Articles | Volume 22, issue 6
https://doi.org/10.5194/hess-22-3261-2018
https://doi.org/10.5194/hess-22-3261-2018
Research article
 | 
12 Jun 2018
Research article |  | 12 Jun 2018

Impacts of changing hydrology on permanent gully growth: experimental results

Stephanie S. Day, Karen B. Gran, and Chris Paola

Related authors

Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Chloé Seibert, Cecilia McHugh, Chris Paola, Leonardo Seeber, and James Tucker
Earth Surf. Dynam., 13, 341–348, https://doi.org/10.5194/esurf-13-341-2025,https://doi.org/10.5194/esurf-13-341-2025, 2025
Short summary
Confinement width and inflow-to-sediment discharge ratio control the morphology and braiding intensity of submarine channels: insights from physical experiments and reduced-complexity models
Sam Y. J. Huang, Steven Y. J. Lai, Ajay B. Limaye, Brady Z. Foreman, and Chris Paola
Earth Surf. Dynam., 11, 615–632, https://doi.org/10.5194/esurf-11-615-2023,https://doi.org/10.5194/esurf-11-615-2023, 2023
Short summary
An experimental study of drainage network development by surface and subsurface flow in low-gradient landscapes
Brian G. Sockness and Karen B. Gran
Earth Surf. Dynam., 10, 581–603, https://doi.org/10.5194/esurf-10-581-2022,https://doi.org/10.5194/esurf-10-581-2022, 2022
Short summary
How does the downstream boundary affect avulsion dynamics in a laboratory bifurcation?
Gerard Salter, Vaughan R. Voller, and Chris Paola
Earth Surf. Dynam., 7, 911–927, https://doi.org/10.5194/esurf-7-911-2019,https://doi.org/10.5194/esurf-7-911-2019, 2019
Short summary
A global delta dataset and the environmental variables that predict delta formation on marine coastlines
Rebecca L. Caldwell, Douglas A. Edmonds, Sarah Baumgardner, Chris Paola, Samapriya Roy, and Jaap H. Nienhuis
Earth Surf. Dynam., 7, 773–787, https://doi.org/10.5194/esurf-7-773-2019,https://doi.org/10.5194/esurf-7-773-2019, 2019
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
How seasonal hydroclimate variability drives the triple oxygen and hydrogen isotope composition of small lake systems in semiarid environments
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025,https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Learning from a large-scale calibration effort of multiple lake temperature models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025,https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
The influence of permafrost and other environmental factors on stream thermal sensitivity across Yukon, Canada
Andras J. Szeitz and Sean K. Carey
Hydrol. Earth Syst. Sci., 29, 1083–1101, https://doi.org/10.5194/hess-29-1083-2025,https://doi.org/10.5194/hess-29-1083-2025, 2025
Short summary
Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci., 29, 733–752, https://doi.org/10.5194/hess-29-733-2025,https://doi.org/10.5194/hess-29-733-2025, 2025
Short summary
Modeling Lake Titicaca's water balance: the dominant roles of precipitation and evaporation
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025,https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary

Cited articles

Abrahams, A. D. and Parsons, A. J.: Resistance to overland flow on desert pavement and its implications for sediment transport modeling, Water Resour. Res., 27, 1827–1836, 1991. 
Adediji, A., Jeje, L. K., and Ibitoye, M. O.: Urban development and informal drainage patterns: Gully dynamics in Southwestern Nigeria, Appl. Geogr., 40, 90–102, 2013. 
Agsco technical Data: http://www.agsco.com/assets/pdfs/Silica-Sands-Flours-Tech-Data-Sheet-06-04-2014.pdf, last access: 7 February 2018. 
Alonso, C. V., Bennett, S. J., and Stein, O. R.: Predicting head cut erosion and migration in concentrated flows typical of upland areas, Water Resour. Res., 38, 39-1–39-15, 2002. 
Ambers, R. K., Druckenbrod, D. L., and Ambers, C. P.: Geomorphic response to historical agriculture at Monument Hill in the Blue Ridge foothills of central Virginia, Catena, 65, 49–60, 2006. 
Download
Short summary
Permanent gullies are deep steep-sided channels that erode as water falls over the upstream end. Erosion of these features is a concern where people and climate change have altered how water moves over the land. This paper analyzes a set of experiments that were used to determine how changing gully flows impact erosion. We found that while increasing the volume of water will increase erosion, changing the flow rate into gullies will not impact the total erosion, but will alter gully shape.
Share