Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2311-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-2311-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US
School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
Kaniska Mallick
Remote Sensing and Ecohydrological Modeling, Water Security and Safety Research Unit, Dept. ERIN, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
Nathaniel A. Brunsell
Geography and Atmospheric Science, University of Kansas, Lawrence, KS 66045, USA
Ge Sun
Eastern Forest Environmental Threat Assessment Center, Southern Research Station, US Department of Agriculture Forest Service, Raleigh, NC 27606, USA
Meha Jain
School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
Related authors
N. Bhattarai, K. Mallick, and M. Jain
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 3–7, https://doi.org/10.5194/isprs-archives-XLII-3-W6-3-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-3-2019, 2019
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022, https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
Yongqiang Liu, Lu Hao, Decheng Zhou, Cen Pan, Peilong Liu, Zhe Xiong, and Ge Sun
Nat. Hazards Earth Syst. Sci., 19, 2281–2294, https://doi.org/10.5194/nhess-19-2281-2019, https://doi.org/10.5194/nhess-19-2281-2019, 2019
Short summary
Short summary
A transition zone often exists between a moist upper river reach and an arid lower reach in a watershed with complex topography. This zone is more suitable for human activities but is difficult to identify in climate classification. We found that a hydrological index overpowers a meteorological index in identifying a transition zone of a watershed in northwestern China, indicating the important role of the land-surface processes and human disturbances in formulating the transition zone.
N. Bhattarai, K. Mallick, and M. Jain
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 3–7, https://doi.org/10.5194/isprs-archives-XLII-3-W6-3-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-3-2019, 2019
G. Boulet, E. Delogu, W. Chebbi, Z. Rafi, V. Le Dantec, K. Mallick, B. Mougenot, A. Olioso, M. Zribi, Z. Lili-Chabaane, S. Er-Raki, and O. Merlin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 9–12, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-9-2019, 2019
J.-P. Lagouarde, B. K. Bhattacharya, P. Crébassol, P. Gamet, D. Adlakha, C. S. Murthy, S. K. Singh, M. Mishra, R. Nigam, P. V. Raju, S. S. Babu, M. V. Shukla, M. R. Pandya, G. Boulet, X. Briottet, I. Dadou, G. Dedieu, M. Gouhier, O. Hagolle, M. Irvine, F. Jacob, K. K Kumar, B. Laignel, P. Maisongrande, K. Mallick, A. Olioso, C. Ottlé, J.-L. Roujean, J. Sobrino, R. Ramakrishnan, M. Sekhar, and S. S. Sarkar
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 403–407, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, 2019
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci., 21, 5517–5529, https://doi.org/10.5194/hess-21-5517-2017, https://doi.org/10.5194/hess-21-5517-2017, 2017
Short summary
Short summary
We examined the potential roles of major climatic variables (including precipitation, air temperature, solar radiation, specific humidity, and wind speed) in altering annual runoff, which is an important indicator of freshwater supply, in the United States through the 21st century. Increasing temperature, precipitation, and humidity are recognized as three major climatic factors that drive runoff to change in different directions across the country.
Mengsheng Qin, Lu Hao, Lei Sun, Yongqiang Liu, and Ge Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-241, https://doi.org/10.5194/hess-2017-241, 2017
Revised manuscript not accepted
Short summary
Short summary
By identifying the individual climatic controls on reference ET (ETo) at a watershed level, we show that the key climate controls to ETo have dramatically shifted during the past five decades. Accurately predicting future ETo and hydrological change under a changing climate must consider changes in atmospheric demand (VPD). Our results have important implications for watershed management in paddy field-dominated humid regions, where actual water loss is mainly controlled by atmospheric demand.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Chunwei Liu, Ge Sun, Steven G. McNulty, Asko Noormets, and Yuan Fang
Hydrol. Earth Syst. Sci., 21, 311–322, https://doi.org/10.5194/hess-21-311-2017, https://doi.org/10.5194/hess-21-311-2017, 2017
Short summary
Short summary
The paper aimed at deriving Kc (AET/PET) for multiple vegetation types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We established multiple linear equations for different land covers and seasons to model the dynamics of Kc as function of LAI, site latitude, and precipitation. Our study extended the applications of the traditional Kc method for estimating crop water use to estimating AET rates for natural ecosystems.
Loise Wandera, Kaniska Mallick, Gerard Kiely, Olivier Roupsard, Matthias Peichl, and Vincenzo Magliulo
Hydrol. Earth Syst. Sci., 21, 197–215, https://doi.org/10.5194/hess-21-197-2017, https://doi.org/10.5194/hess-21-197-2017, 2017
Short summary
Short summary
Upscaling instantaneous to daily evapotranspiration (ETi–ETd) is one of the central challenges in regional vegetation water-use mapping using polar orbiting satellites. Here we developed a robust ETi upscaling for global studies using the ratio between daily and instantaneous global radiation (RSd/RSi). Using data from 126 FLUXNET tower sites, this study demonstrated the RSd/RSi ratio to be the most robust factor explaining ETd/ETi variability across variable sky conditions and multiple biomes.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-493, https://doi.org/10.5194/hess-2016-493, 2016
Revised manuscript not accepted
Short summary
Short summary
This study examines the potential shift of the relative roles of changing precipitation and temperature in controlling freshwater availability in the USA. The influence of temperature is projected to outweigh that of precipitation in a continued warming future in the 21st century, although precipitation has been the primary control in recent decades. The vast croplands and grasslands across the central and forests in the northwestern regions might be particularly vulnerable to climate change.
R. Obringer, X. Zhang, K. Mallick, S. H. Alemohammad, and D. Niyogi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 747–751, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, 2016
Jiangkun Zheng, Ge Sun, Wenhong Li, Xinxiao Yu, Chi Zhang, Yuanbo Gong, and Lihua Tu
Hydrol. Earth Syst. Sci., 20, 1561–1572, https://doi.org/10.5194/hess-20-1561-2016, https://doi.org/10.5194/hess-20-1561-2016, 2016
Short summary
Short summary
Our study represents the most comprehensive study on the combined effects of environmental change in streamflow using three different hydrological models. It revealed that climate change impacts exceeded land cover change in the 2000s. Considering the effect of climate changes on water supply, some active land management and water resources management options are discussed.
Shanlei Sun, Ge Sun, Erika Cohen, Steven G. McNulty, Peter V. Caldwell, Kai Duan, and Yang Zhang
Hydrol. Earth Syst. Sci., 20, 935–952, https://doi.org/10.5194/hess-20-935-2016, https://doi.org/10.5194/hess-20-935-2016, 2016
Short summary
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
T. Tang, W. Li, and G. Sun
Hydrol. Earth Syst. Sci., 20, 27–37, https://doi.org/10.5194/hess-20-27-2016, https://doi.org/10.5194/hess-20-27-2016, 2016
L. Hao, G. Sun, Y. Liu, J. Wan, M. Qin, H. Qian, C. Liu, J. Zheng, R. John, P. Fan, and J. Chen
Hydrol. Earth Syst. Sci., 19, 3319–3331, https://doi.org/10.5194/hess-19-3319-2015, https://doi.org/10.5194/hess-19-3319-2015, 2015
Short summary
Short summary
The role of land cover in affecting hydrologic and environmental changes in the humid region in southern China is not well studied. We found that high flows and low flows increased and evapotranspiration decreased due to urbanization in the Qinhuai River basin. Urbanization masked climate warming effects in a rice-paddy-dominated watershed in altering long-term hydrology. Flooding risks and heat island effects are expected to rise due to urbanization.
M. Kang, Z. Zhang, A. Noormets, X. Fang, T. Zha, J. Zhou, G. Sun, S. G. McNulty, and J. Chen
Biogeosciences, 12, 4245–4259, https://doi.org/10.5194/bg-12-4245-2015, https://doi.org/10.5194/bg-12-4245-2015, 2015
Short summary
Short summary
We found that energy partitioning to latent and sensible heat and surface resistance was dramatically responsive to climatological drought. All physiological and bioclimatological metrics (Bowen ratio, surface resistance, and Priestley-Taylor coefficient) indicated that the water demands of the poplar plantation were greater than the amount available through precipitation, highlighting the poor match of a water-intensive species like poplar to a water-limited region in northern China.
Z. Shi, M. L. Thomey, W. Mowll, M. Litvak, N. A. Brunsell, S. L. Collins, W. T. Pockman, M. D. Smith, A. K. Knapp, and Y. Luo
Biogeosciences, 11, 621–633, https://doi.org/10.5194/bg-11-621-2014, https://doi.org/10.5194/bg-11-621-2014, 2014
C. R. Schwalm, D. N. Huntinzger, R. B. Cook, Y. Wei, I. T. Baker, R. P. Neilson, B. Poulter, P. Caldwell, G. Sun, H. Q. Tian, and N. Zeng
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-1801-2014, https://doi.org/10.5194/bgd-11-1801-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
Extent of gross underestimation of precipitation in India
A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins
Attribution of global evapotranspiration trends based on the Budyko framework
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Extrapolating continuous vegetation water content to understand sub-daily backscatter variations
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau
Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models
The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis
Evaluation of the dual-polarization weather radar quantitative precipitation estimation using long-term datasets
Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands
Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa
Data-driven estimates of evapotranspiration and its controls in the Congo Basin
Ability of an Australian reanalysis dataset to characterise sub-daily precipitation
A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products
Evaluation of soil moisture from CCAM-CABLE simulation, satellite-based models estimates and satellite observations: a case study of Skukuza and Malopeni flux towers
Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation
An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia
Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin
The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa
Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region
Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg
Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region
An improved perspective in the spatial representation of soil moisture: potential added value of SMOS disaggregated 1 km resolution “all weather” product
Temporal- and spatial-scale and positional effects on rain erosivity derived from point-scale and contiguous rain data
The PERSIANN family of global satellite precipitation data: a review and evaluation of products
Exploring seasonal and regional relationships between the Evaporative Stress Index and surface weather and soil moisture anomalies across the United States
Development of soil moisture profiles through coupled microwave–thermal infrared observations in the southeastern United States
Evaluation of multiple climate data sources for managing environmental resources in East Africa
Precipitation downscaling using a probability-matching approach and geostationary infrared data: an evaluation over six climate regions
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Regional frequency analysis of extreme rainfall in Belgium based on radar estimates
An assessment of the performance of global rainfall estimates without ground-based observations
Water–food–energy nexus with changing agricultural scenarios in India during recent decades
Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean
The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France
Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil
Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels
Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau
Evaluation of soil moisture downscaling using a simple thermal-based proxy – the REMEDHUS network (Spain) example
The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat
Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012)
Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014
Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia
Downscaling of seasonal soil moisture forecasts using satellite data
Long term soil moisture mapping over the Tibetan plateau using Special Sensor Microwave/Imager
Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate
Gopi Goteti and James Famiglietti
Hydrol. Earth Syst. Sci., 28, 3435–3455, https://doi.org/10.5194/hess-28-3435-2024, https://doi.org/10.5194/hess-28-3435-2024, 2024
Short summary
Short summary
Underestimation of precipitation (UoP) in India is a substantial issue not just within gauge-based precipitation datasets but also within state-of-the-art satellite and reanalysis-based datasets. UoP is prevalent across most river basins of India, including those that have experienced catastrophic flooding in the recent past. This paper highlights not only a major limitation of existing precipitation products for India but also other data-related obstacles faced by the research community.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023, https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022, https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Short summary
This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales.
Paul C. Vermunt, Susan C. Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, https://doi.org/10.5194/hess-26-1223-2022, 2022
Short summary
Short summary
This study investigates the use of hydrometeorological sensors to reconstruct variations in internal vegetation water content of corn and relates these variations to the sub-daily behaviour of polarimetric L-band backscatter. The results show significant sensitivity of backscatter to the daily cycles of vegetation water content and dew, particularly on dry days and for vertical and cross-polarizations, which demonstrates the potential for using radar for studies on vegetation water dynamics.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Tanel Voormansik, Roberto Cremonini, Piia Post, and Dmitri Moisseev
Hydrol. Earth Syst. Sci., 25, 1245–1258, https://doi.org/10.5194/hess-25-1245-2021, https://doi.org/10.5194/hess-25-1245-2021, 2021
Short summary
Short summary
A long set of operational polarimetric weather radar rainfall accumulations from Estonia and Italy are generated and investigated. Results show that the combined product of specific differential phase and horizontal reflectivity yields the best results when compared to rain gauge measurements. The specific differential-phase-based product overestimates weak precipitation, and the horizontal-reflectivity-based product underestimates heavy rainfall in all analysed accumulation periods.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Michael W. Burnett, Gregory R. Quetin, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 24, 4189–4211, https://doi.org/10.5194/hess-24-4189-2020, https://doi.org/10.5194/hess-24-4189-2020, 2020
Short summary
Short summary
Water that evaporates from Africa's tropical forests provides rainfall throughout the continent. However, there are few sources of meteorological data in central Africa, so we use observations from satellites to estimate evaporation from the Congo Basin at different times of the year. We find that existing evaporation estimates in tropical Africa do not accurately capture seasonal variations in evaporation and that fluctuations in soil moisture and solar radiation drive evaporation rates.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Floyd Vukosi Khosa, Mohau Jacob Mateyisi, Martina Reynita van der Merwe, Gregor Timothy Feig, Francois Alwyn Engelbrecht, and Michael John Savage
Hydrol. Earth Syst. Sci., 24, 1587–1609, https://doi.org/10.5194/hess-24-1587-2020, https://doi.org/10.5194/hess-24-1587-2020, 2020
Short summary
Short summary
The paper evaluates soil moisture outputs from three structurally distinct models against in situ data. Our goal is to find how representative the model outputs are for site and region. This is a question of interest as some of the models have a specific regional focus on their inceptions. Much focus is placed on how the models capture the soil moisture signal. We find that there is agreement on seasonal patterns between the models and observations with a tolerable level of model uncertainty.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Webster Gumindoga, Tom H. M. Rientjes, Alemseged Tamiru Haile, Hodson Makurira, and Paolo Reggiani
Hydrol. Earth Syst. Sci., 23, 2915–2938, https://doi.org/10.5194/hess-23-2915-2019, https://doi.org/10.5194/hess-23-2915-2019, 2019
Short summary
Short summary
We evaluate the influence of elevation and distance from large-scale open water bodies on bias for CMORPH satellite rainfall in the Zambezi basin. Effects of distance > 10 km from water bodies are minimal, whereas the effects at shorter distances are indicated but are not conclusive for lack of rain gauges. Taylor diagrams show station elevation influencing CMORPH performance. The
spatio-temporaland newly developed
elevation zonebias schemes proved more effective in removing CMORPH bias.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Frédéric Satgé, Denis Ruelland, Marie-Paule Bonnet, Jorge Molina, and Ramiro Pillco
Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, https://doi.org/10.5194/hess-23-595-2019, 2019
Short summary
Short summary
This paper assesses the potential of satellite precipitation estimates (SPEs) for precipitation measurement and hydrological and snow modelling. A total of 12 SPEs is considered to provide a global overview of available SPE accuracy for users interested in such datasets. Results show that, over poorly monitored regions, SPEs represent a very efficient alternative to traditional precipitation gauges to follow precipitation in time and space and for hydrological and snow modelling.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Samiro Khodayar, Amparo Coll, and Ernesto Lopez-Baeza
Hydrol. Earth Syst. Sci., 23, 255–275, https://doi.org/10.5194/hess-23-255-2019, https://doi.org/10.5194/hess-23-255-2019, 2019
Franziska K. Fischer, Tanja Winterrath, and Karl Auerswald
Hydrol. Earth Syst. Sci., 22, 6505–6518, https://doi.org/10.5194/hess-22-6505-2018, https://doi.org/10.5194/hess-22-6505-2018, 2018
Short summary
Short summary
The potential of rain to cause soil erosion by runoff is called rain erosivity. Rain erosivity is highly variable in space and time even over distances of less than 1 km. Contiguously measured radar rain data depict for the first time this spatio-temporal variation, but scaling factors are required to account for differences in spatial and temporal resolution compared to rain gauge data. These scaling factors were obtained from more than 2 million erosive events.
Phu Nguyen, Mohammed Ombadi, Soroosh Sorooshian, Kuolin Hsu, Amir AghaKouchak, Dan Braithwaite, Hamed Ashouri, and Andrea Rose Thorstensen
Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018, https://doi.org/10.5194/hess-22-5801-2018, 2018
Short summary
Short summary
The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. We evaluate the products over CONUS at different spatial and temporal scales using CPC data. Daily scale is the finest temporal scale used for the evaluation over CONUS. We provide a comparison of the available products at a quasi-global scale. We highlight the strengths and limitations of the PERSIANN products.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Ruifang Guo, Yuanbo Liu, Han Zhou, and Yaqiao Zhu
Hydrol. Earth Syst. Sci., 22, 3685–3699, https://doi.org/10.5194/hess-22-3685-2018, https://doi.org/10.5194/hess-22-3685-2018, 2018
Short summary
Short summary
Existing satellite products are often insufficient for use in small-scale (< 10 km) hydrological and meteorological studies. We propose a new approach based on the cumulative distribution of frequency to downscale satellite precipitation products with geostationary (GEO) data. This paper uses CMORPH and FY2-E GEO data to examine the approach in six different climate regions. The downscaled precipitation performed better for convective systems.
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275–3294, https://doi.org/10.5194/hess-22-3275-2018, https://doi.org/10.5194/hess-22-3275-2018, 2018
Short summary
Short summary
In North Africa rain storms can be as vital as they are devastating. The present study uses multi-year satellite data to better understand how and where soil moisture conditions affect development of rainfall in the area. Our results reveal two major regions in the southwest and southeast, where drier soils show higher potential to cause rainfall development. This knowledge is essential for the hydrological sector, and can be further used by models to improve prediction of rainfall and droughts.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Beas Barik, Subimal Ghosh, A. Saheer Sahana, Amey Pathak, and Muddu Sekhar
Hydrol. Earth Syst. Sci., 21, 3041–3060, https://doi.org/10.5194/hess-21-3041-2017, https://doi.org/10.5194/hess-21-3041-2017, 2017
Short summary
Short summary
The article summarises changing patterns of the water-food-energy nexus in India during recent decades. The work first analyses satellite data of water storage with a validation using the observed well data. Northern India shows a declining trend of water storage and western-central India shows an increasing trend of the same. Major droughts result in a drop in water storage which is not recovered due to uncontrolled ground water irrigation for agricultural activities even in good monsoon years.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Davi de C. D. Melo, Bridget R. Scanlon, Zizhan Zhang, Edson Wendland, and Lei Yin
Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, https://doi.org/10.5194/hess-20-4673-2016, 2016
Short summary
Short summary
Drought propagation from rainfall deficits to reservoir depletion was studied based on remote sensing, monitoring and modelling data. Regional droughts were shown by widespread depletion in total water storage that reduced soil moisture storage and runoff, greatly reducing reservoir storage. The multidisciplinary approach to drought assessment shows the linkages between meteorological and hydrological droughts that are essential for managing water resources subjected to climate extremes.
Zhi Qing Peng, Xiaozhou Xin, Jin Jun Jiao, Ti Zhou, and Qinhuo Liu
Hydrol. Earth Syst. Sci., 20, 4409–4438, https://doi.org/10.5194/hess-20-4409-2016, https://doi.org/10.5194/hess-20-4409-2016, 2016
Short summary
Short summary
A remote sensing algorithm named temperature sharpening and flux aggregation (TSFA) was applied to HJ-1B satellite data to estimate evapotranspiration over heterogeneous surface considering landscape and statistical effects on mixed pixels. Footprint validation results showed TSFA was more accurate and less uncertain than other two upscaling methods. Additional analysis and comparison showed TSFA can capture land surface heterogeneities and integrate the effect of landscapes within mixed pixels.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
J. Peng, J. Niesel, and A. Loew
Hydrol. Earth Syst. Sci., 19, 4765–4782, https://doi.org/10.5194/hess-19-4765-2015, https://doi.org/10.5194/hess-19-4765-2015, 2015
Short summary
Short summary
This paper gives a comprehensive evaluation of a simple newly developed downscaling scheme using in situ measurements from REMEDHUS network, a first cross-comparison of the performance of the downscaled soil moisture from MODIS and MSG SEVIRI, an evaluation of the performance of the downscaled soil moisture at different spatial resolutions, and an exploration of the influence of LST, vegetation index, terrain, clouds, and land cover heterogeneity on the performance of VTCI.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
O. P. Prat and B. R. Nelson
Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, https://doi.org/10.5194/hess-19-2037-2015, 2015
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
A. W. Worqlul, B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 18, 4871–4881, https://doi.org/10.5194/hess-18-4871-2014, https://doi.org/10.5194/hess-18-4871-2014, 2014
S. Schneider, A. Jann, and T. Schellander-Gorgas
Hydrol. Earth Syst. Sci., 18, 2899–2905, https://doi.org/10.5194/hess-18-2899-2014, https://doi.org/10.5194/hess-18-2899-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol., 33, 121–131,
https://doi.org/10.1002/joc.3413, 2013.
Abouali, M., Timmermans, J., Castillo, J. E., and Su, B. Z.: A high performance
GPU implementation of Surface Energy Balance System (SEBS) based on CUDA-C,
Environ. Model. Softw., 41, 134–138, 2013.
Agam, N. and Berliner, P. R.: Dew formation and water vapor adsorption in
semi-arid environments – A review, J. Arid Environm., 65, 572–590,
https://doi.org/10.1016/j.jaridenv.2005.09.004, 2006.
Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-based energy balance for
mapping evapotranspiration with internalized calibration (METRIC) – Model, J.
Irrig. Drain. Eng., 133, 380–394, https://doi.org/10.1061/(Asce)0733-9437(2007)133:4(380), 2007.
Allen, R. G., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W., and
Kjaersgaard, J.: Satellite-based ET estimation in agriculture using SEBAL and
METRIC, Hydrol. Process., 25, 4011–4027, https://doi.org/10.1002/hyp.8408, 2011.
AmeriFlux Network: http://ameriflux.lbl.gov/, last access: 5 March 2017.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R.,
Schultz, L., Gonzalez-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A.,
and Gao, F.: Mapping daily evapotranspiration at field to continental scales
using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst.
Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat
thermal imagery in monitoring evapotranspiration and managing water resources,
Remote Sens. Environ., 122, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012.
ASCE-EWRI: The ASCE standardized reference evapotranspiration equation,
ASCE-EWRI Standardization of Reference Evapotranspiration Task Committe Report, 2005,
Baldocchi, D. D., and Wilson, K. B.: Modeling CO2 and water vapor exchange
of a temperate broadleaved forest across hourly to decadal time scales, Ecol.
Model., 142, 155–184, https://doi.org/10.1016/S0304-3800(01)00287-3, 2001.
Baldocchi, D. D., Xu, L., and Kiang, N.: How plant functional-type, weather,
seasonal drought, and soil physical properties alter water and energy fluxes
of an oak–grass savanna and an annual grassland, Agr. Forest Meteorol., 123,
13–39, https://doi.org/10.1016/j.agrformet.2003.11.006, 2004.
Bastiaanssen, W. G. M.: SEBAL-based sensible and latent heat fluxes in the
irrigated Gediz Basin, Turkey, J. Hydrol., 229, 87–100, https://doi.org/10.1016/S0022-1694(99)00202-4, 2000.
Bell, D. M., Ward, E. J., Oishi, A. C., Oren, R., Flikkema, P. G., and Clark,
J. S.: A state-space modeling approach to estimating canopy conductance and
associated uncertainties from sap flux density data, Tree Physiol., 35, 792–802,
https://doi.org/10.1093/treephys/tpv041, 2015.
Bhattarai, N., Shaw, S. B., Quackenbush, L. J., Im, J., and Niraula, R.:
Evaluating five remote sensing based single-source surface energy balance models
for estimating daily evapotranspiration in a humid subtropical climate, Int. J.
Appl. Earth Obs., 49, 75–86, https://doi.org/10.1016/j.jag.2016.01.010, 2016.
Biggs, T. W., Marshall, M., and Messina, A.: Mapping daily and seasonal
evapotranspiration from irrigated crops using global climate grids and satellite
imagery: Automation and methods comparison, Water Resour. Res., 52, 7311–7326,
https://doi.org/10.1002/2016WR019107, 2016.
Bisht, G., Venturini, V., Islam, S., and Jiang, L.: Estimation of the net
radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for
clear sky days, Remote Sens. Environ., 97, 52–67, https://doi.org/10.1016/j.rse.2005.03.014, 2005.
Blonquist, J. M., Norman, J. M., and Bugbee, B.: Automated measurement of canopy
stomatal conductance based on infrared temperature, Agr. Forest Meteorol., 149,
1931–1945, https://doi.org/10.1016/j.agrformet.2009.06.021, 2009.
Boegh, E. and Soegaard, H.: Remote sensing based estimation of evapotranspiration
rates, Int. J. Remote Sens., 25, 2535–2551, https://doi.org/10.1080/01431160310001647975, 2004.
Boegh, E., Soegaard, H., and Thomsen, A.: Evaluating evapotranspiration rates
and surface conditions using Landsat TM to estimate atmospheric resistance and
surface resistance, Remote Sens. Environ., 79, 329–343, https://doi.org/10.1016/S0034-4257(01)00283-8, 2002.
Bouchet, R.: Evapotranspiration reelle, evapotranspiration potentielle, et
production agricole, Annales Agronomiques, 14, 743–824, 1963.
Boulet, G., Olioso, A., Ceschia, E., Marloie, O., Coudert, B., Rivalland, V.,
Chirouze, J., and Chehbouni, G.: An empirical expression to relate aerodynamic
and surface temperatures for use within single-source energy balance models,
Agr. Forest Meteorol., 161, 148–155, https://doi.org/10.1016/j.agrformet.2012.03.008, 2012.
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from
any water surface, Phys. Rev., 27, 779, 1926.
Brutsaert, W.: Hydrology: an introduction, Cambridge University Press, Cambridge, 2005.
Brutsaert, W. and Stricker, H.: An advection-aridity approach to estimate actual
regional evapotranspiration, Water Resour. Res., 15, 443–450, https://doi.org/10.1029/WR015i002p00443, 1979.
Brutsaert, W. and Sugita, M.: Application of self-preservation in the diurnal
evolution of the surface energy budget to determine daily evaporation, J.
Geophys. Res.-Atmos., 97, 18377–18382, https://doi.org/10.1029/92JD00255, 1992.
Chávez, J., Neale, C. M. U., Hipps, L. E., Prueger, J. H., and Kustas, W.
P.: Comparing Aircraft-Based Remotely Sensed Energy Balance Fluxes with Eddy
Covariance Tower Data Using Heat Flux Source Area Functions, J. Hydrometeorol.,
6, 923–940, https://doi.org/10.1175/jhm467.1, 2005.
Chávez, J., Howell, T., Gowda, P., Copeland, K., and Prueger, J.: Surface
aerodynamic temperature modeling over rainfed cotton, T. ASABE, 53, 759–767, 2010.
Chen, X., Su, Z., Ma, Y., Yang, K., Wen, J., and Zhang, Y.: An Improvement of
Roughness Height Parameterization of the Surface Energy Balance System (SEBS)
over the Tibetan Plateau, J. Appl. Meteorol. Clim., 52, 607–622, https://doi.org/10.1175/jamc-d-12-056.1, 2013.
Chen, X., Su, Z., Ma, Y., Liu, S., Yu, Q., and Xu, Z.: Development of a 10-year
(2001–2010) 0.1∘ data set of land-surface energy balance for mainland
China, Atmos. Chem. Phys., 14, 13097–13117, https://doi.org/10.5194/acp-14-13097-2014, 2014.
Colaizzi, P. D., Evett, S. R., Howell, T. A., and Tolk, J. A.: Comparison of
aerodynamic and radiometric surface temperature using precision weighing
lysimeters, in: Optical Science and Technology, the SPIE 49th Annual Meeting,
2–6 August 2004. Denver, Colorado, 215–229, 2004.
Crago, R. and Brutsaert, W.: Daytime evaporation and the self-preservation of
the evaporative fraction and the Bowen ratio, J. Hydrol., 178, 241–255,
https://doi.org/10.1016/0022-1694(95)02803-X, 1996.
Domec, J.-C., King, J. S., Ward, E., Christopher Oishi, A., Palmroth, S., Radecki,
A., Bell, D. M., Miao, G., Gavazzi, M., Johnson, D. M., McNulty, S. G., Sun, G.,
and Noormets, A.: Conversion of natural forests to managed forest plantations
decreases tree resistance to prolonged droughts, Forest Ecol. Manage., 355,
58–71, https://doi.org/10.1016/j.foreco.2015.04.012, 2015.
Ershadi, A., McCabe, M. F., Evans, J. P., Mariethoz, G., and Kavetski, D.: A
Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in
meteorological forcing to improve model prediction, Water Resour. Res., 49, 2343–2358, 2013.
FAO – Food and Agriculture Organization of the United Nations: FAO GEONETWORK,
Aridity index (GeoLayer), http://data.fao.org/ref/f8cf2780-88fd-11da-a88f-000d939bc5d8.html?version=1.0
(last access: 9 April 2018), 2015.
Feng, X. M., Sun, G., Fu, B. J., Su, C. H., Liu, Y., and Lamparski, H.: Regional
effects of vegetation restoration on water yield across the Loess Plateau, China,
Hydrol. Earth Syst. Sci., 16, 2617–2628, https://doi.org/10.5194/hess-16-2617-2012, 2012.
Finnigan, J. J., Shaw, R. H., and Patton, E. G.: Turbulence structure above a
vegetation canopy, J. Fluid Mech., 637, 387–424, https://doi.org/10.1017/S0022112009990589, 2009.
Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S.:
Spatiotemporal Variations In Growing Season Exchanges Of CO2, H2O,
And Sensible Heat In Agricultural Fields Of The Southern Great Plains, Earth
Interact., 11, 1–21, 2007.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated
at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919, https://doi.org/10.1016/j.rse.2007.06.025, 2008.
Foken, T.: 50 Years of the Monin–Obukhov Similarity Theory, Bound.-Lay. Meteorol.,
119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley,
A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements
and characterization of new datasets, Remote Sens. Environ., 114, 168–182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Garratt, J. R.: Flux profile relations above tall vegetation, Q. J. Roy. Meteorol.
Soc., 104, 199–211, https://doi.org/10.1002/qj.49710443915, 1978.
Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., and van der
Tol, C.: Integration of soil moisture in SEBS for improving evapotranspiration
estimation under water stress conditions, Remote Sens. Environ., 121, 261–274,
https://doi.org/10.1016/j.rse.2012.02.003, 2012.
GRIDMET: http://www.climatologylab.org/gridmet.html, last access: 10 March 2017.
Harman, I. N. and Finnigan, J. J.: A simple unified theory for flow in the
canopy and roughness sublayer, Bound.-Lay. Meteorol., 123, 339–363,
https://doi.org/10.1007/s10546-006-9145-6, 2007.
Holwerda, F., Bruijnzeel, L., Scatena, F., Vugts, H., and Meesters, A.: Wet
canopy evaporation from a Puerto Rican lower montane rain forest: The importance
of realistically estimated aerodynamic conductance, J. Hydrol., 414, 1–15, 2012.
Hu, G., Jia, L., and Menenti, M.: Comparison of MOD16 and LSA-SAF MSG
evapotranspiration products over Europe for 2011, Remote Sens. Environ., 156,
510–526, https://doi.org/10.1016/j.rse.2014.10.017, 2015.
Hulley, G. C., Hughes, C. G., and Hook, S. J.: Quantifying uncertainties in
land surface temperature and emissivity retrievals from ASTER and MODIS thermal
infrared data, J. Geophys. Res.-Atmos., 117, D23113, https://doi.org/10.1029/2012JD018506, 2012.
Hulley, G. C., Veraverbeke, S., and Hook, S.: Thermal-based techniques for land
cover change detection using a new dynamic MODIS multispectral emissivity product
(MOD21), Remote Sens. Environ., 140, 755–765, https://doi.org/10.1016/j.rse.2013.10.014, 2014.
Hulley, G. C., Malakar, N., Hughes, T., Islam, T., and Hook, S.: Moderate
resolution imaging spectroradiometer (MODIS) MOD21 land surface temperature and
emissivity algorithm theoretical basis document, Jet Propulsion Laboratory,
National Aeronautics and Space Administration, Pasadena, CA, 2016.
Jin, M. and Liang, S.: An Improved Land Surface Emissivity Parameter for Land
Surface Models Using Global Remote Sensing Observations, J. Climate, 19,
2867–2881, https://doi.org/10.1175/jcli3720.1, 2006.
Kim, H. W., Hwang, K., Mu, Q., Lee, S. O., and Choi, M.: Validation of MODIS
16 global terrestrial evapotranspiration products in various climates and land
cover types in Asia, KSCE J. Civ. Eng., 16, 229–238, https://doi.org/10.1007/s12205-012-0006-1, 2012.
Kustas, W. P. and Anderson, M.: Advances in thermal infrared remote sensing
for land surface modeling, Agr. Forest Meteorol., 149, 2071–2081,
https://doi.org/10.1016/j.agrformet.2009.05.016, 2009.
Kustas, W. P. and Norman, J.: Use of remote sensing for evapotranspiration
monitoring over land surfaces, Hydrolog. Sci. J., 41, 495–516, 1996.
Kustas, W. P. and Norman, J. M.: A two-source approach for estimating turbulent
fluxes using multiple angle thermal infrared observations, Water Resour. Res.,
33, 1495–1508, https://doi.org/10.1029/97WR00704, 1997.
Kustas, W. P., Nieto, H., Morillas, L., Anderson, M. C., Alfieri, J. G., Hipps,
L. E., Villagarcía, L., Domingo, F., and Garcia, M.: Revisiting the paper
“Using radiometric surface temperature for surface energy flux estimation in
Mediterranean drylands from a two-source perspective”, Remote Sens. Environ.,
184, 645–653, https://doi.org/10.1016/j.rse.2016.07.024, 2016.
Lewis, C. S., Geli, H. M. E., and Neale, C. M. U.: Comparison of the NLDAS
Weather Forcing Model to Agrometeorological Measurements in the western United
States, J. Hydrol., 510, 385–392, https://doi.org/10.1016/j.jhydrol.2013.12.040, 2014.
Lhomme, J. P. and Montes, C.: Generalized combination equations for canopy
evaporation under dry and wet conditions, Hydrol. Earth Syst. Sci., 18,
1137–1149, https://doi.org/10.5194/hess-18-1137-2014, 2014.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R News,
2, 18–22, 2002.
Liu, S., Lu, L., Mao, D., and Jia, L.: Evaluating parameterizations of
aerodynamic resistance to heat transfer using field measurements, Hydrol. Earth
Syst. Sci., 11, 769–783, https://doi.org/10.5194/hess-11-769-2007, 2007.
Logan, K. E. and Brunsell, N. A.: Influence of drought on growing season carbon
and water cycling with changing land cover, Agr. Forest Meteorol., 213, 217–225,
https://doi.org/10.1016/j.agrformet.2015.07.002, 2015.
Long, D. and Singh, V. P.: Integration of the GG model with SEBAL to produce
time series of evapotranspiration of high spatial resolution at watershed scales,
J. Geophys. Res.-Atmos., 115, D21128, https://doi.org/10.1029/2010JD014092, 2010.
Mallick, K., Jarvis, A. J., Boegh, E., Fisher, J. B., Drewry, D. T., Tu, K. P.,
Hook, S. J., Hulley, G., Ardo, J., Beringer, J., Arain, A., and Niyogi, D.: A
Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes,
Remote Sens. Environ., 141, 243–261, https://doi.org/10.1016/j.rse.2013.10.022, 2014.
Mallick, K., Boegh, E., Trebs, I., Alfieri, J. G., Kustas, W. P., Prueger, J.
H., Niyogi, D., Das, N., Drewry, D. T., Hoffmann, L., and Jarvis, A. J.:
Reintroducing radiometric surface temperature into the Penman–Monteith
formulation, Water Resour. Res., 51, 6214–6243, https://doi.org/10.1002/2014wr016106, 2015.
Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D. T.,
Hoffmann, L., von Randow, C., Kruijt, B., Araùjo, A., Saleska, S., Ehleringer,
J. R., Domingues, T. F., Ometto, J. P. H. B., Nobre, A. D., de Moraes, O. L. L.,
Hayek, M., Munger, J. W., and Wofsy, S. C.: Canopy-scale biophysical controls
of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci.,
20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, 2016.
Mallick, K., Toivonen, E., Trebs, I., Boegh, E., Cleverly, J., Eamus, D.,
Koivusalo, H., Dewry, D., Arndt, S. K., Griebel, A., Beringer, J., and Garcia,
M.: Bridging thermal infrared sensing and physically-based evapotranspiration
modeling: from theoretical implementation to validation across an aridity
gradient in Australian ecosystems, Water Resour. Res., in press, 2018.
Matheny, A. M., Bohrer, G., Stoy, P. C., Baker, I. T., Black, A. T., Desai, A.
R., Dietze, M. C., Gough, C. M., Ivanov, V. Y., Jassal, R. S., Novick, K. A.,
Schafer, K. V. R., and Verbeeck, H.: Characterizing the diurnal patterns of
errors in the prediction of evapotranspiration by several land-surface models:
An NACP analysis, J. Geophys. Res.-Biogeo., 119, 1458–1473, https://doi.org/10.1002/2014jg002623, 2014.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood,
E. F.: The GEWEX LandFlux project: evaluation of model evaporation using
tower-based and globally gridded forcing data, Geosci. Model Dev., 9, 283–305,
https://doi.org/10.5194/gmd-9-283-2016, 2016.
McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A., and Schwartz, E.:
Water from air: an overlooked source of moisture in arid and semiarid regions,
Scient. Rep., 5, 13767, https://doi.org/10.1038/srep13767, 2015.
McIntosh, D. H. and Thom, A. S.: Essentials of meteorology, Wykeham, London, 1978.
McNaughton, K. G. and Jarvis, P. G.: Using the Penman-Monteith equation
predictively, Agr. Water Manage., 8, 263–278, https://doi.org/10.1016/0378-3774(84)90057-X, 1984.
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock,
A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker,
R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H., Entin, J. K., Pan,
M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and Bailey, A. A.: The
multi-institution North American Land Data Assimilation System (NLDAS): Utilizing
multiple GCIP products and partners in a continental distributed hydrological
modeling system, J. Geophys. Res.-Atmos., 109, D07S90, https://doi.org/10.1029/2003JD003823, 2004.
MOD16: Evapotranspiration products, http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/,
last access: 15 March 2017.
MODIS – Moderate Resolution Imaging Spectroradiometer: Data Products,
https://modis.gsfc.nasa.gov/data/dataprod/, last access: 6 March 2017.
Moffett, K. B. and Gorelick, S. M.: A method to calculate heterogeneous
evapotranspiration using submeter thermal infrared imagery coupled to a stomatal
resistance submodel, Water Resour. Res., 48, W01545, https://doi.org/10.1029/2011WR010407, 2012.
Monson, R. K., Sparks, J. P., Rosenstiel, T. N., Scott-Denton, L. E., Huxman,
T. E., Harley, P. C., Turnipseed, A. A., Burns, S. P., Backlund, B., and Hu, J.:
Climatic influences on net ecosystem CO2 exchange during the transition
from wintertime carbon source to springtime carbon sink in a high-elevation,
subalpine forest, Oecologia, 146, 130–147, https://doi.org/10.1007/s00442-005-0169-2, 2005.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 4, 1965.
Monteith, J. L.: Evaporation and surface temperature, Q. J. Roy. Meteorol. Soc.,
107, 1–27, https://doi.org/10.1002/qj.49710745102, 1981.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial
evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800,
https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global
evapotranspiration algorithm based on MODIS and global meteorology data, Remote
Sens. Environ., 111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M.,
Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global products
of vegetation leaf area and fraction absorbed PAR from year one of MODIS data,
Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
NLDAS-2 – North American Land Data Assimilation System: Forcing Dataset,
https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php, last access: 10 February 2017.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating
soil and vegetation energy fluxes in observations of directional radiometric
surface temperature, Agr. Forest Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Numata, I., Khand, K., Kjaersgaard, J., Cochrane, M. A., and Silva, S. S.:
Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution
Evapotranspiration Estimates for Amazonian Forests, Remote Sensing, 9, 46, 2017.
Paul, G., Gowda, P. H., Vara Prasad, P. V., Howell, T. A., Aiken, R. M., and
Neale, C. M. U.: Investigating the influence of roughness length for heat
transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland
agricultural systems, J. Hydrol., 509, 231–244, https://doi.org/10.1016/j.jhydrol.2013.11.040, 2014.
Philip, R. and Novick, K.: AmeriFlux US-MMS Morgan Monroe State Forest, AmeriFlux,
Indiana University, Indianapolis, Indiana, 2016.
Priestley, C. and Taylor, R.: On the assessment of surface heat flux and
evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92,
https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2, 1972.
PRISM: Parameter elevation Regression on Independent Slopes Model: Climate Data,
http://prism.oregonstate.edu, last access: 9 March 2017.
Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., and Dzikiti,
S.: Validation of Global Evapotranspiration Product (MOD16) using Flux Tower
Data in the African Savanna, South Africa, Remote Sensing, 6, 7406–7423, 2014.
Raupach, M. R.: Influences of local feedbacks on land–air exchanges of energy
and carbon, Global Change Biol., 4, 477–494, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00155.x, 1998.
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A.:
The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights
from the 21st century drought, J. Geophys. Res.-Biogeo., 120, 2612–2624,
https://doi.org/10.1002/2015JG003181, 2015.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops-an energy
combination theory, Q. J. Roy. Meteorol. Soc., 111, 839–855, https://doi.org/10.1002/qj.49711146910, 1985.
Shuttleworth, W. J., Gurney, R., Hsu, A., and Ormsby, J.: FIFE: the variation
in energy partition at surface flux sites, IAHS Publ., Baltimore, Maryland, 67–74, 1989.
Simpson, I. J., Thurtell, G. W., Neumann, H. H., Den Hartog, G., and Edwards,
G. C.: The Validity of Similarity Theory in the Roughness Sublayer Above Forests,
Bound.-Lay. Meteorol., 87, 69–99, https://doi.org/10.1023/a:1000809902980, 1998.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce,
P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey,
H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M.,
Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.:
A data-driven analysis of energy balance closure across FLUXNET research sites:
The role of landscape scale heterogeneity, Agr. Forest Meteorol., 171, 137–152,
https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent
heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: An evaluation of two
models for estimation of the roughness height for heat transfer between the
land surface and the atmosphere, J. Appl. Meteorol., 40, 1933–1951, 2001.
Sun, G., Noormets, A., Gavazzi, M. J., McNulty, S. G., Chen, J., Domec, J. C.,
King, J. S., Amatya, D. M., and Skaggs, R. W.: Energy and water balance of two
contrasting loblolly pine plantations on the lower coastal plain of North
Carolina, USA, Forest Ecol. Manage., 259, 1299–1310, https://doi.org/10.1016/j.foreco.2009.09.016, 2010.
Suyker, A.: AmeriFlux US-Ne1 Mead-irrigated continuous maize site, AmeriFlux,
University of Nebraska-Lincoln, Mead, Nebraska, 2016.
Thomas, C. K., Law, B. E., Irvine, J., Martin, J. G., Pettijohn, J. C., and
Davis, K. J.: Seasonal hydrology explains interannual and seasonal variation
in carbon and water exchange in a semiarid mature ponderosa pine forest in
central Oregon, J. Geophys. Res.-Biogeo., 114, G04006, https://doi.org/10.1029/2009JG001010, 2009.
Timmermans, J., Su, Z., van der Tol, C., Verhoef, A., and Verhoef, W.:
Quantifying the uncertainty in estimates of surface–atmosphere fluxes through
joint evaluation of the SEBS and SCOPE models, Hydrol. Earth Syst. Sci., 17,
1561–1573, https://doi.org/10.5194/hess-17-1561-2013, 2013.
Troufleau, D., Lhomme, J. P., Monteny, B., and Vidal, A.: Sensible heat flux
and radiometric surface temperature over sparse Sahelian vegetation. I. An
experimental analysis of the kB-1 parameter, J. Hydrol., 188, 815–838,
https://doi.org/10.1016/S0022-1694(96)03172-1, 1997.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers,
T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance
flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300,
https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
van der Kwast, J., Timmermans, W., Gieske, A., Su, Z., Olioso, A., Jia, L.,
Elbers, J., Karssenberg, D., and de Jong, S.: Evaluation of the Surface Energy
Balance System (SEBS) applied to ASTER imagery with flux-measurements at the
SPARC 2004 site (Barrax, Spain), Hydrol. Earth Syst. Sci., 13, 1337–1347,
https://doi.org/10.5194/hess-13-1337-2009, 2009.
van Dijk, A. I. J. M., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti, A.,
Emmel, C., Gielen, B., Harman, I. N., Kiely, G., and Merbold, L.: Rainfall
interception and the coupled surface water and energy balance, Agr. Forest
Meteorol., 214, 402–415, 2015a.
van Dijk, A. I. J. M., Gash, J. H., van Gorsel, E., Blanken, P. D., Cescatti,
A., Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L., Montagnani,
L., Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A., and Wohlfahrt,
G.: Rainfall interception and the coupled surface water and energy balance,
Agr. Forest Meteorol., 214–215, 402–415, https://doi.org/10.1016/j.agrformet.2015.09.006, 2015b.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.: A
comprehensive evaluation of two MODIS evapotranspiration products over the
conterminous United States: Using point and gridded FLUXNET and water balance
ET, Remote Sens. Environ., 139, 35–49, https://doi.org/10.1016/j.rse.2013.07.013, 2013.
Venturini, V., Islam, S., and Rodriguez, L.: Estimation of evaporative fraction
and evapotranspiration from MODIS products using a complementary based model,
Remote Sens. Environ., 112, 132–141, https://doi.org/10.1016/j.rse.2007.04.014, 2008.
Verhoef, A., Bruin, H. A. R. D., and Hurk, B. J. J. M. V. D.: Some Practical
Notes on the Parameter kB-1 for Sparse Vegetation, J. Appl. Meteorol., 36,
560–572, https://doi.org/10.1175/1520-0450(1997)036<0560:spnotp>2.0.co;2, 1997a.
Verhoef, A., McNaughton, K. G., and Jacobs, A. F. G.: A parameterization of
momentum roughness length and displacement height for a wide range of canopy
densities, Hydrol. Earth Syst. Sci., 1, 81–91, https://doi.org/10.5194/hess-1-81-1997, 1997b.
Vermote, E.: MOD09A1MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC, NASA, Greenbelt, Maryland, 2015.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global
estimates of evapotranspiration for climate studies using multi-sensor remote
sensing data: Evaluation of three process-based approaches, Remote Sens. Environ.,
115, 801–823, 2011.
Wagle, P., Bhattarai, N., Gowda, P. H., and Kakani, V. G.: Performance of five
surface energy balance models for estimating daily evapotranspiration in high
biomass sorghum, ISPRS J. Photogram. Remote Sens., 128, 192–203,
https://doi.org/10.1016/j.isprsjprs.2017.03.022, 2017.
Wan, Z. and Li, Z. L.: Radiance-based validation of the V5 MODIS land-surface
temperature product, Int. J. Remote Sens., 29, 5373–5395, https://doi.org/10.1080/01431160802036565, 2008.
Wan, Z., Hook, S., and Hulley, G.: MOD11A2 MODIS/Terra Land Surface
Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006, NASA EOSDIS Land
Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center,
Sioux Falls, SD, https://lpdaac.usgs.gov (last access: 16 June 2016), 2015.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L.,
Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q.,
Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis
and validation for the North American Land Data Assimilation System project
phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J.
Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J.,
and Dickinson, R.: The role of satellite remote sensing in climate change
studies, Nat. Clim. Change, 3, 875–883, https://doi.org/10.1038/nclimate1908, 2013.
Yang, K., Koike, T., Fujii, H., Tamagawa, K., and Hirose, N.: Improvement of
surface flux parametrizations with a turbulence-related length, Q. J. Roy.
Meteorol. Soc., 128, 2073–2087, 2002.
Yang, Y., Long, D., Guan, H., Liang, W., Simmons, C., and Batelaan, O.:
Comparison of three dual-source remote sensing evapotranspiration models during
the MUSOEXE-12 campaign: Revisit of model physics, Water Resour. Res., 51,
3145–3165, https://doi.org/10.1002/2014WR015619, 2015.
Zhou, Y., Ju, W., Sun, X., Wen, X., and Guan, D.: Significant Decrease of
Uncertainties in Sensible Heat Flux Simulation Using Temporally Variable
Aerodynamic Roughness in Two Typical Forest Ecosystems of China, J. Appl.
Meteorol. Clim., 51, 1099–1110, https://doi.org/10.1175/jamc-d-11-0243.1, 2012.
Short summary
We report the first ever regional-scale implementation of the Surface Temperature Initiated Closure (STIC1.2) model for mapping evapotranspiration (ET) using MODIS land surface and gridded climate datasets to overcome the existing uncertainties in aerodynamic temperature and conductance estimation in global ET models. Validation and intercomparison with SEBS and MOD16 products across an aridity gradient in the US manifested better ET mapping potential of STIC1.2 in different climates and biomes.
We report the first ever regional-scale implementation of the Surface Temperature Initiated...