducharne, A., Gascoin, S., Grippa, M., and Guichard, F.: The
AMMA Land Surface Model Intercomparison Project (ALMIP), B. Am. Meteorol. Soc., 90, 1865–1880,
https://doi.org/10.1175/2009BAMS2786.1, 2009a.
Boone, A., Getirana, A., Demarty, J., and Cappelaere, B.: The African Monsoon
Multidisciplinary Analyses (AMMA) Land surface Model Intercomparison Project
Phase 2 (ALMIP2), GEWEX News, 19, 9–10, 2009b.
Boulet, G., Chehbouni, A., Gentine, P., Duchemin, B., Ezzahar, J., and Hadria,
R.: Monitoring water stress using time series of observed to unstressed
surface temperature difference, Agr. Forest Meteorol., 146, 159–172,
https://doi.org/10.1016/j.agrformet.2007.05.012, 2007.
Bretherton, C. S. and Park, S.: A New Moist Turbulence Parameterization in
the Community Atmosphere Model, J. Climate, 22, 3422–3448,
https://doi.org/10.1175/2008JCLI2556.1, 2009.
Brodribb, T. J.: Stomatal Closure during Leaf Dehydration, Correlation with
Other Leaf Physiological Traits, Plant Physiol., 132, 2166–2173,
https://doi.org/10.1104/pp.103.023879, 2003.
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of continental precipitation recycling, J. Climate, 6, 1077–1089, 1993.
Butt, N., de Oliveira, P. A., and Costa, M. H.: Evidence that deforestation
affects the onset of the rainy season in Rondonia, Brazil, J. Geophys. Res.-Atmos., 116, 407,
https://doi.org/10.1029/2010JD015174, 2011.
Campos, J. G., Acevedo, O. C., Tota, J., and Manzi, A. O.: On the temporal
scale of the turbulent exchange of carbon dioxide and energy above a
tropical rain forest in Amazonia, J. Geophys. Res., 114, 1–10,
https://doi.org/10.1029/2008JD011240, 2009.
Canal, N., Calvet, J.-C., Decharme, B., Carrer, D., Lafont, S., and Pigeon, G.: Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France, Hydrol. Earth Syst. Sci., 18, 4979-4999, https://doi.org/10.5194/hess-18-4979-2014, 2014.
Chagnon, F. J. F., Bras, R. L., and, Wang, J.: Climatic shift in patterns of
shallow clouds over the Amazon, Geophys. Res. Lett., 31, L24212, https://doi.org/10.1029/2004GL021188,
2004.
Chakraborty, S., Fu, R., Massie, S. T., and Stephens, G.: Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems, P. Natl. Acad. Sci. USA, 113, 7426–7431, 2016.
Chaney, N. W., Herman, J. D., Ek, M. B., and Wood, E. F.: Deriving Global
Parameter Estimates for the Noah Land Surface Model using FLUXNET and
Machine Learning, J. Geophys. Res.-Atmos., 121, 1–41, https://doi.org/10.1002/2016JD024821, 2016.
Chang, C. P., Wang, Z., McBride, J., and Liu, C. H.: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition, J. Climate, 18, 287–301, 2005.
Chen, Y., Ryder, J., Bastrikov, V., McGrath, M. J., Naudts, K., Otto, J., Ottlé, C., Peylin, P., Polcher, J., Valade, A., Black, A., Elbers, J. A., Moors, E., Foken, T., van Gorsel, E., Haverd, V., Heinesch, B., Tiedemann, F., Knohl, A., Launiainen, S., Loustau, D., Ogée, J., Vessala, T., and Luyssaert, S.: Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme, Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, 2016.
Chor, T. L., Dias, N. L., Araújo, A., Wolff, S., Zahn, E., Manzi, A., Trebs,
I., Sá, M. O., Teixeira, P. R., and Sörgel, M.: Flux-variance and
flux-gradient relationships in the roughness sublayer over the Amazon
forest, Agr. Forest Meteorol., 239, 213–222, https://doi.org/10.1016/j.agrformet.2017.03.009, 2017.
Cook, B. I., Shukla, S. P., Puma, M. J., and Nazarenko, L. S.: Irrigation as an
historical climate forcing, Clim. Dynam., 44, 1715–1730,
https://doi.org/10.1007/s00382-014-2204-7, 2014.
Couvreux, F., Rio, C., Guichard, F., Lothon, M., Canut, G., Bouniol, D., and
Gounou, A.: Initiation of daytime local convection in a semi-arid region
analysed with high-resolution simulations and AMMA observations, Q. J. Roy. Meteor. Soc.,
138, 56–71, https://doi.org/10.1002/qj.903, 2011a.
Couvreux, F., Roehrig, R., Rio, C., Lefebvre, M. P., Caian, M., Komori, T.,
Derbyshire, S., Guichard, F., Favot, F., D'Andrea, F., and Bechtold, P.:
Representation of daytime moist convection over the semi-arid Tropics by
parametrizations used in climate and meteorological models, Q. J. Roy. Meteor. Soc., 141,
2220–2236, https://doi.org/10.1002/qj.2517, 2015.
Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and
Jones, C. D.: Amazonian forest dieback under climate-carbon cycle
projections for the 21st century, Theor. Appl. Climatol., 78, 137–156, 2004.
Dalu, G. A., Pielke, R. A., Baldi, M., and Zeng, X.: Heat and momentum fluxes
induced by thermal inhomogeneities with and without large-scale flow,
J. Atmos. Sci., 53, 3286–3302, 1996.
D'Andrea, F., Gentine, P., and Betts, A. K.: Triggering deep convection with a
probabilistic plume model, J. Atmos. Sci., 71, 3881–3901, https://doi.org/10.1175/JAS-D-13-0340.1,
2014.
Da Rocha, H. R., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L., Saleska, S. R., R.‐Coupe, N., Wofsy, S. C., Borma, L. S., Artaxo, P., and Vourlitis, G: Patterns of water and heat flux across a biome
gradient from tropical forest to savanna in Brazil, J. Geophys. Res., 114, G00B12,
https://doi.org/10.1029/2007JG000640, 2009.
Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F.,
Bustamante, M. M., Coe, M. T., DeFries, R. S., Keller, M., Longo, M., and
Munger, J. W.: The Amazon basin in transition, Nature, 481, 321–328,
https://doi.org/10.1038/nature10717, 2012.
Dawson, T. E.: Hydraulic lift and water use by plants – implications
for water balance, performance and plant-plant interactions, Oecologia (Berl), 95, 565–574, 1993.
De Gonçalves, L. G., Borak, J. S., Costa, M. H., Saleska, S. R., Baker, I., Restrepo-Coupe, N., Muza, M. N., Poulter, B., Verbeeck, H., Fisher, J. B., and Arain, M. A.: Overview of the large-scale biosphere–atmosphere experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP), Agr. Forest Meteorol., 182, 111–127, 2013.
De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y.-P., and Miralles, D. G.: A test of an optimal stomatal conductance scheme within the CABLE land surface model, Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, 2015.
Del Genio, A. D. and Wu, J.: The Role of Entrainment in the Diurnal Cycle of
Continental Convection, J. Climate, 23, 2722–2738, https://doi.org/10.1175/2009JCLI3340.1,
2010.
Dirmeyer, P.: The terrestrial segment of soil moisture-climate
coupling, Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268, 2011, L16702, 2011.
Dirmeyer, P. A. and Brubaker, K. L.: Characterization of the
global hydrologic cycle from a back-trajectory analysis of atmospheric water
vapor, J. Hydrometeorol., 8, 20–37, 2007.
Domec, J.-C., King, J. S., Noormets, A., Treasure, E., Gavazzi, M. J., Sun, G.,
and McNulty, S. G.: Hydraulic redistribution of soil water by roots
affects whole-stand evapotranspiration and net ecosystem carbon exchange,
New Phytol., 187, 171–183, https://doi.org/10.1111/j.1469-8137.2010.03245.x, 2010.
Dominguez, F., Kumar, P., Liang, X., and Ting, M.: Impact of atmospheric
moisture storage on precipitation recycling, J. Climate, 19, 1513–1530, 2006.
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amézquita, F. F.,
Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., Da
Costa, M. C., Rocha, W., and Feldpausch, T. R.: Drought impact on forest carbon
dynamics and fluxes in Amazonia, Nature, 519, 78–82, https://doi.org/10.1038/nature14213,
2015.
Drager, A. J. and van den Heever, S. C.: Characterizing convective cold
pools, J. Adv. Model. Earth Syst., 9, 1091–1115, https://doi.org/10.1002/2016MS000788, 2017.
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., and Gimeno, L.: The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis, Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, 2014.
Du, S., Liu, L., Liu, X., and Hu, J.: Response of Canopy Solar-Induced
Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation
Absorbed by Chlorophyll, Remote Sens., 9, 911–919, https://doi.org/10.3390/rs9090911, 2017.
Duveiller, G. and Cescatti, A.: Spatially downscaling sun-induced
chlorophyll fluorescence leads to an improved temporal correlation with
gross primary productivity, Remote Sens. Environ., 182, 72–89, https://doi.org/10.1016/j.rse.2016.04.027,
2016.
Ek, M. B.: Implementation of Noah land surface model advances in the
National Centers for Environmental Prediction operational mesoscale Eta
model, J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Eltahir, E. A. B. and Bras, R. L.: Precipitation Recycling in the Amazon
Basin, Q. J. Roy. Meteor. Soc., 120, 861–880, 1994.
Engerer, N. A., Stensrud, D. J., and Coniglio, M. C.: Surface Characteristics
of Observed Cold Pools, Mon. Weather Rev., 136, 4839–4849, https://doi.org/10.1175/2008MWR2528.1, 2008.
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and
Otero-Casal, C.: Hydrologic regulation of plant rooting depth.
P. Natl. Acad. Sci. USA, 114, 10572–10577, 2017.
Feingold, G., Jiang, H. L., and Harrington, J. Y.: On smoke suppression of
clouds in Amazonia, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL021369, 2005.
Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N., and de
Szoeke, S. P.: Mechanisms of convective cloud organization by cold pools over
tropical warm ocean during the AMIE/DYNAMO field campaign, J. Adv. Model. Earth Syst., 7, 357–381,
https://doi.org/10.1002/2014MS000384, 2015.
Fisher, J. B., Malhi, Y., Bonal, D., Da Rocha, H. R., De Araujo, A. C., Gamo,
M., Goulden, M. L., Hirano, T., Huete, A. R., Kondo, H., and Kumagai, T. O.: The
land-atmosphere water flux in the tropics, Global Change Biol., 15, 2694–2714,
https://doi.org/10.1111/j.1365-2486.2008.01813.x, 2009.
Fisher, R. A., Williams, M., Do Vale, R. L., Da Costa, A. L., and Meir, P.:
Evidence from Amazonian forests is consistent with isohydric control of leaf
water potential, Plant Cell Environ., 29, 151–165, 2006.
Fitzjarrald, D. R., Stormwind, B. L., Fisch, G., and Cabral, O. M.: Turbulent transport observed just above the Amazon forest, J. Geophys. Res.-Atmos., 93, 1551–1563, 1988.
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee,
J. E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New global
observations of the terrestrial carbon cycle from GOSAT: Patterns of plant
fluorescence with gross primary productivity, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL048738, 2011.
Frankenberg, C., O'Dell, C., Guanter, L., and McDuffie, J.: Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals, Atmos. Meas. Tech., 5, 2081–2094, https://doi.org/10.5194/amt-5-2081-2012, 2012.
Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P.,
Pollock, R., and Taylor, T. E.: Prospects for chlorophyll fluorescence remote
sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1–12,
https://doi.org/10.1016/j.rse.2014.02.007, 2014.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., and Bala, G.: Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337–3353, 2006.
Fu, R. and Li, W.: The influence of the land surface on the transition from
dry to wet season in Amazonia, Theor. Appl. Climatol., 78, 97–110,
https://doi.org/10.1007/s00704-004-0046-7, 2004.
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, P. Natl. Acad. Sci. USA, 110, 18110–18115, 2013.
Fu, R., Arias, P. A., and Wang, H.: The Connection Between the North and South
American Monsoons, The Monsoons and Climate Change, Springer, Cham., 2016.
Fuentes, J. D., Chamecki, M., Nascimento dos Santos, R. M., and Von Randow, C.: Linking meteorology, turbulence, and air chemistry in the Amazon rain forest, B. Am. Meteorol. Soc., 97, 2329–2342, 2016.
Garstang, M. and Fitzjarrald, D. R.: Observations of surface to atmosphere interactions in the tropics, Oxford University Press, USA, 1999.
Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues,
L. G., Basso, L. S., Martinewski, A., Correia, C. S. C., Borges, V. F., and
Freitas, S.: Drought sensitivity of Amazonian carbon balance revealed by
atmospheric measurements, Nature, 506, 76–80, https://doi.org/10.1038/nature12957, 2015.
Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., and Duchemin, B.:
Analysis of evaporative fraction diurnal behaviour, Agr. Forest Meteorol., 143, 13–29,
https://doi.org/10.1016/j.agrformet.2006.11.002, 2007.
Gentine, P., Holtslag, A., and D'Andrea, F.: Surface and atmospheric controls
on the onset of moist convection over land, J. Hydrometeorol., 14, 1443–1462,
https://doi.org/10.1175/JHM-D-12-0137.1, 2013a.
Gentine, P., Ferguson, C. R., and Holtslag, A. A. M.: Diagnosing evaporative
fraction over land from boundary-layer clouds, J. Geophys. Res.-Atmos., 118, 8185–8196,
https://doi.org/10.1002/jgrd.50416, 2013b.
Gentine, P., Garelli, A., Park, S. B., and Nie, J.: Role of surface heat fluxes
underneath cold pools, Geophys. Res. Lett., 43, 874–883, https://doi.org/10.1002/2015GL067262, 2016.
Gerken, T., Ruddell, B. L., Fuentes, J. D., Araújo, A., Brunsell, N. A.,
Maia, J., Manzi, A., Mercer, J., dos Santos, R. N., von Randow, C., and Stoy,
P. C.: Investigating the mechanisms responsible for the lack of surface
energy balance closure in a central Amazonian tropical rainforest, Agr. Forest Meteorol., 255, 92–103,
https://doi.org/10.1016/j.agrformet.2017.03.023, 2017.
Ghate, V. P. and Kollias, P.: On the controls of daytime precipitation in
the Amazonian dry season, J. Hydrometeorol., 17, 3079–3097,
https://doi.org/10.1175/JHM-D-16-0101.1, 2016.
Giangrande, S. E., Feng, Z., Jensen, M. P., Comstock, J. M., Johnson, K. L., Toto, T., Wang, M., Burleyson, C., Bharadwaj, N., Mei, F., Machado, L. A. T., Manzi, A. O., Xie, S., Tang, S., Silva Dias, M. A. F., de Souza, R. A. F., Schumacher, C., and Martin, S. T.: Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment, Atmos. Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-2017, 2017.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán‐Quesada, A. M., and Nieto, R.: Oceanic and terrestrial sources of
continental precipitation, Rev. Geophys., 50, https://doi.org/10.1029/2012RG000389, 2012.
Goulden, M. L., Miller, S. D., and da Rocha, H. R.: Diel and seasonal patterns
of tropical forest CO2 exchange, Ecological, 14, 42–54, 2004.
Goutorbe, J.-P., Lebel, T., Tinga, A., Bessemoulin, P., Brouwer, J., Dolman, A. J., Engman, E. T., Gash, J. H. C., Hoepffner, M., Kabat, P., Kerr, Y. H., Monteny, B., Prince, S., Said, F., Sellers, P., and Wallace, J. S.: HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics, Ann. Geophys., 12, 53–64, https://doi.org/10.1007/s00585-994-0053-0, 1994.
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere, Physica D: Nonlinear Phenomena, 133, 171–178, 1999.
Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J.-E., and Gentine, P.: Regionally strong feedbacks between
the atmosphere and terrestrial biosphere, Nat. Geosci., 48, 1–12, https://doi.org/10.1038/ngeo2957,
2017.
Green, J., Seneviratne, S. I., Berg, A. A., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil
moisture on long-term terrestrial carbon uptake, Nature, 565, 476, 2019.
Guan, K. and Liang, M.: Photosynthetic seasonality of global tropical forests constrained by hydroclimate, Nat. Geosci., 8, 284–289, 2015.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J. E., and Moran, M. S.: Global
and time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333, https://doi.org/10.1073/pnas.1320008111, 2014.
Guichard, F., Petch, J. C., Redelsperger, J. L., Bechtold, P., Chaboureau,
J. P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler, M.,
and Piriou, J. M.: Modelling the diurnal cycle of deep precipitating
convection over land with cloud-resolving models and single-column models,
Q. J. Roy. Meteor. Soc., 130, 3139–3172, https://doi.org/10.1256/qj.03.145, 2004.
Guillod, B. P., Orlowsky, B., Miralles, D., Teuling, A. J., Blanken, P. D., Buchmann, N., Ciais, P., Ek, M., Findell, K. L., Gentine, P., Lintner, B. R., Scott, R. L., Van den Hurk, B., and I. Seneviratne, S.: Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors, Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, 2014.
Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J., and
Seneviratne, S. I.: Reconciling spatial and temporal soil moisture effects on
afternoon rainfall, Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443, 2015.
Hadden, D. and Grelle A.: Changing temperature response of respiration
turns boreal forest from carbon sink into carbon source, Agr. Forest Meteorol., 223, 30–38,
https://doi.org/10.1016/j.agrformet.2016.03.020, 2016.
Hamada, J.-I., Yamanaka, M. D., Mori, S., Tauhid, Y. I., and Sribimawati, T.:
Differences of Rainfall Characteristics between Coastal and Interior Areas
of Central Western Sumatera, Indonesia, J. Meteorol. Soc. Jpn., 86, 593–611,
https://doi.org/10.2151/jmsj.86.593, 2008.
Han, X., Franssen H.-J. H., Montzka, C., and Vereecken, H.: Soil moisture and
soil properties estimation in the Community Land Model with synthetic
brightness temperature observations, Water Resour. Res., 50, 6081–6105, https://doi.org/10.1002/2013WR014586,
2014.
Harris, P. P., Huntingford, C., Cox, P. M., Gash, J. H. C., and Malhi, Y.: Effect of
soil moisture on canopy conductance of Amazonian rainforest, Agr. Forest Meteorol., 122, 215–227, https://doi.org/10.1016/j.agrformet.2003.09.006, 2004.
Haverd, V., Cuntz, M., Nieradzik, L. P., and Harman, I. N.: Improved representations of coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432), Geosci. Model Dev., 9, 3111–3122, https://doi.org/10.5194/gmd-9-3111-2016, 2016.
Heroult, A., Lin, Y., and Bourne, A.: Optimal stomatal conductance in relation
to photosynthesis in climatically contrasting Eucalyptus species under
drought, Plant Cell Environ., 36, 262–274, https://doi.org/10.1111/j.1365-3040.2012.02570.x, 2013.
Hidayat, R. and Kizu, S.: Influence of the Madden-Julian Oscillation on
Indonesian rainfall variability in austral summer, Int. J. Climatol., 23,
https://doi.org/10.1002/joc.2005, 2009.
Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang
Y., Bi, J., Mendes de Moura, Y., and Sellers, P. J.: Vegetation dynamics and
rainfall sensitivity of the Amazon, P. Natl. Acad. Sci. USA, 111, 16041–16046,
https://doi.org/10.1073/pnas.1404870111, 2014.
Hohenegger, C. and Bretherton, C. S.: Simulating deep convection with a shallow convection scheme, Atmos. Chem. Phys., 11, 10389–10406, https://doi.org/10.5194/acp-11-10389-2011, 2011.
Horn, G. L., Ouwersloot, H. G., de Arellano, J. V.-G., and Sikma, M.: Cloud
Shading Effects on Characteristic Boundary-Layer Length Scales, Bound.-Lay. Meteorol., 157,
237–263, https://doi.org/10.1007/s10546-015-0054-4, 2015.
Hoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J. A.,
Nieto, R., Gimeno, L., and Dirmeyer, P. A.: Moisture origin and
transport processes in Colombia, northern South America, Clim. Dynam., 50, 971–990, 2018.
Huang, R. and Sun, F.: Impacts of the Tropical Western Pacific on the East
Asian Summer Monsoon, J. Meteor. Soc. Jpn., 70, 243–256,
https://doi.org/10.2151/jmsj1965.70.1B_243, 1992.
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra,
L. R., Yang, W., Nemani, R. R., and Myneni, R.: Amazon rainforests
green-up with sunlight in dry season, Geophys. Res. Lett., 33, L06405,
https://doi.org/10.1029/2005GL025583, 2006.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce,
R., McGavock, B., and Susskind, J.: Global precipitation at one-degree daily
resolution from multisatellite observations, J. Hydrometeorol., 2, 36–50,
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2,
2001.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J.,
Parrington, M., Inness, A., Murdiyarso, D., Main, B., and van Weele, M.: Fire
carbon emissions over maritime southeast Asia in 2015 largest since 1997,
Sci. Rep. UK, 6, 1–8, https://doi.org/10.1038/srep26886, 2016.
Jardine, K., Chambers, J., Alves, E. G., Teixeira, A., Garcia, S., Holm, J.,
Higuchi, N., Manzi, A., Abrell, L., Fuentes, J. D., and Nielsen, L. K.: Dynamic
Balancing of Isoprene Carbon Sources Reflects Photosynthetic and
Photorespiratory Responses to Temperature Stress, Plant Physiol., 166, 2051–2064,
https://doi.org/10.1104/pp.114.247494, 2014.
Jimenez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F.,
Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A., and
Fisher, J. B.: Global intercomparison of 12 land surface heat flux estimates,
J. Geophys. Res., 116, 1–27, https://doi.org/10.1029/2010JD014545, 2011.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637–651, https://doi.org/10.5194/bg-8-637-2011, 2011.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Juárez, R. I. N., Hodnett, M. G., Fu, R., Goulden, M. L., and von Randow,
C.: Control of Dry Season Evapotranspiration over the Amazonian Forest as
Inferred from Observations at a Southern Amazon Forest Site, J. Climate, 20,
2827–2839, https://doi.org/10.1175/JCLI4184.1, 2007.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P.,
and Gans, F.: Compensatory water effects link yearly global land CO2 sink
changes to temperature, 541, 516–520, https://doi.org/10.1038/nature20780, 2017.
Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T.
E., Yu, L., and Weller, R. A.: Surface Irradiances Consistent with
CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances, J. Climate,
26, 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1, 2013.
Keller, M., Alencar, A., Asner, G. P., Braswell, B., Bustamante, M.,
Davidson, E., Feldpausch, T., Fernandes, E., Goulden, M., Kabat, P., and
Kruijt, B.: Ecological Research in the Large-Scale Biosphere–Atmosphere
Experiment in Amazonia: Early Results, Ecol. Appl., 14, 3–16, 2004.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola
da Costa, A. C., and Gentine, P.: Implementing plant hydraulics in the
Community Land Model, version 5,
J. Adv. Model. Earth Sy., 11, 485–513, 2019.
Khairoutdinov, M. and Randall, D.: High-resolution simulation of
shallow-to-deep convection transition over land, J. Atmos. Sci., 63, 3421–3436, 2006.
Khanna, J., Medvigy, D., Fueglistaler, S., and Walko, R.: Regional dry-season
climate changes due to three decades of Amazonian deforestation, Nat. Clim. Change, 7,
200–204, https://doi.org/10.1038/nclimate3226, 2017.
Knox, R. G., Longo, M., Swann, A. L. S., Zhang, K., Levine, N. M., Moorcroft, P. R., and Bras, R. L.: Hydrometeorological effects of historical land-conversion in an ecosystem-atmosphere model of Northern South America, Hydrol. Earth Syst. Sci., 19, 241–273, https://doi.org/10.5194/hess-19-241-2015, 2015.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Global Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389, 2017.
Köppen, W.: The thermal zones of the Earth according to the duration of
hot, moderate and cold periods and of the impact of heat on the organic
world, Meteorol. Z., 1, 215–226, 1884.
Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of the
effect of Amazon smoke on inhibition of cloud formation, Science, 303,
1342–1345, https://doi.org/10.1126/science.1089424, 2004.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon,
C. T., Kanae, S., Kowalczyk, E., Lawrence, D., and Liu, P.: Regions of strong
coupling between soil moisture and precipitation, Science, 305, 1138–1140,
2004.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon,
C. T., Kanae, S., Kowalczyk, E., Lawrence, D., and Liu, P.: The Second Phase
of the Global Land–Atmosphere Coupling Experiment: Soil Moisture
Contributions to Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822,
https://doi.org/10.1175/2011JHM1365.1, 2011.
Krakauer, N. Y., Puma, M. J., Cook, B. I., Gentine, P., and Nazarenko, L.: Ocean–atmosphere interactions modulate irrigation's climate impacts, Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, 2016.
Kuang, Z.: A Moisture-Stratiform Instability for Convectively Coupled Waves,
J. Atmos. Sci., 65, 834–854, https://doi.org/10.1175/2007JAS2444.1, 2008.
Kuang, Z.: Linear response functions of a cumulus ensemble to temperature
and moisture perturbations and implications for the dynamics of convectively
coupled waves, J. Atmos. Sci., 67, 941–962, 2010.
Laan-Luijkx, I. T., Velde, I. R., Krol, M. C., Gatti, L. V., Domingues, L. G.,
Correia, C. S. C., Miller, J. B., Gloor, M., Leeuwen, T. T., Kaiser, J. W., and
Wiedinmyer, C.: Response of the Amazon carbon balance to the 2010 drought
derived with CarbonTracker South America, Global Biogeochem. Cy., 29, 1092–1108,
https://doi.org/10.1002/2014GB005082, 2015.
Laurent, H., Machado, L. A., Morales, C. A., and Durieux, L.: Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment, J. Geophys. Res.-Atmos., 107, 1–10, 2002.
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on climate
and agriculture, Nat. Clim. Change, 5, 27–36, https://doi.org/10.1038/nclimate2430, 2015.
Lawrence, D. M., Oleson, K. W., and Flanner, M. G.: Parameterization
improvements and functional and structural advances in Version 4 of the
Community Land Model, J. Adv. Model. Earth Sy., 3, 1–27, 2011.
Lawton, R. O., Nair, U. S., Pielke Sr., R. A., and Welch, R. M.: Climatic Impact
of Tropical Lowland Deforestation on Nearby Montane Cloud Forests,
Science, 294, 584–587, 2001.
Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L., Levis, S.,
Vieux, B., Descroix, L., Gosset, M., Mougin, E., and Peugeot, C.: AMMA-CATCH
studies in the Sahelian region of West-Africa: An overview, J. Hydrol., 375, 3–13,
https://doi.org/10.1016/j.jhydrol.2009.03.020, 2009.
Lee, J. E., Oliveira, R. S., Dawson, T. E., and Fung, I.: Root functioning
modifies seasonal climate, P. Natl. Acad. Sci. USA, 102, 17576–17581, 2005.
Lee, J.-E., Berry, J. A., van der Tol, C., Yang, X., Guanter, L., Damm, A.,
Baker, I., and Frankenberg, C.: Simulations of chlorophyll fluorescence
incorporated into the Community Land Model version 4, Global Change Biol., 21, 3469–3477,
https://doi.org/10.1111/gcb.12948, 2015.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis
model for C3 plants, Plant Cell Environ., 18, 339–355, 1995.
Leuning, R., Kelliher, F. M., De Pury, D. G. G., and Schulze, E. D.: Leaf
nitrogen, photosynthesis, conductance and transpiration: scaling from leaves
to canopies, Plant Cell Environ., 18, 1183–1200, https://doi.org/10.1111/j.1365-3040.1995.tb00628.x,
1995.
Levy, M. C., Cohn, A., Lopes, A. V., and Thompson, S. E.: Addressing rainfall
data selection uncertainty using connections between rainfall and
streamflow, Sci. Rep. UK, 7, 1–12, https://doi.org/10.1038/s41598-017-00128-5, 2017.
Li, W., Fu, R., and Dickinson, R. E.: Rainfall and its seasonality over the
Amazon in the 21st century as assessed by the coupled models for the IPCC
AR4, J. Geophys. Res., 111, 1–12, 2006.
Liebmann, B. and Marengo, J. A.: Interannual variability of the rainy season
and rainfall in the Brazilian Amazon basin, J. Climate, 14, 4308–4318, 2001.
Lintner, B. R. and Neelin, J. D.: A prototype for convective margin shifts,
Geophys. Res. Lett., 34, L05812, https://doi.org/10.1029/2006GL027305, 2007.
Lintner, B. R. and Neelin, J. D.: Soil Moisture Impacts on Convective
Margins, J. Hydrometeorol., 10, 1026–1039, https://doi.org/10.1175/2009JHM1094.1, 2009.
Lintner, B. R., Gentine, P., Findell, K. L., D'Andrea, F., Sobel, A. H., and
Salvucci, G. D.: An idealized prototype for large-scale land-atmosphere
coupling, J. Climate, 26, 2379–2389, https://doi.org/10.1175/JCLI-D-11-00561.1, 2013.
Lintner, B. R., Gentine, P., Findell, K. L., and Salvucci, G. D.: The Budyko and complementary relationships in an idealized model of large-scale land–atmosphere coupling, Hydrol. Earth Syst. Sci., 19, 2119–2131, https://doi.org/10.5194/hess-19-2119-2015, 2015.
Lintner, B. R., Adams, D. K., Schiro, K. A., Stansfield, A. M., Amorim Rocha, A. A., and Neelin, J. D.: Relationships among climatological vertical moisture structure, column water vapor, and precipitation over the central Amazon in observations and CMIP5 models, Geophys. Res. Lett., 44, 1981–1989, 2017.
Liu, H., Gleason, S. M., Hao, G., Hua, L., He, P., Goldstein, G., and Ye,
Q.: Hydraulic traits are coordinated with maximum plant height at the
global scale, Science Advances, 5, eaav1332, https://doi.org/10.1126/sciadv.aav1332, 2019.
Liu, L., Guan, L., and Liu, X.: Directly estimating diurnal changes in GPP for
C3 and C4 crops using far-red sun-induced chlorophyll fluorescence, Agr. Forest Meteorol., 232,
1–9, https://doi.org/10.1016/j.agrformet.2016.06.014, 2017.
Lohou, F., Said, F., Lothon, M., Durand, P., and Serça, D.: Impact of
Boundary-Layer Processes on Near-Surface Turbulence Within the West African
Monsoon, Bound.-Lay. Meteorol., 136, 1–23, https://doi.org/10.1007/s10546-010-9493-0, 2010.
Lopes, A. P., Nelson, B. W., Wu, J., de Alencastro Graça, P. M. L., Tavares,
J. V., Prohaska, N., Martins, G. A., and Saleska, S. R.: Leaf flush drives dry
season green-up of the Central Amazon, Remote Sens. Env., 182, 90–98,
https://doi.org/10.1016/j.rse.2016.05.009, 2016.
Machado, L. and Laurent, H.: Diurnal march of the convection observed during
TRMM-WETAMC/LBA, J. Geophys. Res.-Atmos., 107, 1–13, 2002.
Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M. A., Cescatti, A., and Janssens, I. A.: Global convergence in the temperature sensitivity of
respiration at ecosystem level, Science, 329, 838–840,
https://doi.org/10.1126/science.1189587, 2010.
Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A., and
Scott, S.: Carbon dioxide transfer over a Central Amazonian rain forest, J.
Geophys. Res.-Atmos., 103, 31593–31612, https://doi.org/10.1029/98jd02647, 1998.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D.
A.: The drought of 2010 in the context of historical droughts in the Amazon
region, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047436, 2011.
Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.: Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, 2016.
Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., and Jardine, K.: The Green Ocean Amazon Experiment (GoAmazon2014/5)
Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the
Rain Forest, B. Am. Meteorol. Soc., 98, 981–997, https://doi.org/10.1175/BAMS-D-15-00221.1, 2017.
Martinez-Vilalta, J. and Garcia-Forner, N.: Water potential regulation,
stomatal behaviour and hydraulic transport under drought: deconstructing the
iso/anisohydric concept, Plant Cell Environ., 40, 962–976, https://doi.org/10.1111/pce.12846, 2016.
Martinez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., and Mencuccini,
M.: A new look at water transport regulation in plants, New Phytol.,
204, 105–115, https://doi.org/10.1111/nph.12912, 2014.
Maxwell, R. M. and Condon, L. E.: Connections between groundwater
flow and transpiration partitioning, Science, 353, 377–380, 2016.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.:
Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Global Change Biol., 17, 2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Medvigy, D., Walko, R. L., and Avissar, R.: Effects of Deforestation on
Spatiotemporal Distributions of Precipitation in South America, J. Climate, 24,
2147–2163, 2011.
Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., and Dolman, A.
J.: Global canopy interception from satellite observations, J. Geophys. Res., 115, 237,
https://doi.org/10.1029/2009JD013530, 2010.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D.,
Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests maintain
consistent canopy structure and greenness during the dry season, Nature,
506, 221–224, https://doi.org/10.1038/nature13006, 2014.
Morton, D. C., Rubio, J., Cook, B. D., Gastellu-Etchegorry, J.-P., Longo, M., Choi, H., Hunter, M., and Keller, M.: Amazon forest structure generates diurnal and seasonal variability in light utilization, Biogeosciences, 13, 2195–2206, https://doi.org/10.5194/bg-13-2195-2016, 2016.
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M.,
Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., and Jung, M.:
Evaluation of global observations-based evapotranspiration datasets and IPCC
AR4 simulations, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010GL046230, 2011.
Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Davidson, E. A.,
Wofsy, S. C., Wehr, R., and Saleska, S. R.: Seasonality of temperate forest
photosynthesis and daytime respiration, Nature, 534, 680–683,
https://doi.org/10.1038/nature17966, 2016.
Nakicenovic, N. and Swart, R.: Emissions scenarios, Special report of the Intergovernmental panel on climate change, 2000.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Ngo-Duc, T., Laval, K., Ramillien, G., Polcher, J., and Cazenave, A.: Validation
of the land water storage simulated by Organising Carbon and Hydrology in
Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment
(GRACE) data, Water Resour. Res., 43, https://doi.org/10.1029/2006WR004941, 2007.
Nicholson, S.: Land surface processes and Sahel climate, Rev. Geophys., 38, 117–139,
2000.
Nitta, T.: Convective Activities in the Tropical Western Pacific and Their
Impact on the Northern Hemisphere Summer Circulation, J. Meteorol. Soc. Jpn., 65, 373–390,
https://doi.org/10.2151/jmsj1965.65.3_373, 1987.
Noilhan, J. and Planton, S.: A simple parameterization of land surface
processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Norton, A. J., Rayner, P. J., Koffi, E. N., and Scholze, M.: Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content, Geosci. Model Dev., 11, 1517–1536, https://doi.org/10.5194/gmd-11-1517-2018, 2018.
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E.,
Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., and
Dai, A.: Improvements to the Community Land Model and their impact on the
hydrological cycle, J. Geophys. Res.-Biogeo., 113, https://doi.org/10.1029/2007JG000563, 2008.
Oliveira, R. S.,
Dawson, T. E., Burgess, S. S. O., and Nepstad, D. C.: Hydraulic redistribution
in three Amazonian trees, Oecologia, 145, 354–363, https://doi.org/10.1007/s00442-005-0108-2,
2005.
Ometto, J. P. H. B., Ehleringer, J. R., Domingues, T. F., Berry, J. A.,
Ishida, F. Y., Mazzi, E., Higuchi, N., Flanagan, L. B., Nardoto, G. B., and Martinelli, L. A.: The stable carbon and nitrogen
isotopic composition of vegetation in tropical forests of the Amazon Basin,
Brazil, Biogeochemistry, 79, 251–274, https://doi.org/10.1007/s10533-006-9008-8, 2006.
Ouwersloot, H. G., de Arellano, J. V.-G., van Stratum, B. J. H., Krol, M. C.,
and Lelieveld, J.: Quantifying the transport of sub-cloud layer reactants by
shallow cumulus clouds over the Amazon, J. Geophys. Res.-Atmos., 118, 13–41,
https://doi.org/10.1002/2013JD020431, 2013.
Pagán, B. R., Maes, W. H., Gentine, P., Martens, B., and Miralles, D.
G.: Exploring the Potential of Satellite Solar-Induced Fluorescence
to Constrain Global Transpiration Estimates, Remote Sens., 11, 413, https://doi.org/10.3390/rs11040413, 2019.
Park, S. and Bretherton, C. S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Climate, 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Park, S.-B., Boeing, S., and Gentine, P.: Role of shear on shallow convection
J. Atmos. Sci., 75, 163–178, 2018.
Pedruzo-Bagazgoitia, X., Ouwersloot, H. G., Sikma, M., van Heerwaarden, C. C.,
Jacobs, C. M., and Vilà-Guerau de Arellano, J.: Direct and diffuse
radiation in the shallow cumulus-vegetation system: enhanced and decreased
evapotranspiration regimes, J. Hydrometeorol., 18, 1731–1748, 2017.
Peterhansel, C. and Maurino, V. G.: Photorespiration Redesigned, Plant Physiol., 155,
49–55, https://doi.org/10.1104/pp.110.165019, 2011.
Phillips, N., Nagchaudhuri, A., Oren, R., and Katul, G.: Time constant for
water transport in loblolly pine trees estimated from time series of
evaporative demand and stem sapflow, Trees, 11, 412–419, 1997.
Phillips, N. G., Oren, R., Licata, J., and Linder, S.: Time series diagnosis of
tree hydraulic characteristics, Tree Physiol., 24, 879–890, 2004.
Phillips, N. G., Buckley, T. N., and Tissue, D. T.: Capacity of Old Trees to
Respond to Environmental Change, J. Integr. Plant Biol., 50, 1355–1364,
https://doi.org/10.1111/j.1744-7909.2008.00746.x, 2008.
Pielke, R. and Avissar, R.: Influence of landscape structure on local and
regional climate, Landscape Ecol., 4, 133–155, 1990.
Pielke, R., Dalu, G. Snook, J., Lee, T., and Kittel, T.: Nonlinear Influence of
Mesoscale Land-Use on Weather and Climate, J. Climate, 4, 1053–1069, 1991.
Pielke Sr., R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain,
F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., and Reichstein, M.: Land
use/land cover changes and climate: modeling analysis and observational
evidence, Wires Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Pielke Sr., R. A., Mahmood, R., and McAlpine, C.: Land's complex role in
climate change, Phys. Today, 69, 40–46, https://doi.org/10.1063/PT.3.3364, 2016.
Pons, T. L. and Welschen, R.: Midday depression of net photosynthesis in the
tropical rainforest tree Eperua grandiflora: contributions of stomatal and
internal conductances, respiration and Rubisco functioning, Tree Physiol., 23,
937–947, 2003.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., and Running, S. W.:
Contribution of semi-arid ecosystems to interannual variability of the
global carbon cycle, Nature, 509, 600–603, https://doi.org/10.1038/nature13376, 2014.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro,
H. M., Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H.,
and Levine, N. M.: Confronting model predictions of carbon fluxes with
measurements of Amazon forests subjected to experimental drought, New Phytol.,
200, 350–365, https://doi.org/10.1111/nph.12390, 2013.
Prieto, I. and Ryel, R. J.: Internal hydraulic redistribution prevents the
loss of root conductivity during drought, Tree Physiol., 34, 39–48,
https://doi.org/10.1093/treephys/tpt115, 2014.
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke Sr., R. A.:
Impact of land use on Costa Rican tropical montane cloud forests:
Sensitivity of orographic cloud formation to deforestation in the plains, J. Geophys. Res.,
111, D02108, https://doi.org/10.1029/2005JD006096, 2006.
Redelsperger, J.-L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J.,
and Polcher, J.: African monsoon multidisciplinary analysis – An
international research project and field campaign, B. Am. Meteorol. Soc., 87, 1739–1746,
https://doi.org/10.1175/BAMS-87-12-1739, 2006.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma,
L. S., Christoffersen, B., Cabral, O. M., de Camargo, P. B., Cardoso, F. L., da
Costa, A. C. L., and Fitzjarrald, D. R.: What drives the seasonality of
photosynthesis across the Amazon basin? A cross-site analysis of eddy flux
tower measurements from the Brasil flux network, Agr. Forest Meteorol., 182–183, 128–144,
https://doi.org/10.1016/j.agrformet.2013.04.031, 2013.
Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies, D. L., and
Dias, M. A. S.: Modulation of convection in the southwestern Amazon
basin by extratropical stationary fronts, J. Geophys. Res.-Atmos., 107, 1–10, 2002.
Rieck, M., Hohenegger, C., and van Heerwaarden, C. C.: The influence of land
surface heterogeneities on cloud size development, Mon. Weather Rev., 142, 3830–3846,
https://doi.org/10.1175/MWR-D-13-00354.1, 2014.
Rieck, M., Hohenegger, C., and Gentine, P.: The effect of moist convection on
thermally induced mesoscale circulations, Q. J. Roy. Meteor. Soc., 141, 2418–2428,
https://doi.org/10.1002/qj.2532, 2015.
Rio, C., Hourdin, F., Grandpeix, J. Y., and Lafore, J. P.: Shifting the diurnal
cycle of parameterized deep convection over land, Geophys. Res. Lett., 36,
https://doi.org/10.1029/2008GL036779, 2009.
Rochetin, N., Couvreux, F., Grandpeix, J.-Y., and Rio, C.: Deep Convection
Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic
Triggering Formulation, J. Atmos. Sci., 71, 496–514, https://doi.org/10.1175/JAS-D-12-0336.1, 2014a.
Rochetin, N., Grandpeix, J.-Y., Rio, C., and Couvreux, F.: Deep Convection
Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering
Parameterization for the LMDZ GCM, J. Atmos. Sci., 71, 515–538,
https://doi.org/10.1175/JAS-D-12-0337.1, 2014b.
Roy, S., Weaver, C., Nolan, D., and Avissar, R.: A preferred scale for
landscape forced mesoscale circulations? J. Geophys. Res.-Atmos., 108, 8854,
https://doi.org/10.1029/2002JD003097, 2003.
Saatchi, S., Asefi-Najafabady, S., Malhi, Y. Aragao, L. E. O. C., Anderson, L.
O., Myneni, R. B., and Nemani, R.: Persistent effects of a severe drought on
Amazonian forest canopy, P. Natl. Acad. Sci. USA, 110, 565–570, https://doi.org/10.1073/pnas.1204651110, 2013.
Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., Da Rocha, H. R., De Camargo, P. B., Crill, P., Daube, B. C., De Freitas, H. C., and Hutyra, L.: Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses, Science, 302, 1554–1557, 2003.
Saleska, S. R., Wu, J., Guan, K., Araujo, A. C., and Huete, A.: Dry-season
greening of Amazon forests, Nature, 531, 7594, https://doi.org/10.1038/nature16457, 2016.
Sánchez Gácita, M., Longo, K. M., Freire, J. L. M., Freitas, S. R., and Martin, S. T.: Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia, Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, 2017.
Schaefli, B., van der Ent, R. J., Woods, R., and Savenije, H. H. G.: An analytical model for soil-atmosphere feedback, Hydrol. Earth Syst. Sci., 16, 1863–1878, https://doi.org/10.5194/hess-16-1863-2012, 2012.
Schiro, K. A., Neelin, J. D., Adams, D. K., and Lintner, B. R.: Deep Convection
and Column Water Vapor over Tropical Land versus Tropical Ocean: A
Comparison between the Amazon and the Tropical Western Pacific, J. Atmos. Sci., 73,
4043–4063, https://doi.org/10.1175/JAS-D-16-0119.1, 2016.
Scholz, F., Phillips, N., and Bucci, S.: Hydraulic capacitance: biophysics and
functional significance of internal water sources in relation to tree size,
Size- and Age-Related Changes in Tree Structure, Springer, Dordrecht, 341–361, 2011.
Scott, R., Entekhabi, D., Koster, R. D., and Suarez, M.: Timescales of land
surface evapotranspiration response, J. Climate, 10, 559–566, 1997.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O.,
Dazlich, D. A., and Randall, D. A.: A Revised Land Surface Parameterization (SiB2)
for Atmospheric GCMS. Part II: The Generation of Global Fields of
Terrestrial Biophysical Parameters from Satellite Data, J. Climate, 9, 706–737,
https://doi.org/10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2,
1996a.
Sellers, P., Randall, D. A., Collatz, G., Berry, J., Field, C., Dazlich, D.,
Zhang, C., Collelo, G., and Bounoua, L.: A Revised Land Surface
Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation, J. Climate,
9, 676–705, 1996b.
Seneviratne, S.: Impact of soil moisture-climate feedbacks on CMIP5
projections: First results from the GLACE-CMIP5 experiment, Geophys. Res. Lett., 40,
5212–5217, https://doi.org/10.1002/grl.50956, 2013.
Sikma, M. and Vilà‐Guerau de Arellano, J.: Substantial reductions in cloud cover and moisture transport by dynamic plant responses, Geophys. Res. Lett., 46, 1870–1878, 2019.
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric
branch of the global water cycle. Part II: Moisture transports between
earth's ocean basins and river catchments, J. Hydrometeorol., 6, 961–984, 2005.
Spracklen, D. V., Arnold, S. R., and Taylor, C. M.: Observations of increased
tropical rainfall preceded by air passage over forests, Nature, 489, 282–285,
https://doi.org/10.1038/nature11390, 2012.
Stevens, B. and Bony, S.: What Are Climate Models Missing?, Science, 340,
1053–1054, https://doi.org/10.1126/science.1237554, 2013.
Stoeckli, R., Lawrence, D. M., Niu, G. Y., Oleson, K. W., Thornton, P. E., Yang,
Z. L., Bonan, G. B., Denning, A. S., and Running, S. W.: Use of FLUXNET in the
Community Land Model development, J. Geophys. Res., 113, G01025, https://doi.org/10.1029/2007JG000562,
2008.
Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., and Uhlenbrook, S.: Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model, Hydrol. Earth Syst. Sci., 16, 2605–2616, https://doi.org/10.5194/hess-16-2605-2012, 2012.
Swann, A. L. S., Longo, M., Knox, R. G., Lee, E., and Moorcroft, P. R.: Future
deforestation in the Amazon and consequences for South American climate,
Agr. Forest Meteorol., 214–215, 12–24, https://doi.org/10.1016/j.agrformet.2015.07.006, 2015.
Tang, S., Xie, S., Zhang, Y., Zhang, M., Schumacher, C., Upton, H., Jensen, M. P., Johnson, K. L., Wang, M., Ahlgrimm, M., Feng, Z., Minnis, P., and Thieman, M.: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment, Atmos. Chem. Phys., 16, 14249–14264, https://doi.org/10.5194/acp-16-14249-2016, 2016.
Tawfik, A. B. and Dirmeyer, P. A.: A process-based framework for
quantifying the atmospheric preconditioning of surface-triggered convection,
Geophys. Res. Lett., 41, 173–178, 2014.
Tawfik, A. B., Dirmeyer, P. A., and Santanello Jr., J. A.: The heated
condensation framework. Part I: Description and Southern Great Plains case
study, J. Hydrometeorol., 16, 1929–1945, 2015a.
Tawfik, A. B., Dirmeyer, P. A., and Santanello Jr., J. A.: The heated
condensation framework. Part II: Climatological behavior of convective
initiation and land–atmosphere coupling over the conterminous United
States, J. Hydrometeorol., 16, 1946–1961, 2015b.
Taylor, C. M., Parker, D. J., and Harris, P. P.: An observational case study
of mesoscale atmospheric circulations induced by soil moisture, Geophys. Res. Lett., 34,
L15801, https://doi.org/10.1029/2007GL030572, 2007.
Taylor, C. M., Harris, P. P., and Parker, D. J.: Impact of soil moisture on
the development of a Sahelian mesoscale convective system: a case-study from
the AMMA Special Observing Period, Q. J. Roy. Meteor. Soc., 136, 456–470, https://doi.org/10.1002/qj.465,
2009.
Taylor, C. M., Birch, C. E., Parker, D. J., Dixon, N., Guichard, F., Nikulin, G.,
and Lister, G. M. S.: New perspectives on land-atmosphere feedbacks from the
African Monsoon Multidisciplinary Analysis, Atmos. Sci. Lett., 12, 38–44,
https://doi.org/10.1002/asl.336, 2011.
Taylor, C. M., Birch, C. E., Parker, D. J., Dixon, N., Guichard, F., Nikulin, G.,
and Lister, G. M. S.: Modelling soil moisture – precipitation feedbacks in
the Sahel: importance of spatial scale versus convective parameterization,
Geophys. Res. Lett., 40, 6213–6218, https://doi.org/10.1002/2013GL058511, 2013.
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes, J. Geophys. Res.-Atmos.,
122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017.
Thornley, J. H. M.: Plant growth and respiration re-visited: maintenance
respiration defined – it is an emergent property of, not a separate process
within, the system – and why the respiration: photosynthesis ratio is
conservative, Ann. Bot.-London, 108, 1365–1380, https://doi.org/10.1093/aob/mcr238, 2011.
Thum, T., Zaehle, S., Köhler, P., Aalto, T., Aurela, M., Guanter, L., Kolari, P., Laurila, T., Lohila, A., Magnani, F., Van Der Tol, C., and Markkanen, T.: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe, Biogeosciences, 14, 1969–1987, https://doi.org/10.5194/bg-14-1969-2017, 2017.
Torri, G., Kuang, Z., and Tian, Y.: Mechanisms for convection triggering by
cold pools, Geophys. Res. Lett., 42, 1943–1950, https://doi.org/10.1002/2015GL063227, 2015.
Trenberth, K. E.: Atmospheric Moisture Recycling: Role of Advection
and Local Evaporation, J. Climate, 12, 1368–1381,
https://doi.org/10.1175/1520-0442(1999)012<1368:amrroa>2.0.co;2, 1999.
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.:
Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46,
https://doi.org/10.1029/2010WR009127, 2010.
van Dijk, A. I., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti, A.,
Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L., and Montagnani,
L.: Rainfall interception and the coupled surface water and energy balance,
Agr. Forest Meteorol., 214–215, 402–415, https://doi.org/10.1016/j.agrformet.2015.09.006, 2015.
Vilà‐Guerau de Arellano, J., Patton, E. G., Karl, T., van den Dries, K., Barth,
M. C., and Orlando, J. J.: The role of boundary layer dynamics on the diurnal
evolution of isoprene and the hydroxyl radical over tropical forests, J. Geophys. Res.-Atmos.,
116, 8032, https://doi.org/10.1029/2010JD014857, 2011.
Vilà‐Guerau de Arellano, J., Ouwersloot, H. G., Baldocchi, D., and Jacobs, C. M. J.:
Shallow cumulus rooted in photosynthesis, Geophys. Res. Lett., 41, 1796–1802, https://doi.org/10.1002/2014GL059279, 2014.
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., van den Hurk, B. J.
J. M., and Seneviratne, S. I.: Regional amplification of projected changes in
extreme temperatures strongly controlled by soil moisture-temperature
feedbacks, Geophys. Res. Lett., 44, 1511–1519, https://doi.org/10.1002/2016GL071235, 2017.
Wang, J., Bras, R. L., and Eltahir, E.: The impact of observed deforestation
on the mesoscale distribution of rainfall and clouds in Amazonia, J. Hydrometeorol., 1,
267–286, 2000.
Wang, J., Chagnon, J. F., Williams, E. R., Betts, A. K., Renno, N. O.,
Machado, L. A. T., Bisht, G., Knox, R., and Bras, R. L.: Impact of deforestation
in the Amazon basin on cloud climatology, P. Natl. Acad. Sci. USA, 106, 3670–3674,
https://doi.org/10.1073/pnas.0810156106, 2009.
Wang, Y. P. and Leuning, R.: A two-leaf model for canopy conductance,
photosynthesis and partitioning of available energy I, Agr. Forest Meteorol., 91, 89–111,
https://doi.org/10.1016/S0168-1923(98)00061-6, 1998.
Washington, R., James, R., Pearce, H., Pokam, W. M., and Moufouma-Okia, W.:
Congo Basin rainfall climatology: can we believe the climate models? Philos. T. Roy. Soc. B,
368, https://doi.org/10.1098/rstb.2012.0296, 2013.
Wehr, R., Commane, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Saleska, S. R., and Wofsy, S. C.: Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake, Biogeosciences, 14, 389–401, https://doi.org/10.5194/bg-14-389-2017, 2017.
Werth, D. and Avissar, R.: The local and global effects of Amazon
deforestation, J. Geophys. Res.-Atmos., 107, 8087, https://doi.org/10.1029/2001JD000717, 2002.
Williams, M., Malhi, Y., Nobre, A. D., Rastetter, E. B., Grace, J., and Pereira, M. G.
P.: Seasonal variation in net carbon exchange and evapotranspiration in a
Brazilian rain forest: a modelling analysis, Plant Cell Environ., 21,
953–968, https://doi.org/10.1046/j.1365-3040.1998.00339.x, 1998.
Williams, E., Chan, T., and Boccippio, D.: Islands as miniature continents: Another look at the land‐ocean lightning contrast, J. Geophys. Res.-Atmos., 109, 1–5, 2004.
Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi, C.,
Sun, Y., and Yin, L.: Rainforest-initiated wet season onset over the southern
Amazon, P. Natl. Acad. Sci. USA, 114, 8481–8486, https://doi.org/10.1073/pnas.1621516114, 2017.
Wu, C.-M., Stevens, B., and Arakawa, A.: What Controls the Transition from
Shallow to Deep Convection?, J. Atmos. Sci., 66, 1793–1806, https://doi.org/10.1175/2008JAS2945.1,
2009.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity in
plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol., 212, 80–95,
https://doi.org/10.1111/nph.14009, 2016.
Yano, J. I. and Plant, R. S.: Convective quasi-equilibrium, Rev. Geophys., 50, RG4004,
https://doi.org/10.1029/2011RG000378, 2012.
Yin, L., Fu, R., Shevliakova, E., and Dickinson, R. E.: How well can CMIP5
simulate precipitation and its controlling processes over tropical South
America?, Clim. Dynam., 41, 3127–3143, https://doi.org/10.1007/s00382-012-1582-y, 2013.
Yu, H., Remer, L. A., Chin, M., Bian, H., Kleidman, R. G., and Diehl, T.: A
satellite-based assessment of transpacific transport of pollution aerosol,
J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009349, 2008.
Zahn, E., Dias, N. L., Araújo, A., Sá, L. D. A., Sörgel, M., Trebs, I., Wolff, S., and Manzi, A.: Scalar turbulent behavior in the roughness sublayer of an Amazonian forest, Atmos. Chem. Phys., 16, 11349–11366, https://doi.org/10.5194/acp-16-11349-2016, 2016.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Zeng, N. and Neelin, J. D.: A land-atmosphere interaction theory for the
tropical deforestation problem, J. Climate, 12, 857–872, 1999.
Zeng, N., Neelin, J., Lau, K., and Tucker, C.: Enhancement of Interdecadal
Climate Variability in the Sahel by Vegetation Interaction, Science, 286,
1537–1540, 1999.
Zeppel, M. J. B., Lewis, J. D., Phillips, N. G., and Tissue, D. T.:
Consequences of nocturnal water loss: a synthesis of regulating factors and
implications for capacitance, embolism and use in models, Tree Physiol., 34,
1047–1055, https://doi.org/10.1093/treephys/tpu089, 2014.
Zhang, K., de Almeida Castanho, A. D., Galbraith, D. R., Moghim, S., Levine,
N. M., Bras, R. L., Coe, M. T., Costa, M. H., Malhi, Y., Longo, M., and Knox,
R. G.: The fate of Amazonian ecosystems over the coming century arising from
changes in climate, atmospheric CO2, and land use, Global Change Biol., 21, 2569–2587,
https://doi.org/10.1111/gcb.12903, 2015.
Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M., and Wang,
H.: A regional climate model study of how biomass burning aerosol impacts
land-atmosphere interactions over the Amazon, J. Geophys. Res.-Atmos., 113, 1042,
https://doi.org/10.1029/2007JD009449, 2008.
Zhang, Y., Fu, R., Yu, H., Qian, Y., Dickinson, R., Silva Dias, M. A. F., da
Silva Dias, P. L., and Fernandes, K.: Impact of biomass burning aerosol on the
monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, 1509,
https://doi.org/10.1029/2009GL037180, 2009.
Zhang, Y. J., Meinzer, F. C., and Qi, J.: Midday stomatal conductance is more
related to stem rather than leaf water status in subtropical deciduous and
evergreen broadleaf trees, Plant Cell Environ., 36, 149–158,
https://doi.org/10.1111/j.1365-3040.2012.02563.x, 2013.
Zhuang, Y., Fu, R., and Marengo, J. A.: Seasonal variation of shallow-to-deep
convection transition and its link to the environmental conditions over the
Central Amazon, J. Geophys. Res.-Atmos., 122, 2649–2666, https://doi.org/10.1002/(ISSN)2169-8996, 2017.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8027 KB) - Full-text XML
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide,...