Articles | Volume 21, issue 1
Hydrol. Earth Syst. Sci., 21, 197–215, 2017
Hydrol. Earth Syst. Sci., 21, 197–215, 2017

Research article 11 Jan 2017

Research article | 11 Jan 2017

Upscaling instantaneous to daily evapotranspiration using modelled daily shortwave radiation for remote sensing applications: an artificial neural network approach

Loise Wandera1,2, Kaniska Mallick1, Gerard Kiely3, Olivier Roupsard4,5, Matthias Peichl6, and Vincenzo Magliulo7 Loise Wandera et al.
  • 1Remote Sensing and Ecohydrological Modeling, Dept. ERIN, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
  • 2Water Resources, Dept. ITC, University of Twente, Enschede, the Netherlands
  • 3Civil and Environmental Engineering Dept., and Environmental Research Institute, University College Cork, Cork, Ireland
  • 4CIRAD, UMR Eco&Sols, 2 Place Viala, Montpellier, France
  • 5CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Cartago, Costa Rica
  • 6Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
  • 7Consiglio Nazionale delle Ricerche, ISAFOM, Ercolano, Naples, Italy

Abstract. Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ETi) to daily evapotranspiration (ETd) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation (RS) to be the most robust reference variable explaining the ratio between ETd and ETi. This study aims to contribute in ETi upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation (RSd ∕ RSi) as a factor for converting ETi to ETd.

This paper proposes an artificial neural network (ANN) machine-learning algorithm first to predict RSd from RSi followed by using the RSd ∕ RSi ratio to convert ETi to ETd across different terrestrial ecosystems. Using RSi and RSd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing RSd and further used it to upscale ETi to ETd. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. RS-based upscaled ETd produced a significant linear relation (R2 =  0.65 to 0.69), low bias (−0.31 to −0.56 MJ m−2 d−1; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m−2 d−1; approx. 10 %) with the observed ETd, although a systematic overestimation of ETd was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANN-driven RS-based ETi upscaling method and was found to produce lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection and high ETd prediction errors in forest ecosystems are primarily associated with greater rainfall and cloudiness. The overall methodology appears to be promising and has substantial potential for upscaling ETi to ETd for field and regional-scale evapotranspiration mapping studies using polar orbiting satellites.

Short summary
Upscaling instantaneous to daily evapotranspiration (ETi–ETd) is one of the central challenges in regional vegetation water-use mapping using polar orbiting satellites. Here we developed a robust ETi upscaling for global studies using the ratio between daily and instantaneous global radiation (RSd/RSi). Using data from 126 FLUXNET tower sites, this study demonstrated the RSd/RSi ratio to be the most robust factor explaining ETd/ETi variability across variable sky conditions and multiple biomes.