Articles | Volume 23, issue 2
https://doi.org/10.5194/hess-23-1145-2019
https://doi.org/10.5194/hess-23-1145-2019
Research article
 | 
28 Feb 2019
Research article |  | 28 Feb 2019

Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system

Daeha Kim, Jong Ahn Chun, and Si Jung Choi

Related authors

A comparative assessment of rainfall–runoff modelling against regional flow duration curves for ungauged catchments
Daeha Kim, Il Won Jung, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 21, 5647–5661, https://doi.org/10.5194/hess-21-5647-2017,https://doi.org/10.5194/hess-21-5647-2017, 2017
Short summary
A comparison between parameter regionalization and model calibration with flow duration curves for prediction in ungauged catchments
Daeha Kim, Ilwon Jung, and Jong Ahn Chun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-487,https://doi.org/10.5194/hess-2016-487, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024,https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024,https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024,https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary

Cited articles

Apipattanavis, S., Podesta, G., Rajagopalan, B., and Katz, R. W.: A semiparametric multivariate and multisite weather generator, Water Resour. Res., 43, W11401, https://doi.org/10.1029/2006WR005714, 2007. 
Bae, D.-H., Jung, I.-W., and Chang, H: Long-term trend of precipitation and runoff in Korean river basins, Hydrol. Process., 22, 2644–2656, 2008. 
Brown, C., and Wilby, R. L.: An alternate approach to assessing climate risks, Eos Trans. AGU, 93, 401, 2012. 
Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector, Water Resour. Res., 48, W09537, https://doi.org/10.1029/2011WR011212, 2012. 
Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., Hall, J., Characklis, G. W., Yu, W., and Brekke, L.: The future of water resources systems analysis: Toward a scientific framework for sustainable water management, Water Resour. Res., 51, 6110–6124, https://doi.org/10.1002/2015WR017114, 2015. 
Download
Short summary
In this study, we proposed an approach for gauging the risks of non-successful water supply and environmental reliabilities varying across a large river basin. The proposed method enables the measurement of system robustness to climate change with consideration of conflicting stakeholder interests. We simply converted the expected system performance under climate stresses into binary outcomes and applied them to the logistic regressions. A case study for a South Korean river basin is provided.