Articles | Volume 23, issue 4
https://doi.org/10.5194/hess-23-2065-2019
https://doi.org/10.5194/hess-23-2065-2019
Research article
 | 
24 Apr 2019
Research article |  | 24 Apr 2019

Open-source Arduino-compatible data loggers designed for field research

Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng

Related authors

Influence of network geometry on long-term morphodynamics of alluvial rivers
Fergus McNab, Taylor F. Schildgen, Jens Martin Turowski, and Andrew D. Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2468,https://doi.org/10.5194/egusphere-2025-2468, 2025
Short summary
Technical Note: A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1409,https://doi.org/10.5194/egusphere-2025-1409, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Late Quaternary glacial maxima in southern Patagonia: insights from the Lago Argentino glacier lobe
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024,https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
A double-Manning approach to compute robust rating curves and hydraulic geometries
Andrew D. Wickert, Jabari C. Jones, and Gene-Hua Crystal Ng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3118,https://doi.org/10.5194/egusphere-2023-3118, 2024
Preprint archived
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: A new laboratory approach to extract soil water for stable isotope analysis from large soil samples
Jiri Kocum, Jan Haidl, Ondrej Gebousky, Kristyna Falatkova, Vaclav Sipek, Martin Sanda, Natalie Orlowski, and Lukas Vlcek
Hydrol. Earth Syst. Sci., 29, 2863–2880, https://doi.org/10.5194/hess-29-2863-2025,https://doi.org/10.5194/hess-29-2863-2025, 2025
Short summary
Technical note: High-frequency, multi-elemental stream water monitoring – experiences, feedbacks and suggestions from 7 years of running three French field laboratories (Riverlabs)
Nicolai Brekenfeld, Solenn Cotel, Mikael Faucheux, Colin Fourtet, Yannick Hamon, Patrice Petitjean, Arnaud Blanchouin, Celine Bouillis, Marie-Claire Pierret, Hocine Henine, Anne-Catherine Pierson-Wickmann, Sophie Guillon, Paul Floury, and Ophelie Fovet
Hydrol. Earth Syst. Sci., 29, 2615–2631, https://doi.org/10.5194/hess-29-2615-2025,https://doi.org/10.5194/hess-29-2615-2025, 2025
Short summary
Hydrological controls on temporal contributions of three nested forested subcatchments to the export of dissolved organic carbon
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci., 29, 2377–2391, https://doi.org/10.5194/hess-29-2377-2025,https://doi.org/10.5194/hess-29-2377-2025, 2025
Short summary
Changes in the flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Izabela Bujak-Ozga, Jana von Freyberg, Margaret Zimmer, Andrea Rinaldo, Paolo Benettin, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 29, 2339–2359, https://doi.org/10.5194/hess-29-2339-2025,https://doi.org/10.5194/hess-29-2339-2025, 2025
Short summary
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Hsing-Jui Wang, Ralf Merz, and Stefano Basso
Hydrol. Earth Syst. Sci., 29, 1525–1548, https://doi.org/10.5194/hess-29-1525-2025,https://doi.org/10.5194/hess-29-1525-2025, 2025
Short summary

Cited articles

Anderson, C. R.: Makers: The New Industrial Revolution, Crown Business, New York, New York, USA, 2012. a
Armstrong, W. H., Anderson, R. S., Allen, J., and Rajaram, H.: Modeling the WorldView-derived seasonal velocity evolution of Kennicott Glacier, Alaska, J. Glaciol., 62, 763–777, https://doi.org/10.1017/jog.2016.66, 2016. a, b
Aufdenkampe, A. K., Damiano, S. G., Hicks, S., and Horsburgh, J. S.: EnviroDIY ModularSensors: A Library to give Environmental Sensors a Common Interface of Functions for use with Arduino-Compatible Dataloggers, in: American Geophysical Union, Fall Meeting, H41J–1579, American Geophysical Union, New Orleans, 14 December 2017, LA, USA, 2017. a, b
Ayars, E. and Wickert, A. D.: DS3231 v1.0.3, https://doi.org/10.5281/zenodo.2008622, 2018. a, b
Banzi, M. and Shiloh, M.: Getting Started with Arduino: The Open Source Electronics Prototyping Platform, Maker Media, Inc., San Francisco, California, USA, https://doi.org/10.1017/CBO9781107415324.004, 2014. a, b, c, d
Download
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Share